Package org.apache.spark.ml.clustering
Class GaussianMixtureModel
- All Implemented Interfaces:
Serializable,org.apache.spark.internal.Logging,GaussianMixtureParams,Params,HasAggregationDepth,HasFeaturesCol,HasMaxIter,HasPredictionCol,HasProbabilityCol,HasSeed,HasTol,HasWeightCol,HasTrainingSummary<GaussianMixtureSummary>,Identifiable,MLWritable
public class GaussianMixtureModel
extends Model<GaussianMixtureModel>
implements GaussianMixtureParams, MLWritable, HasTrainingSummary<GaussianMixtureSummary>
Multivariate Gaussian Mixture Model (GMM) consisting of k Gaussians, where points
are drawn from each Gaussian i with probability weights(i).
param: weights Weight for each Gaussian distribution in the mixture.
This is a multinomial probability distribution over the k Gaussians,
where weights(i) is the weight for Gaussian i, and weights sum to 1.
param: gaussians Array of MultivariateGaussian where gaussians(i) represents
the Multivariate Gaussian (Normal) Distribution for Gaussian i
- See Also:
-
Nested Class Summary
Nested classes/interfaces inherited from interface org.apache.spark.internal.Logging
org.apache.spark.internal.Logging.LogStringContext, org.apache.spark.internal.Logging.SparkShellLoggingFilter -
Method Summary
Modifier and TypeMethodDescriptionfinal IntParamParam for suggested depth for treeAggregate (>= 2).Creates a copy of this instance with the same UID and some extra params.Param for features column name.Retrieve Gaussian distributions as a DataFrame.final IntParamk()Number of independent Gaussians in the mixture model.static GaussianMixtureModelfinal IntParammaxIter()Param for maximum number of iterations (>= 0).intintParam for prediction column name.predictProbability(Vector features) Param for Column name for predicted class conditional probabilities.static MLReader<GaussianMixtureModel>read()final LongParamseed()Param for random seed.setFeaturesCol(String value) setPredictionCol(String value) setProbabilityCol(String value) summary()Gets summary of model on training set.final DoubleParamtol()Param for the convergence tolerance for iterative algorithms (>= 0).toString()Transforms the input dataset.transformSchema(StructType schema) Check transform validity and derive the output schema from the input schema.uid()An immutable unique ID for the object and its derivatives.Param for weight column name.double[]weights()write()Returns aMLWriterinstance for this ML instance.Methods inherited from class org.apache.spark.ml.Transformer