Skip to main content
Log in

Securing the future: exploring post-quantum cryptography for authentication and user privacy in IoT devices

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

With the emergence of quantum computers, traditional cryptographic methods are vulnerable to attacks, emphasizing the need for post-quantum cryptography to secure devices and networks. This review paper critically analyzes the challenges and future directions of post-quantum cryptography for Internet of Things (IoT). It provides an overview of various post-quantum cryptographic algorithms and protocols and evaluates their suitability for securing IoT devices. The paper also examines implementation challenges, such as limited computing resources and the need for lightweight post-quantum algorithms. Additionally, the paper discusses future directions of post-quantum cryptography, such as the development of hybrid quantum-classical algorithms and integration with other security measures like secure key exchange and device authentication. The study provides a comprehensive analysis of post-quantum cryptography for IoT, highlighting key issues and challenges to ensure secure deployment of IoT devices in a post-quantum world. This paper’s conclusions and recommendations will be valuable to researchers, practitioners, and policymakers working in the subject of IoT security and cryptography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

Code availability

Not applicable.

References

  1. Cheng, C., Lu, R., Petzoldt, A., Takagi, T.: Securing the internet of things in a quantum world. IEEE Commun. Mag. 55(2), 116–120 (2017)

    Article  MATH  Google Scholar 

  2. Suo, J., Wang, L., Yang, S., Zheng, W., Zhang, J.: Quantum algorithms for typical hard problems: a perspective of cryptanalysis. Quantum Inf. Process. 19(6), 1–26 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, L., Chen, L., Jordan, S., Liu, Y.-K., Moody, D., Peralta, R., Perlner, R., Smith-Tone, D.: Report on Post-quantum Cryptography, vol. 12. US Department of Commerce, National Institute of Standards and Technology (2016)

  4. Gorbenko, Y., Svatovskiy, I., Shevtsov, O.: Post-quantum message authentication cryptography based on error-correcting codes. In: 2016 3rd International Scientific-Practical Conference Problems of Infocommunications Science and Technology (PIC S &T), pp. 51–54. IEEE (2016)

  5. Ding, J., Alsayigh, S., Lancrenon, J., RV, S., Snook, M.: Provably secure password authenticated key exchange based on rlwe for the post-quantum world. In: Cryptographers’ Track at the RSA Conference, pp. 183–204. Springer (2017)

  6. Longa, P.: A note on post-quantum authenticated key exchange from supersingular isogenies. Cryptology ePrint Archive (2018)

  7. Lohachab, A., et al.: Using quantum key distribution and ecc for secure inter-device authentication and communication in iot infrastructure. In: Proceedings of 3rd International Conference on Internet of Things and Connected Technologies (ICIoTCT), pp. 26–27 (2018)

  8. Yin, W., Wen, Q., Li, W., Zhang, H., Jin, Z.: An anti-quantum transaction authentication approach in blockchain. IEEE Access 6, 5393–5401 (2018)

    Article  MATH  Google Scholar 

  9. Fujioka, A., Takashima, K., Terada, S., Yoneyama, K.: Supersingular isogeny diffie–hellman authenticated key exchange. In: International Conference on Information Security and Cryptology, pp. 177–195. Springer (2018)

  10. Latif, M.K., Jacinto, H.S., Daoud, L., Rafla, N.: Optimization of a quantum-secure sponge-based hash message authentication protocol. In: 2018 IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 984–987. IEEE (2018)

  11. Crockett, E., Paquin, C., Stebila, D.: Prototyping post-quantum and hybrid key exchange and authentication in tls and ssh. Cryptology ePrint Archive (2019)

  12. Li, Z., Wang, J., Zhang, W.: Revisiting post-quantum hash proof systems over lattices for internet of thing authentications. J. Ambient Intell. Hum. Comput. 11(8), 3337–3347 (2020)

    Article  MATH  Google Scholar 

  13. Dharminder, D., Mishra, D.: Lcppa: lattice-based conditional privacy preserving authentication in vehicular communication. Trans. Emerging Telecommun. Technol. 31(2), 3810 (2020)

    Article  MATH  Google Scholar 

  14. Paul, S., Guerin, E.: Hybrid opc ua: Enabling post-quantum security for the industrial internet of things. In: 2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), vol. 1, pp. 238–245. IEEE (2020)

  15. Dam, D.-T., Tran, T.-H., Hoang, V.-P., Pham, C.-K., Hoang, T.-T.: A survey of post-quantum cryptography: start of a new race. Cryptography 7(3), 40 (2023)

    Article  MATH  Google Scholar 

  16. Joshi, G.P., Kim, S.W.: Survey, nomenclature and comparison of reader anti-collision protocols in rfid. IETE Tech. Rev. 25(5), 234–243 (2008)

    Article  MATH  Google Scholar 

  17. Camarinha-Matos, L.M., Goes, J., Gomes, L., Martins, J.: Contributing to the internet of things. InTechnological Innovation for the Internet of Things: 4th IFIP WG 5.5/SOCOLNET Doctoral Conference on Computing, Electrical and Industrial Systems, DoCEIS 2013, Costa de Caparica, Portugal, April 15-17, 2013, (pp. 3-12). Springer Berlin Heidelberg (2013)

  18. Hepp, M., Siorpaes, K., Bachlechner, D.: Harvesting wiki consensus: using wikipedia entries as vocabulary for knowledge management. IEEE Int. Comput. 11(5), 54–65 (2007)

    Article  Google Scholar 

  19. Li, Y., Hou, M., Liu, H., Liu, Y.: Towards a theoretical framework of strategic decision, supporting capability and information sharing under the context of internet of things. Inf. Technol. Manage. 13(4), 205–216 (2012)

    Article  MATH  Google Scholar 

  20. Li, S., Xu, L., Wang, X., Wang, J.: Integration of hybrid wireless networks in cloud services oriented enterprise information systems. Enterp. Inf. Syst. 6(2), 165–87 (2012)

    Article  MATH  Google Scholar 

  21. Kiritsis, D.: Closed-loop plm for intelligent products in the era of the internet of things. Comput. Aided Des. 43(5), 479–501 (2011)

    Article  MATH  Google Scholar 

  22. Besen, S.M.: The European telecommunications standards institute: A preliminary analysis. Telecommun. Policy 14(6), 521–530 (1990)

    Article  MATH  Google Scholar 

  23. Kranenburg, V.: Moscow futurodesign lab co-create urban intelli-gence: designing smart interfaces between people and city (2013)

  24. Guo, J., Da Xu, L., Xiao, G., Gong, Z.: Improving multilingual semantic interoperation in cross-organizational enterprise systems through concept disambiguation. IEEE Trans. Industr. Inf. 8(3), 647–658 (2012)

    Article  MATH  Google Scholar 

  25. Li, S., Da Xu, L., Wang, X.: Compressed sensing signal and data acquisition in wireless sensor networks and internet of things. IEEE Trans. Industr. Inf. 9(4), 2177–2186 (2012)

    Article  MATH  Google Scholar 

  26. Wang, J., Lim, M.K., Wang, C., Tseng, M.-L.: The evolution of the internet of things (iot) over the past 20 years. Comput. Industr. Eng. 155, 107174 (2021)

    Article  MATH  Google Scholar 

  27. Kataev, M.Y., Bulysheva, L.A., Emelyanenko, A.A., Emelyanenko, V.A.: Enterprise systems in Russia: 1992–2012. Enterp. Inf. Syst. 7(2), 169–186 (2013)

    Article  MATH  Google Scholar 

  28. Jiang, L., Da Xu, L., Cai, H., Jiang, Z., Bu, F., Xu, B.: An iot-oriented data storage framework in cloud computing platform. IEEE Trans. Industr. Inf. 10(2), 1443–1451 (2014)

    Article  MATH  Google Scholar 

  29. Li, L.: Technology designed to combat fakes in the global supply chain. Bus. Horiz. 56(2), 167–177 (2013)

    Article  MATH  Google Scholar 

  30. Ren, L., Zhang, L., Tao, F., Zhang, X., Luo, Y., Zhang, Y.: A methodology towards virtualisation-based high performance simulation platform supporting multidisciplinary design of complex products. Enterp. Inf. Syst. 6(3), 267–290 (2012)

    Article  MATH  Google Scholar 

  31. Tao, F., Zuo, Y., Da Xu, L., Zhang, L.: Iot-based intelligent perception and access of manufacturing resource toward cloud manufacturing. IEEE Trans. Industr. Inf. 10(2), 1547–1557 (2014)

    Article  MATH  Google Scholar 

  32. Wang, C., Bi, Z., Da, Xu., L.: Iot and cloud computing in automation of assembly modeling systems. IEEE Trans. Industr. Inf. 10(2), 1426–1434 (2014)

  33. Mosenia, A., Jha, N.K.: A comprehensive study of security of internet-of-things. IEEE Trans. Emerg. Top. Comput. 5(4), 586–602 (2016)

    Article  MATH  Google Scholar 

  34. Liu, Y., Kuang, Y., Xiao, Y., Xu, G.: Sdn-based data transfer security for internet of things. IEEE Internet Things J. 5(1), 257–268 (2017)

    Article  MATH  Google Scholar 

  35. Conti, M., Kaliyar, P., Lal, C.: Censor: Cloud-enabled secure iot architecture over sdn paradigm. Concurr. Comput.: Pract. Exp. 31(8), 4978 (2019)

  36. Khan, F.I., Hameed, S.: Understanding security requirements and challenges in internet of things (iots): a review. arXiv preprint arXiv:1808.10529 (2018)

  37. Bizanis, N., Kuipers, F.A.: Sdn and virtualization solutions for the internet of things: a survey. IEEE Access 4, 5591–5606 (2016)

    Article  MATH  Google Scholar 

  38. Iqbal, W., Abbas, H., Daneshmand, M., Rauf, B., Bangash, Y.A.: An in-depth analysis of iot security requirements, challenges, and their countermeasures via software-defined security. IEEE Internet Things J. 7(10), 10250–10276 (2020)

    Article  Google Scholar 

  39. Nguyen, T.N.: The challenges in sdn/ml based network security: a survey. arXiv preprint arXiv:1804.03539 (2018)

  40. Salman, O., Elhajj, I., Chehab, A., Kayssi, A.: Iot survey: an sdn and fog computing perspective. Comput. Netw. 143, 221–246 (2018)

    Article  Google Scholar 

  41. Makhdoom, I., Abolhasan, M., Lipman, J., Liu, R.P., Ni, W.: Anatomy of threats to the internet of things. IEEE Commun. Surv. Tutor. 21(2), 1636–1675 (2018)

    Article  MATH  Google Scholar 

  42. Banafa, A.: Iot standardization and implementation challenges. IEEE Internet Things Newslett. 1–10 (2016)

  43. Gharaibeh, A., Salahuddin, M.A., Hussini, S.J., Khreishah, A., Khalil, I., Guizani, M., Al-Fuqaha, A.: Smart cities: a survey on data management, security, and enabling technologies. IEEE Commun. Surv. Tutor. 19(4), 2456–2501 (2017)

    Article  Google Scholar 

  44. Eckhoff, D., Wagner, I.: Privacy in the smart city-applications, technologies, challenges, and solutions. IEEE Commun. Surv. Tutor. 20(1), 489–516 (2017)

    Article  MATH  Google Scholar 

  45. Ullo, S.L., Sinha, G.R.: Advances in smart environment monitoring systems using iot and sensors. Sensors 20(11), 3113 (2020)

    Article  MATH  Google Scholar 

  46. Xia, X., Xiao, Y., Liang, W.: Absi: an adaptive binary splitting algorithm for malicious meter inspection in smart grid. IEEE Trans. Inf. Forens. Secur. 14(2), 445–458 (2018)

    Article  MATH  Google Scholar 

  47. Dlamini, N.N., Johnston, K.: The use, benefits and challenges of using the Internet of Things (IoT) in retail businesses: A literature review. In: 2016 international conference on advances in computing and communication engineering (ICACCE), (pp. 430-436). IEEE (2016)

  48. Ji, Z., Anwen, Q.: The application of internet of things (iot) in emergency management system in china. In: 2010 IEEE International Conference on Technologies for Homeland Security (HST), pp. 139–142. IEEE (2010)

  49. Al-Nabhan, N., Al-Aboody, N., Al Islam, A.A.: A hybrid iot-based approach for emergency evacuation. Comput. Netw. 155, 87–97 (2019)

    Article  MATH  Google Scholar 

  50. Hossain, M.S., Chisty, N.M.A., Hargrove, D.L., Amin, R.: Role of internet of things (iot) in retail business and enabling smart retailing experiences. Asian Bus. Rev. 11(2), 75–80 (2021)

    Article  Google Scholar 

  51. Namboodiri, V., Aravinthan, V., Mohapatra, S.N., Karimi, B., Jewell, W.: Toward a secure wireless-based home area network for metering in smart grids. IEEE Syst. J. 8(2), 509–520 (2013)

    Article  Google Scholar 

  52. Zanella, A., Bui, N., Castellani, A., Vangelista, L., Zorzi, M.: Internet of things for smart cities. IEEE Internet Things J. 1(1), 22–32 (2014)

    Article  Google Scholar 

  53. Jose, A.C., Malekian, R.: Improving smart home security: integrating logical sensing into smart home. IEEE Sens. J. 17(13), 4269–4286 (2017)

    Article  MATH  Google Scholar 

  54. Granjal, J., Monteiro, E., Silva, J.S.: Security for the internet of things: a survey of existing protocols and open research issues. IEEE Commun. Surv. Tutor. 17(3), 1294–1312 (2015)

    Article  Google Scholar 

  55. Yaseen, M., Iqbal, W., Rashid, I., Abbas, H., Mohsin, M., Saleem, K., Bangash, Y.A.: Marc: a novel framework for detecting mitm attacks in ehealthcare ble systems. J. Med. Syst. 43, 1–18 (2019)

    Article  Google Scholar 

  56. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M.: Internet of things: a survey on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutor. 17(4), 2347–2376 (2015)

    Article  Google Scholar 

  57. Khari, M., Kumar, M., Vij, S., Pandey, P., et al.: Internet of things: Proposed security aspects for digitizing the world. In: 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom), pp. 2165–2170. IEEE (2016)

  58. Uckelmann, D., Harrison, M., Michahelles, F.: An architectural approach towards the future internet of things. In: Architecting the Internet of Things, pp. 1–24. Springer (2011)

  59. Reziouk, A., Laurent, E., Demay, J.-C.: Practical security overview of ieee 802.15. 4. In: 2016 International Conference on Engineering & MIS (ICEMIS), pp. 1–9. IEEE (2016)

  60. Yu, T., Sekar, V., Seshan, S., Agarwal, Y., Xu, C.: Handling a trillion (unfixable) flaws on a billion devices: rethinking network security for the internet-of-things. In: Proceedings of the 14th ACM Workshop on Hot Topics in Networks, pp. 1–7 (2015)

  61. AT &TCybersecurityInsights: the ceos guide to data security protect your data through innovation [online] (2016). https://www.business.att.com/cybersecurity/docs/vol5-datasecurity.pdf

  62. Ahlmeyer, M., Chircu, A.M.: Securing the internet of things: A review. Issues Inf. Syst. 17(4) (2016)

  63. Yang, Y., Wu, L., Yin, G., Li, L., Zhao, H.: A survey on security and privacy issues in internet-of-things. IEEE Internet Things J. 4(5), 1250–1258 (2017)

    Article  MATH  Google Scholar 

  64. Thilakarathne, N.N.: Security and privacy issues in iot environment. Int. J. Eng. Manag. Res. 10 (2020)

  65. Sehrawat, D., Gill, N.S.: Smart sensors: analysis of different types of iot sensors. In: 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI), pp. 523–528. IEEE (2019)

  66. Kumar, S.A., Vealey, T., Srivastava, H.: Security in internet of things: challenges, solutions and future directions. In: 2016 49th Hawaii International Conference on System Sciences (HICSS), pp. 5772–5781. IEEE (2016)

  67. Balamurugan, B., Biswas, D.: Security in network layer of iot: possible measures to preclude. In: Security Breaches and Threat Prevention in the Internet of Things, pp. 46–75. IGI Global (2017)

  68. Fox-Brewster, T.: It’s depressingly easy to spy on vulnerable baby monitors using just a browser (2015)

  69. Fowler, B.: Some top baby monitors lack basic security features, report finds. NBC New York (2015). https://www.nbcnewyork.com/news/local/baby-monitor-security

  70. Ning, H., Liu, H., Yang, L.T.: Cyberentity security in the internet of things. Computer 46(4), 46–53 (2013)

    Article  MATH  Google Scholar 

  71. Wurm, J., Hoang, K., Arias, O., Sadeghi, A.-R., Jin, Y.: Security analysis on consumer and industrial iot devices. In: 2016 21st Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 519–524. IEEE (2016)

  72. Arias, O., Wurm, J., Hoang, K., Jin, Y.: Privacy and security in internet of things and wearable devices. IEEE Trans. Multi-Scale Comput. Syst. 1(2), 99–109 (2015)

    Article  MATH  Google Scholar 

  73. Puthal, D., Nepal, S., Ranjan, R., Chen, J.: Threats to networking cloud and edge datacenters in the internet of things. IEEE Cloud Comput. 3(3), 64–71 (2016)

    Article  Google Scholar 

  74. Yile, F.: Research on the security problem in windows 7 operating system. In: 2016 8th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), pp. 568–571. IEEE (2016)

  75. Borgohain, T., Kumar, U., Sanyal, S.: Survey of security and privacy issues of internet of things (2015). arXiv preprint arXiv:1501.02211

  76. Savola, R.M., Abie, H., Sihvonen, M.: Towards metrics-driven adaptive security management in e-health iot applications. In: BodyNets, pp. 276–281 (2012)

  77. Sadeghi, A.-R., Wachsmann, C., Waidner, M.: Security and privacy challenges in industrial internet of things. In: 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–6. IEEE (2015)

  78. Nilsson, D.: Åberg H. HTML5 Web application security with OWASP (2013)

  79. Gupta, S., Gupta, B.B.: Cross-site scripting (xss) attacks and defense mechanisms: classification and state-of-the-art. Int. J. Syst. Assur. Eng. Manag. 8(1), 512–530 (2017)

    Article  MATH  Google Scholar 

  80. Misic, V.B., Fang, J., Misic, J.: Mac layer security of 802.15. 4-compliant networks. In: IEEE International Conference on Mobile Adhoc and Sensor Systems Conference, p. 8. IEEE (2005)

  81. Deogirikar, J., Vidhate, A.: Security attacks in iot: a survey. In: 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), pp. 32–37. IEEE (2017)

  82. Kolias, C., Kambourakis, G., Stavrou, A., Voas, J.: Ddos in the iot: Mirai and other botnets. Computer 50(7), 80–84 (2017)

    Article  Google Scholar 

  83. Reddy, V.P., Radha, V., Jindal, M.: Client side protection from phishing attack. Int. J. Adv. Eng. Sci. Technol. 3(1), 39–45 (2011)

    Google Scholar 

  84. Li, C., Chen, C.: A multi-stage control method application in the fight against phishing attacks. In: Proceeding of the 26th Computer Security Academic Communication Across the Country, vol. 145 (2011)

  85. Tweneboah-Koduah, S., Skouby, K.E., Tadayoni, R.: Cyber security threats to iot applications and service domains. Wirel. Pers. Commun. 95, 169–185 (2017)

    Article  Google Scholar 

  86. Swamy, S.N., Jadhav, D., Kulkarni, N.: Security threats in the application layer in iot applications. In: 2017 International Conference on i-SMAC (iot in Social, Mobile, Analytics and cloud) (i-SMAC), pp. 477–480. IEEE (2017)

  87. Abdul-Ghani, H.A., Konstantas, D., Mahyoub, M.: A comprehensive IoT attacks survey based on a building-blocked reference model. Int. J. Adv. Comput. Sci. Appl. 9(3), 355–73 (2018)

    Google Scholar 

  88. Mohd, B.J., Hayajneh, T., Vasilakos, A.V.: A survey on lightweight block ciphers for low-resource devices: comparative study and open issues. J. Netw. Comput. Appl. 58, 73–93 (2015)

    Article  Google Scholar 

  89. Moosavi, S.R., Gia, T.N., Rahmani, A.-M., Nigussie, E., Virtanen, S., Isoaho, J., Tenhunen, H.: Sea: a secure and efficient authentication and authorization architecture for iot-based healthcare using smart gateways. Proced. Comput. Sci. 52, 452–459 (2015)

    Article  Google Scholar 

  90. Wu, W., Zhang, L.: Lblock: a lightweight block cipher. In: International Conference on Applied Cryptography and Network Security, pp. 327–344. Springer (2011)

  91. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J., Seurin, Y., Vikkelsoe, C.: Present: an ultra-lightweight block cipher. In: International Workshop on Cryptographic Hardware and Embedded Systems, pp. 450–466. Springer (2007)

  92. Hatzivasilis, G., Fysarakis, K., Papaefstathiou, I., Manifavas, C.: A review of lightweight block ciphers. J. Cryptogr. Eng. 8(2), 141–184 (2018)

    Article  Google Scholar 

  93. Lo’ai, A.T., Somani, T.F.: More secure internet of things using robust encryption algorithms against side channel attacks. In: 2016 IEEE/ACS 13th International Conference of Computer Systems and Applications (AICCSA), pp. 1–6. IEEE (2016)

  94. Zhang, F., Guo, S., Zhao, X., Wang, T., Yang, J., Standaert, F.-X., Gu, D.: A framework for the analysis and evaluation of algebraic fault attacks on lightweight block ciphers. IEEE Trans. Inf. Forens. Secur. 11(5), 1039–1054 (2016)

    Article  MATH  Google Scholar 

  95. Majzoobi, M., Rostami, M., Koushanfar, F., Wallach, D.S., Devadas, S.: Slender puf protocol: a lightweight, robust, and secure authentication by substring matching. In: 2012 IEEE Symposium on Security and Privacy Workshops, pp. 33–44. IEEE (2012)

  96. Herder, C., Yu, M.-D., Koushanfar, F., Devadas, S.: Physical unclonable functions and applications: a tutorial. Proc. IEEE 102(8), 1126–1141 (2014)

    Article  MATH  Google Scholar 

  97. Cannière, C.D., Dunkelman, O., Knežević, M.: Katan and ktantan-a family of small and efficient hardware-oriented block ciphers. In: International Workshop on Cryptographic Hardware and Embedded Systems, pp. 272–288. Springer (2009)

  98. Orumiehchiha, M.A., Pieprzyk, J., Steinfeld, R.: Cryptanalysis of wg-7: a lightweight stream cipher. Cryptogr. Commun. 4(3), 277–285 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  99. Li, X., Wang, H., Yu, Y., Qian, C.: An iot data communication framework for authenticity and integrity. In: Proceedings of the Second International Conference on Internet-of-Things Design and Implementation, pp. 159–170 (2017)

  100. Seshadri, A., Perrig, A., Van Doorn, L., Khosla, P.: Swatt: software-based attestation for embedded devices. In: IEEE Symposium on Security and Privacy, 2004. Proceedings, pp. 272–282. IEEE(2004)

  101. Seshadri, A., Luk, M., Shi, E., Perrig, A., Van Doorn, L., Khosla, P.: Pioneer: verifying code integrity and enforcing untampered code execution on legacy systems. In: Proceedings of the Twentieth ACM Symposium on Operating Systems Principles, pp. 1–16 (2005)

  102. Ferreira, L.C.B., Yamaguti, R., Branquinho, O.C., Cardieri, P.: A tpm-based collaborative system to teach iot. Comput. Appl. Eng. Educ. 30(1), 292–303 (2022)

    Google Scholar 

  103. Altowaijri, S.M.: Efficient next-hop selection in multi-hop routing for iot enabled wireless sensor networks. Fut. Internet 14(2), 35 (2022)

    Article  MATH  Google Scholar 

  104. Abera, T., Asokan, N., Davi, L., Koushanfar, F., Paverd, A., Sadeghi, A.-R., Tsudik, G.: Things, trouble, trust: on building trust in iot systems. In: Proceedings of the 53rd Annual Design Automation Conference, pp. 1–6 (2016)

  105. Schulz, S., Sadeghi, A.-R., Wachsmann, C.: Short paper: Lightweight remote attestation using physical functions. In: Proceedings of the Fourth ACM Conference on Wireless Network Security, pp. 109–114 (2011)

  106. Asokan, N., Brasser, F., Ibrahim, A., Sadeghi, A.-R., Schunter, M., Tsudik, G., Wachsmann, C.: Seda: Scalable embedded device attestation. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pp. 964–975 (2015)

  107. Ambrosin, M., Conti, M., Ibrahim, A., Neven, G., Sadeghi, A.-R., Schunter, M.: Sana: Secure and scalable aggregate network attestation. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 731–742 (2016)

  108. Abera, T., Asokan, N., Davi, L., Ekberg, J.-E., Nyman, T., Paverd, A., Sadeghi, A.-R., Tsudik, G.: C-flat: control-flow attestation for embedded systems software. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 743–754 (2016)

  109. Dessouky, G., Zeitouni, S., Nyman, T., Paverd, A., Davi, L., Koeberl, P., Asokan, N., Sadeghi, A.-R.: Lo-fat: low-overhead control flow attestation in hardware. In: Proceedings of the 54th Annual Design Automation Conference 2017, pp. 1–6 (2017)

  110. Dragomir, D., Gheorghe, L., Costea, S., Radovici, A.: A survey on secure communication protocols for iot systems. In: 2016 International Workshop on Secure Internet of Things (SIoT), pp. 47–62. IEEE (2016)

  111. Alcaide, A., Palomar, E., Montero-Castillo, J., Ribagorda, A.: Anonymous authentication for privacy-preserving iot target-driven applications. Comput. Secur. 37, 111–123 (2013)

    Article  Google Scholar 

  112. Su, C., Santoso, B., Li, Y., Deng, R.H., Huang, X.: Universally composable rfid mutual authentication. IEEE Trans. Depend. Secur. Comput. 14(1), 83–94 (2015)

    Google Scholar 

  113. Kim, H., Lee, E.A.: Authentication and authorization for the internet of things. IT Prof. 19(5), 27–33 (2017)

    Article  MATH  Google Scholar 

  114. Ziegeldorf, J.H., Morchon, O.G., Wehrle, K.: Privacy in the internet of things: threats and challenges. Secur. Commun. Netw. 7(12), 2728–2742 (2014)

    Article  MATH  Google Scholar 

  115. Weber, R.H.: Internet of things: Privacy issues revisited. Comput. Law Secur. Rev. 31(5), 618–627 (2015)

    Article  MATH  Google Scholar 

  116. Kanuparthi, A., Karri, R., Addepalli, S.: Hardware and embedded security in the context of internet of things. In: Proceedings of the 2013 ACM Workshop on Security, Privacy & Dependability for Cyber Vehicles, pp. 61–64 (2013)

  117. Lopez, J., Rios, R., Bao, F., Wang, G.: Evolving privacy: from sensors to the internet of things. Fut. Gener. Comput. Syst. 75, 46–57 (2017)

    Article  MATH  Google Scholar 

  118. Mendes, R., Vilela, J.P.: Privacy-preserving data mining: methods, metrics, and applications. IEEE Access 5, 10562–10582 (2017)

    Article  MATH  Google Scholar 

  119. SQLi, X.S.: zero-days expose Belkin IoT devices, Android smartphones. (2016) [Internet]

  120. Apthorpe, N., Reisman, D., Sundaresan, S., Narayanan, A., Feamster, N.: Spying on the smart home: privacy attacks and defenses on encrypted iot traffic. arXiv preprint arXiv:1708.05044 (2017)

  121. Sahi, M.A., Abbas, H., Saleem, K., Yang, X., Derhab, A., Orgun, M.A., Iqbal, W., Rashid, I., Yaseen, A.: Privacy preservation in e-healthcare environments: state of the art and future directions. IEEE Access 6, 464–478 (2017)

    Article  Google Scholar 

  122. Riedl, B., Grascher, V., Neubauer, T.: A secure e-health architecture based on the appliance of pseudonymization. J. Softw. 3(2), 23–32 (2008)

    Article  MATH  Google Scholar 

  123. Liu, X., Li, Y., Qu, J., Ding, Y.: A lightweight pseudonym authentication and key agreement protocol for multi-medical server architecture in tmis. KSII Trans. Internet Inf. Syst. (TIIS) 11(2), 924–944 (2017)

    MATH  Google Scholar 

  124. Li, X., Ibrahim, M.H., Kumari, S., Sangaiah, A.K., Gupta, V., Choo, K.-K.R.: Anonymous mutual authentication and key agreement scheme for wearable sensors in wireless body area networks. Comput. Netw. 129, 429–443 (2017)

    Article  Google Scholar 

  125. Koya, A.M., Deepthi, P.: Anonymous hybrid mutual authentication and key agreement scheme for wireless body area network. Comput. Netw. 140, 138–151 (2018)

    Article  MATH  Google Scholar 

  126. Seol, K., Kim, Y.-G., Lee, E., Seo, Y.-D., Baik, D.-K.: Privacy-preserving attribute-based access control model for xml-based electronic health record system. IEEE Access 6, 9114–9128 (2018)

    Article  MATH  Google Scholar 

  127. Rottondi, C., Verticale, G., Capone, A.: Privacy-preserving smart metering with multiple data consumers. Comput. Netw. 57(7), 1699–1713 (2013)

    Article  Google Scholar 

  128. Ge, S., Zeng, P., Lu, R., Choo, K.-K.R.: Fgda: Fine-grained data analysis in privacy-preserving smart grid communications. Peer-to-Peer Netw. Appl. 11(5), 966–978 (2018)

    Article  MATH  Google Scholar 

  129. Rahman, M.A., Manshaei, M.H., Al-Shaer, E., Shehab, M.: Secure and private data aggregation for energy consumption scheduling in smart grids. IEEE Trans. Depend. Secur. Comput. 14(2), 221–234 (2015)

    Article  Google Scholar 

  130. Shen, H., Zhang, M., Shen, J.: Efficient privacy-preserving cube-data aggregation scheme for smart grids. IEEE Trans. Inf. Forens. Secur. 12(6), 1369–1381 (2017)

    Article  MATH  Google Scholar 

  131. Fan, C.-I., Huang, S.-Y., Lai, Y.-L.: Privacy-enhanced data aggregation scheme against internal attackers in smart grid. IEEE Trans. Industr. Inf. 10(1), 666–675 (2013)

    Article  MATH  Google Scholar 

  132. Engel, D., Eibl, G.: Wavelet-based multiresolution smart meter privacy. IEEE Trans. Smart Grid 8(4), 1710–1721 (2015)

    Article  MATH  Google Scholar 

  133. Brown, A., Bennett, B., Brady, M., Tranter, K., Butler, D.: Regulating future driving: automated vehicles and the harmonisation of australian laws. Monash Univer. Law Rev. 48(3), 1–24 (2023)

    Google Scholar 

  134. Ripple issues urgent warning on quantum computing’s threat to blockchain security—bignewsnetwork.com. https://www.bignewsnetwork.com/news/274410269/ripple-issues-urgent-warning-on-quantum-computing-threat-to-blockchain-security. Accessed 15 Jun 2024

  135. Singh, S., Sakk, E.: Implementation and analysis of shor’s algorithm to break RSA cryptosystem security. Authorea Preprints (2024)

  136. An Introduction to Post-Quantum Public Key Cryptography—infoq.com. https://www.infoq.com/articles/post-quantum-cryptography-introduction/#:~:text=Key%20Takeaways%201%20Quantum%20computers%20pose%20a%20serious,quantum%20computers%27%20threat%20to%20current%20encryption.%20More%20items

  137. Houston-Edwards, K.: Tomorrow’s quantum computers threaten today’s secrets. Here’s How to Protect Them—scientificamerican.com. https://www.scientificamerican.com/article/tomorrows-quantum-computers-threaten-todays-secrets-heres-how-to-protect-them-2/. Accessed 15 Jun 2024

  138. Maes, R.: Addressing quantum computing threats With SRAM PUFs—semiengineering.com. https://semiengineering.com/addressing-quantum-computing-threats-with-sram-pufs/. Accessed 15 Jun 2024

  139. Walker, A.: Quantum computing is set to destroy crypto. Could cloud-based quantum-proof encryption be the solution?—cloudcomputing-news.net. https://www.cloudcomputing-news.net/news/2024/jun/03/quantum-computing-is-set-to-destroy-crypto-could-cloud-based-quantum-proof-encryption-be-the-solution/. Accessed 15 Jun 2024

  140. Harris, I.G.: Social engineering attacks on the internet of things. IoT Newsletter. (2016)

  141. Javed, B., Iqbal, M.W., Abbas, H.: Internet of things (iot) design considerations for developers and manufacturers. In: 2017 IEEE International Conference on Communications Workshops (ICC Workshops), pp. 834–839. IEEE (2017)

  142. Katz, S., Marshall, B.L.: Tracked and fit: Fitbits, brain games, and the quantified aging body. J. Aging Stud. 45, 63–68 (2018)

    Article  MATH  Google Scholar 

  143. Cyr, B., Horn, W., Miao, D., Specter, M.: Security analysis of wearable fitness devices (fitbit). Massachusetts Inst. Technol. (2014)

  144. Voigt, P., Bussche, A.: The eu general data protection regulation (GDPR). In: A Practical Guide, 1st edn., vol. 10, no. 3152676, pp. 10–5555. Springer, Cham (2017)

  145. Wilamowski, B.M.: Challenges in applications of computational intelligence in industrial electronics. In: 2010 IEEE International Symposium on Industrial Electronics, pp. 15–22. IEEE (2010)

  146. Liu, J., Xiao, Y., Li, S., Liang, W., Chen, C.P.: Cyber security and privacy issues in smart grids. IEEE Commun. Surv. Tutor. 14(4), 981–997 (2012)

    Article  MATH  Google Scholar 

  147. Dalipi, F., Yayilgan, S.Y.: Security and privacy considerations for iot application on smart grids: Survey and research challenges. In: 2016 IEEE 4th International Conference on Future Internet of Things and Cloud Workshops (FiCloudW), pp. 63–68. IEEE (2016)

  148. Khelifa, B., Abla, S.: Security concerns in smart grids: Threats, vulnerabilities and countermeasures. In: 2015 3rd International Renewable and Sustainable Energy Conference (IRSEC), pp. 1–6. IEEE (2015)

  149. Serban, A.C.: Aging population and effects on labour market. Proced. Econ. Finance 1, 356–364 (2012)

    Article  MATH  Google Scholar 

  150. AL-mawee, W.: Privacy and security issues in IoT healthcare applications for the disabled users a survey (2012)

  151. Leng, Y., Zhao, L.: Novel design of intelligent internet-of-vehicles management system based on cloud-computing and internet-of-things. In: Proceedings of 2011 International Conference on Electronic & Mechanical Engineering and Information Technology, vol. 6, pp. 3190–3193. IEEE (2011)

  152. Gerla, M., Lee, E.-K., Pau, G., Lee, U.: Internet of vehicles: From intelligent grid to autonomous cars and vehicular clouds. In: 2014 IEEE World Forum on Internet of Things (WF-IoT), pp. 241–246. IEEE (2014)

  153. Minhas, R., Tilal, M.: Effects of jamming on IEEE 802.11 p systems (2010)

  154. Mejri, M.N., Ben-Othman, J., Hamdi, M.: Survey on vanet security challenges and possible cryptographic solutions. Vehic. Commun. 1(2), 53–66 (2014)

    Article  MATH  Google Scholar 

  155. Yang, H., Kumara, S., Bukkapatnam, S.T., Tsung, F.: The internet of things for smart manufacturing: a review. IISE Trans. 51(11), 1190–1216 (2019)

    Article  MATH  Google Scholar 

  156. Miller, B., Rowe, D.: A survey scada of and critical infrastructure incidents. In: Proceedings of the 1st Annual Conference on Research in Information Technology, pp. 51–56 (2012)

  157. Holloway, M.: Stuxnet worm attack on iranian nuclear facilities. Retrieved Apr. 16(13), 2017 (2015)

    MATH  Google Scholar 

  158. Robles, R.J., Kim, T.H., Cook, D., Das, S.: A review on security in smart home development. Int. J. Adv. Sci. Res. (2010)

  159. Agosta, G., Antonini, A., Barenghi, A., Galeri, D., Pelosi, G.: Cyber-security analysis and evaluation for smart home management solutions. In: 2015 International Carnahan Conference on Security Technology (ICCST), pp. 1–6. IEEE (2015)

  160. Shuai, M., Yu, N., Wang, H., Xiong, L.: Anonymous authentication scheme for smart home environment with provable security. Comput. Secur. 86, 132–146 (2019)

    Article  MATH  Google Scholar 

  161. Lee, C., Zappaterra, L., Choi, K., Choi, H.-A.: Securing smart home: technologies, security challenges, and security requirements. In: 2014 IEEE Conference on Communications and Network Security, pp. 67–72. IEEE (2014)

  162. Lee, S., Kim, J., Shon, T.: User privacy-enhanced security architecture for home area network of smartgrid. Multimedia Tools Appl. 75(20), 12749–12764 (2016)

    Article  MATH  Google Scholar 

  163. Kocher, P., Jaffe, J., Jun, B., Rohatgi, P.: Introduction to differential power analysis. J. Cryptogr. Eng. 1(1), 5–27 (2011)

    Article  MATH  Google Scholar 

  164. Alias, Y.F., Isa, M.A.M., Hashim, H.: Timing attack: An analysis of preliminary data. J. Telecommun. (JTEC), Electron. Comput. Eng. 9(1–4), 29–32 (2017)

    MATH  Google Scholar 

  165. Desai, D., Upadhyay, H.: Security and privacy consideration for internet of things in smart home environments. Int. J. Eng. Res. Dev. 10(11), 73–83 (2014)

    MATH  Google Scholar 

  166. Ching, K.W., Singh, M.M.: Wearable technology devices security and privacy vulnerability analysis. Int. J. Netw. Secur. Appl. 8(3), 19–30 (2016)

    MATH  Google Scholar 

  167. Liu, Y., Hatzinakos, D.: Human acoustic fingerprints: a novel biometric modality for mobile security. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3784–3788. IEEE (2014)

  168. Al Ameen, M., Liu, J., Kwak, K.: Security and privacy issues in wireless sensor networks for healthcare applications. J. Med. Syst. 36(1), 93–101 (2012)

    Article  MATH  Google Scholar 

  169. Li, S., Ashok, A., Zhang, Y., Xu, C., Lindqvist, J., Gruteser, M.: Whose move is it anyway? Authenticating smart wearable devices using unique head movement patterns. In: 2016 IEEE International Conference on Pervasive Computing and Communications (PerCom), pp. 1–9. IEEE (2016)

  170. Lee, J.-S., Su, Y.-W., Shen, C.-C.: A comparative study of wireless protocols: bluetooth, uwb, zigbee, and wi-fi. In: IECON 2007-33rd Annual Conference of the IEEE Industrial Electronics Society, pp. 46–51. IEEE (2007)

  171. Chen, H., Jia, X., Li, H.: A brief introduction to iot gateway. In: IET International Conference on Communication Technology and Application (ICCTA 2011), pp. 610–613. IET (2011)

  172. Zhang, Z.-K., Cho, M.C.Y., Shieh, S.: Emerging security threats and countermeasures in iot. In: Proceedings of the 10th ACM Symposium on Information, Computer and Communications Security, pp. 1–6 (2015)

  173. Barnard-Wills, D.: The technology foresight activities of European union data protection authorities. Technol. Forecast. Soc. Chang. 116, 142–150 (2017)

    Article  Google Scholar 

  174. Wang, C., Guo, X., Wang, Y., Chen, Y., Liu, B.: Friend or foe? Your wearable devices reveal your personal pin. In: Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security, pp. 189–200 (2016)

  175. Enamamu, T.S., Clarke, N., Haskell-Dowland, P., Li, F.: Smart watch based body-temperature authentication. In: 2017 International Conference on Computing Networking and Informatics (ICCNI), pp. 1–7. IEEE (2017)

  176. Godfrey, A., Hetherington, V., Shum, H., Bonato, P., Lovell, N., Stuart, S.: From a to z: wearable technology explained. Maturitas 113, 40–47 (2018)

    Article  MATH  Google Scholar 

  177. Patel, K.K., Patel, S.M., Scholar, P.: Internet of things-IOT: definition, characteristics, architecture, enabling technologies, application & future challenges. Int. J. Eng. Sci. (2016)

  178. Ray, P.P.: Internet of things for smart agriculture: technologies, practices and future direction. J. Ambient Intell. Smart Environ. 9(4), 395–420 (2017)

    Article  MATH  Google Scholar 

  179. Zyrianoff, I., Heideker, A., Silva, D., Kamienski, C.: Scalability of an internet of things platform for smart water management for agriculture. In: 2018 23rd Conference of Open Innovations Association (FRUCT), pp. 432–439. IEEE (2018)

  180. Wu, L., Yue, X., Jin, A., Yen, D.C.: Smart supply chain management: A review and implications for future research. Int. J. Log. Manag. 27(2), 395–417 (2016)

    MATH  Google Scholar 

  181. Yuvaraj, S., Sangeetha, M.: Smart supply chain management using internet of things (iot) and low power wireless communication systems. In: 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), pp. 555–558. IEEE (2016)

  182. Williams, Z., Lueg, J.E., LeMay, S.A.: Supply chain security: an overview and research agenda. Int. J. Log. Manag. 19(2), 254–81 (2008)

    MATH  Google Scholar 

  183. Lee, C.W., Kwon, I.W., Severance, D.: Relationship between supply chain performance and degree of linkage among supplier, internal integration, and customer. Supply Chain Manag. Int. J. 12(6), 444–52 (2007)

    Article  MATH  Google Scholar 

  184. Lee, I., Lee, K.: The internet of things (iot): applications, investments, and challenges for enterprises. Bus. Horiz. 58(4), 431–440 (2015)

    Article  MATH  Google Scholar 

  185. Romano, P.: Impact of supply chain sensitivity to quality certification on quality management practices and performances. Total Qual. Manag. 13(7), 981–1000 (2002)

    Article  MATH  Google Scholar 

  186. Gold, S., Seuring, S., Beske, P.: Sustainable supply chain management and inter-organizational resources: a literature review. Corp. Soc. Responsib. Environ. Manag. 17(4), 230–245 (2010)

    Article  MATH  Google Scholar 

  187. Warren, M., Hutchinson, W.: Cyber attacks against supply chain management systems: a short note. Int. J. Phys. Distrib. Log. Manag. 30(7/8), 710–6 (2000)

    Article  MATH  Google Scholar 

  188. Fredendall, L.D., Craig, J.B., Fowler, P.J., Damali, U.: Barriers to swift, even flow in the internal supply chain of perioperative surgical services department: a case study. Decis. Sci. 40(2), 327–349 (2009)

    Article  Google Scholar 

  189. Kodali, R.K., Jain, V., Bose, S., Boppana, L.: Iot based smart security and home automation system. In: 2016 International Conference on Computing, Communication and Automation (ICCCA), pp. 1286–1289. IEEE (2016)

  190. Bocchetti, G., Flammini, F., Pragliola, C., Pappalardo, A.: Dependable integrated surveillance systems for the physical security of metro railways. In: 2009 3rd ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC), pp. 1–7. IEEE (2009)

  191. Finke, C., Butts, J., Mills, R., Grimaila, M.: Enhancing the security of aircraft surveillance in the next generation air traffic control system. Int. J. Crit. Infrastruct. Prot. 6(1), 3–11 (2013)

    Article  Google Scholar 

  192. Findlay, P., McKinlay, A.: Surveillance, electronic communications technologies and regulation. Ind. Relat. J. 34(4), 305–318 (2003)

    Article  MATH  Google Scholar 

  193. Sicari, S., Rizzardi, A., Grieco, L.A., Coen-Porisini, A.: Security, privacy and trust in internet of things: the road ahead. Comput. Netw. 76, 146–164 (2015)

    Article  MATH  Google Scholar 

  194. Duncan, B., Happe, A., Bratterud, A.: Enterprise iot security and scalability: how unikernels can improve the status quo. In: 2016 IEEE/ACM 9th International Conference on Utility and Cloud Computing (UCC), pp. 292–297. IEEE (2016)

  195. Bangali, J., Shaligram, A.: Design and implementation of security systems for smart home based on gsm technology. Int. J. Smart Home 7(6), 201–208 (2013)

    Article  MATH  Google Scholar 

  196. Nayak, M., Dash, P.: Smart surveillance monitoring system using Raspberry Pi and PIR sensor. Statistics. (2014)

  197. Hossain, M.M., Fotouhi, M., Hasan, R.: Towards an analysis of security issues, challenges, and open problems in the internet of things. In: 2015 Ieee World Congress on Services, pp. 21–28. IEEE (2015)

  198. Pan, Y., White, J., Schmidt, D., Elhabashy, A., Sturm, L., Camelio, J., Williams, C.: Taxonomies for reasoning about cyber-physical attacks in IoT-based manufacturing systems. Int. j. Interact. Multimed. Artif. Intell. 4(3), 45–54 (2017)

    Google Scholar 

  199. Al-Qaseemi, S.A., Almulhim, H.A., Almulhim, M.F., Chaudhry, S.R.: Iot architecture challenges and issues: Lack of standardization. In: 2016 Future Technologies Conference (FTC), pp. 731–738. IEEE (2016)

  200. Maurer, U.M., Wolf, S.: The Diffie–Hellman protocol. Des. Codes Crypt. 19(2), 147–171 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  201. Saho, N.J.G., Ezin, E.C.: Comparative study on the performance of elliptic curve cryptography algorithms with cryptography through rsa algorithm. In: CARI 2020-Colloque Africain sur la Recherche en Informatique et en Mathématiques Apliquées (2020)

  202. Kothmayr, T., Schmitt, C., Hu, W., Brünig, M., Carle, G.: Dtls based security and two-way authentication for the internet of things. Ad Hoc Netw. 11(8), 2710–2723 (2013)

    Article  MATH  Google Scholar 

  203. Levis, P., Madden, S., Polastre, J., Szewczyk, R., Whitehouse, K., Woo, A., Gay, D., Hill, J., Welsh, M., Brewer, E.: Culler D, An operating system for sensor networks. Ambient intelligence, TinyOS pp. 115–48 (2005)

    Google Scholar 

  204. Arkko, J., Carrara, E., Lindholm, F., Naslund, M., Norrman, K.: Rfc 3830: Mikey: multimedia internet keying (2004)

  205. Nguyen, K.T., Oualha, N., Laurent, M.: Novel lightweight signcryption-based key distribution mechanisms for mikey. In: Information Security Theory and Practice: 10th IFIP WG 11.2 International Conference, WISTP 2016, Heraklion, Crete, Greece, September 26–27, 2016, Proceedings 10, pp. 19–34. Springer (2016)

  206. Moskowitz, R., Heer, T., Jokela, P., Henderson, T.: Host identity protocol version 2 (HIPv2). (2015)

  207. Khairuddin, A., Azir, K.F.K., Kan, P.E.: Limitations and future of electrocardiography devices: A review and the perspective from the internet of things. In: 2017 International Conference on Research and Innovation in Information Systems (ICRIIS), pp. 1–7. IEEE (2017)

  208. Xiao, L., Wan, X., Lu, X., Zhang, Y., Wu, D.: Iot security techniques based on machine learning: How do iot devices use ai to enhance security? IEEE Signal Process. Mag. 35(5), 41–49 (2018)

    Article  Google Scholar 

  209. Banafa, A.: Three major challenges facing iot. IEEE Internet Things. 14, 26–67 (2017)

    Google Scholar 

  210. Feng, W., Qin, Y., Zhao, S., Feng, D.: Aaot: lightweight attestation and authentication of low-resource things in iot and cps. Comput. Netw. 134, 167–182 (2018)

    Article  MATH  Google Scholar 

  211. Lange, T., Steinwandt, R.: Post-quantum cryptography: 9th International Conference, PQCrypto 2018, Fort Lauderdale, FL, USA, April 9–11, 2018, Proceedings, vol. 10786. Springer (2018)

  212. Sikeridis, D., Kampanakis, P., Devetsikiotis, M.: Post-quantum authentication in TLS 1.3: A performance study. Cryptology ePrint Archive (2020)

  213. Krämer, J.: Post-quantum cryptography and its application to the iot. Informat. Spektrum 42(5), 343–344 (2019)

    Article  MATH  Google Scholar 

  214. Bernstein, D.J., Lange, T.: “The year in post-quantum crypto. PQC Event” (2018)

  215. Ajtai, M.: Generating hard instances of lattice problems. In: Proceedings of the 28th Annual ACM Symposium on Theory of Computing, pp. 99–108 (1996)

  216. Ajtai, M.: Representing hard lattices with o (n log n) bits. In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pp. 94–103 (2005)

  217. Peikert, C., et al.: A decade of lattice cryptography. Found. Trends® Theor. Comput. Sci. 10(4), 283–424 (2016)

  218. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  219. Bocharov, A., Roetteler, M., Svore, K.M.: Factoring with qutrits: shor’s algorithm on ternary and metaplectic quantum architectures. Phys. Rev. A 96(1), 012306 (2017)

    Article  MATH  Google Scholar 

  220. Ghosh, D., Agarwal, P., Pandey, P., Behera, B.K., Panigrahi, P.K.: Automated error correction in ibm quantum computer and explicit generalization. Quantum Inf. Process. 17(6), 1–24 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  221. Olive, D.I., Turok, N.: Algebraic structure of toda systems. Nucl. Phys. B 220(4), 491–507 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  222. Bayer-Fluckiger, E., Oggier, F., Viterbo, E.: New algebraic constructions of rotated z/sup n/-lattice constellations for the Rayleigh fading channel. IEEE Trans. Inf. Theory 50(4), 702–714 (2004)

    Article  MATH  Google Scholar 

  223. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem. In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing, pp. 333–342 (2009)

  224. Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice vector problem. In: Proceedings of the 33rd Annual ACM Symposium on Theory of Computing, pp. 601–610 (2001)

  225. Hoffstein, J., Howgrave-Graham, N., Pipher, J., Whyte, W.: Practical lattice-based cryptography: Ntruencrypt and ntrusign. In: The LLL Algorithm, pp. 349–390. Springer (2009)

  226. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. J. ACM (JACM) 56(6), 1–40 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  227. Nejatollahi, H., Dutt, N., Ray, S., Regazzoni, F., Banerjee, I., Cammarota, R.: Post-quantum lattice-based cryptography implementations: a survey. ACM Comput. Surv. (CSUR) 51(6), 1–41 (2019)

    Article  Google Scholar 

  228. Bernstein, D.J.: Introduction to post-quantum cryptography. In: Post-quantum Cryptography, pp. 1–14. Springer (2009)

  229. Ustimenko, V." “On semigroups of multivariate transformations constructed in terms of time dependent linguistic graphs and solutions of post quantum multivariate cryptography.” Cryptology ePrint Archive (2021)

  230. Ding, J., Petzoldt, A.: Current state of multivariate cryptography. IEEE Secur. Privacy 15(4), 28–36 (2017)

    Article  MATH  Google Scholar 

  231. Lamport, L.: Constructing digital signatures from a one way function (1979)

  232. Bansarkhani, R.E., Misoczki, R.: G-merkle: A hash-based group signature scheme from standard assumptions. In: International Conference on Post-Quantum Cryptography, pp. 441–463. Springer (2018)

  233. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of things (iot): a vision, architectural elements, and future directions. Fut. Gener. Comput. Syst. 29(7), 1645–1660 (2013)

    Article  MATH  Google Scholar 

  234. Jao, D., Miller, S.D., Venkatesan, R.: Do all elliptic curves of the same order have the same difficulty of discrete log? In: International Conference on the Theory and Application of Cryptology and Information Security, pp. 21–40. Springer (2005)

  235. Childs, A., Jao, D., Soukharev, V.: Constructing elliptic curve isogenies in quantum subexponential time. J. Math. Cryptol. 8(1), 1–29 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  236. De Feo, L., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies. J. Math. Cryptol. 8(3), 209–247 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  237. Kim, S., Yoon, K., Kwon, J., Park, Y.-H., Hong, S.: New hybrid method for isogeny-based cryptosystems using edwards curves. IEEE Trans. Inf. Theory 66(3), 1934–1943 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  238. Jao, D., Feo, L.D.: Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies. In: International Workshop on Post-Quantum Cryptography, pp. 19–34. Springer (2011)

  239. Meyer, M., Reith, S., Campos, F.: “On hybrid sidh schemes using edwards and montgomery curve arithmetic.” Cryptology ePrint Archive (2017)

  240. Alagic, G., Apon, D., Cooper, D., Dang, Q., Dang, T., Kelsey, J., Lichtinger, J., Miller, C., Moody, D., Peralta, R., et al.: Status report on the third round of the nist post-quantum cryptography standardization process. US Department of Commerce, NIST (2022)

  241. Bernstein, D.J., Chou, T., Lange, T., von Maurich, I., Misoczki, R., Niederhagen, R., Persichetti, E., Peters, C., Schwabe, P., Sendrier, N., Szefer, J.: Classic McEliece: Conservative code-based cryptography. Project documentation:[Электронный ресурс]. Режим доступа: https://classic.mceliece.org/nist/mceliece-20190331. pdf, свободный. Яз. англ.(дата обращения: 24.12. 2021). (2017)

  242. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices. Des. Codes Crypt. 75(3), 565–599 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  243. Aguilar, C., Blazy, O., Deneuville, J.-C., Gaborit, P., Zémor, G.: Efficient encryption from random quasi-cyclic codes (2016). arXiv preprint arXiv:1612.05572

  244. Gupta, S., Dutta, C.: Internet of things security analysis of networks using quantum key distribution. Indian J. Sci. Technol. 9(48), 105551 (2016)

    Article  MATH  Google Scholar 

  245. Bos, J.W., Costello, C., Naehrig, M., Stebila, D.: Post-quantum key exchange for the tls protocol from the ring learning with errors problem. In: 2015 IEEE Symposium on Security and Privacy, pp. 553–570. IEEE (2015)

  246. Chaudhary, R., Aujla, G.S., Kumar, N., Zeadally, S.: Lattice-based public key cryptosystem for internet of things environment: challenges and solutions. IEEE Internet Things J. 6(3), 4897–4909 (2018)

    Article  MATH  Google Scholar 

  247. Koziel, B., Azarderakhsh, R., Kermani, M.M., Jao, D.: Post-quantum cryptography on fpga based on isogenies on elliptic curves. IEEE Trans. Circuits Syst. I Regul. Pap. 64(1), 86–99 (2016)

  248. Costello, C., Longa, P., Naehrig, M.: Efficient algorithms for supersingular isogeny diffie-hellman. In: Annual International Cryptology Conference, pp. 572–601. Springer (2016)

  249. Round 1 Submissions - Post-Quantum Cryptography | CSRC | CSRC --- csrc.nist.gov. https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-1-submissions, [Accessed 30-10-2024]

  250. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Annual International Conference on the Theory and Applications of Cryptographic Techniques, pp. 738–755. Springer (2012)

  251. Kiltz, E., Lyubashevsky, V., Schaffner, C.: A concrete treatment of fiat-shamir signatures in the quantum random-oracle model. In: Annual International Conference on the Theory and Applications of Cryptographic Techniques, pp. 552–586. Springer (2018)

  252. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. J. Cryptol. 13(3), 361–396 (2000)

    Article  MATH  Google Scholar 

  253. Liu, Q., Zhandry, M.: Revisiting post-quantum fiat-shamir. In: Annual International Cryptology Conference, pp. 326–355. Springer (2019)

  254. Don, J., Fehr, S., Majenz, C.: The measure-and-reprogram technique 2.0: multi-round fiat-shamir and more. In: Annual International Cryptology Conference, pp. 602–631. Springer (2020)

  255. Patarin, J., Courtois, N., Goubin, L.: Quartz, 128-bit long digital signatures. In: Cryptographers’ Track at the RSA Conference, pp. 282–297. Springer (2001)

  256. Gaborit, P."Post-quantum cryptography". Lect. Notes Comput. Sci. 7932 (2013)

  257. Patarin, J.: Hidden fields equations (HFE) and isomorphisms of polynomials (ip): two new families of asymmetric algorithms. In: International Conference on the Theory and Applications of Cryptographic Techniques, pp. 33–48. Springer (1996)

  258. Bernstein, D.J., Hülsing, A., Kölbl, S., Niederhagen, R., Rijneveld, J., Schwabe, P.: The sphincs+ signature framework. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, pp. 2129–2146 (2019)

  259. Announcing PQC Candidates to be Standardized, Plus Fourth Round Candidates|CSRC—csrc.nist.gov. https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4. Accessed 25 Feb 2023

  260. NIST PQC: Looking into the Future|CSRC—csrc.nist.gov. https://csrc.nist.gov/Presentations/2022/nist-pqc-looking-into-the-future. Accessed 26 Feb 2023

  261. CRYSTALS-Kyber Update|CSRC—csrc.nist.gov. https://csrc.nist.gov/Presentations/2022/crystals-kyber-update. Accessed 26 Feb 2023

  262. CRYSTALS-Dilithium Update|CSRC—csrc.nist.gov. https://csrc.nist.gov/Presentations/2022/crystals-dilithium-update. Accessed 26 Feb 2023

  263. FALCON Update|CSRC—csrc.nist.gov. https://csrc.nist.gov/Presentations/2022/falcon-update. Accessed 26 Feb 2023

  264. SPHINCS+ Update|CSRC—csrc.nist.gov. https://csrc.nist.gov/Presentations/2022/sphincs-update. Accessed 26 Feb 2023

  265. SPHINCS+C: Compressing SPHINCS+ With (Almost) No Cost|CSRC—csrc.nist.gov. https://csrc.nist.gov/Presentations/2022/sphincsc-compressing-sphincs-with-almost-no-cost. Accessed 26 Feb 2023

  266. Classic McEliece Update|CSRC—csrc.nist.gov. https://csrc.nist.gov/Presentations/2022/classic-mceliece-update. Accessed 26 Feb 2023

  267. BIKE Update|CSRC—csrc.nist.gov. https://csrc.nist.gov/Presentations/2022/bike-update. Accessed 26 Feb 2023

  268. HQC Update|CSRC—csrc.nist.gov. https://csrc.nist.gov/Presentations/2022/hqc-update. Accessed 26 Feb 2023

  269. Galbraith, S.D., Petit, C., Shani, B., Ti, Y.B.: On the security of supersingular isogeny cryptosystems. In: Advances in Cryptology–ASIACRYPT 2016: 22nd International Conference on the Theory and Application of Cryptology and Information Security, Hanoi, Vietnam, December 4–8, 2016, Proceedings, Part I 22, pp. 63–91. Springer (2016)

  270. Petit, C.: Faster algorithms for isogeny problems using torsion point images. In: Advances in Cryptology–ASIACRYPT 2017: 23rd International Conference on the Theory and Applications of Cryptology and Information Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part II 23, pp. 330–353. Springer (2017)

  271. Quehen, V., Kutas, P., Leonardi, C., Martindale, C., Panny, L., Petit, C., Stange, K.E.: Improved torsion-point attacks on sidh variants. In: Advances in Cryptology–CRYPTO 2021: 41st Annual International Cryptology Conference, CRYPTO 2021, Virtual Event, August 16–20, 2021, Proceedings, Part III 41, pp. 432–470. Springer (2021)

  272. Fouotsa, T.B., Petit, C.: A new adaptive attack on sidh. In: Topics in Cryptology–CT-RSA 2022: Cryptographers’ Track at the RSA Conference 2022, Virtual Event, March 1–2, 2022, Proceedings, pp. 322–344. Springer (2022)

  273. Moriya, T.: Masked-degree SIDH. Cryptology ePrint Archive, Paper 2022/1019 (2022). https://eprint.iacr.org/2022/1019

  274. Fouotsa, T.B.: SIDH with masked torsion point images. Cryptology ePrint Archive, Paper 2022/1054 (2022). https://eprint.iacr.org/2022/1054

  275. Yan, F., Iliyasu, A.M., Venegas-Andraca, S.E.: A survey of quantum image representations. Quantum Inf. Process. 15(1), 1–35 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  276. Mao, C.-C., Li, J., Zhu, J.-R., Zhang, C.-M., Wang, Q.: An improved proposal on the practical quantum key distribution with biased basis. Quantum Inf. Process. 16(10), 1–10 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  277. Sciancalepore, S., Piro, G., Boggia, G., Bianchi, G.: Public key authentication and key agreement in iot devices with minimal airtime consumption. IEEE Embed. Syst. Lett. 9(1), 1–4 (2016)

    Google Scholar 

  278. Mukherjee, A.: Physical-layer security in the internet of things: Sensing and communication confidentiality under resource constraints. Proc. IEEE 103(10), 1747–1761 (2015)

    Article  MATH  Google Scholar 

  279. Kumari, S., Singh, M., Singh, R., Tewari, H.: Post-quantum cryptography techniques for secure communication in resource-constrained internet of things devices: a comprehensive survey. Softw.: Pract. Exp. 52(10), 2047–2076 (2022)

  280. Lohachab, A., Karambir, B.: Critical analysis of ddos-an emerging security threat over iot networks. J. Commun. Inf. Netw. 3(3), 57–78 (2018)

    Article  Google Scholar 

  281. Mehic, M., Michalek, L., Dervisevic, E., Burdiak, P., Plakalovic, M., Rozhon, J., Mahovac, N., Richter, F., Kaljic, E., Lauterbach, F., et al.: Quantum cryptography in 5g networks: a comprehensive overview. IEEE Commun. Surv. Tutor. (2023)

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All Author’s have equally contributed in the work. K.M wrote the main paper, M.A and W.I gave the main idea, Y.A reviewed the paper and did anaalysis.

Corresponding author

Correspondence to Waseem Iqbal.

Ethics declarations

Conflict of interest

There is no conflict of interest among the authors or with anyone.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansoor, K., Afzal, M., Iqbal, W. et al. Securing the future: exploring post-quantum cryptography for authentication and user privacy in IoT devices. Cluster Comput 28, 93 (2025). https://doi.org/10.1007/s10586-024-04799-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10586-024-04799-4

Keywords