Skip to main content
Log in

Automated error correction in IBM quantum computer and explicit generalization

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Construction of a fault-tolerant quantum computer remains a challenging problem due to unavoidable noise and fragile quantum states. However, this goal can be achieved by introducing quantum error-correcting codes. Here, we experimentally realize an automated error correction code and demonstrate the nondestructive discrimination of GHZ states in IBM 5-qubit quantum computer. After performing quantum state tomography, we obtain the experimental results with a high fidelity. Finally, we generalize the investigated code for maximally entangled n-qudit case, which could both detect and automatically correct any arbitrary phase-change error, or any phase-flip error, or any bit-flip error, or combined error of all types of error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Ghosh, S., Kar, G., Roy, A., Sarkar, D., Sen, U.: Entanglement teleportation through GHZ-class states. New J. Phys. 4, 48 (2002)

    Article  ADS  Google Scholar 

  4. Muralidharan, S., Panigrahi, P.K.: Perfect teleportation, quantum-state sharing, and superdense coding through a genuinely entangled five-qubit state. Phys. Rev. A 77, 032321 (2008)

    Article  ADS  Google Scholar 

  5. Choudhury, S., Muralidharan, S., Panigrahi, P.K.: Quantum teleportation and state sharing using a genuinely entangled six-qubit state. J. Phys. A Math. Theor. 42, 115303 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Muralidharan, S., Karumanchi, S., Jain, S., Srikanth, R., Panigrahi, P.K.: 2N qubit “mirror states” for optimal quantum communication. Eur. Phys. J. D 61, 757–763 (2011)

    Article  ADS  Google Scholar 

  7. Paul, N., Menon, J.V., Karumanchi, S., Muralidharan, S., Panigrahi, P.K.: Quantum tasks using six qubit cluster states. Quantum Inf. Process. 10, 619–632 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Muralidharan, S., Panigrahi, P.K.: Quantum-information splitting using multipartite cluster states. Phys. Rev. A 78, 062333 (2008)

    Article  ADS  Google Scholar 

  9. Muralidharan, S., Karumanchi, S., Narayanaswamy, S., Srikanth, R., Panigrahi, P.K.: In how many ways can quantum information be split ? (2011). arXiv:0907.3532

  10. Panigrahi, P.K., Karumanchi, S., Muralidharan, S.: Minimal classical communication and measurement complexity for quantum information splitting of a two-qubit state. Pramana J. Phys. 73, 499–504 (2009)

    Article  ADS  Google Scholar 

  11. Muralidharan, S., Jain, S., Panigrahi, P.K.: Splitting of quantum information using N-qubit linear cluster states. Opt. Commun. 284, 1082–1085 (2010)

    Article  ADS  Google Scholar 

  12. Nandi, K., Paul, G.: Quantum information splitting using a pair of GHZ states (2015). arXiv:1501.07529

  13. Jain, S., Muralidharan, S., Panigrahi, P.K.: Secure quantum conversation through non-destructive discrimination of highly entangled multipartite states. Europhys. Lett. 87, 60008 (2009)

    Article  ADS  Google Scholar 

  14. Prasath, E.S., Muralidharan, S., Mitra, C., Panigrahi, P.K.: Multipartite entangled magnon states as quantum communication channels. Quantum Inf. Process. 11, 397–410 (2012)

    Article  MathSciNet  Google Scholar 

  15. Agrawal, P., Pati, A.: Perfect teleportation and superdense coding with W states. Phys. Rev. A 74, 062320 (2006)

    Article  ADS  Google Scholar 

  16. Moulick, S.R., Panigrahi, P.K.: Quantum cheques. Quantum Inf. Process. 15, 2475–2486 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Behera, B.K., Banerjee, A., Panigrahi, P.K.: Experimental realization of quantum cheque using a five-qubit quantum computer. Quantum Inf. Process. 16, 312 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Xia, Y., Fu, C.B., Zhang, S., Hong, S.K., Yeon, K.H.: Quantum dialogue by using the GHZ state. J. Korean Phys. Soc. 48(1), 24–27 (2006)

    Google Scholar 

  19. Cory, D.G., Price, M.D., Maas, W., Knill, E., Laflamme, R., Zurek, W.H., Havel, T.F., Somaroo, S.S.: Experimental quantum error correction. Phys. Rev. Lett. 81, 2152 (1998)

    Article  ADS  Google Scholar 

  20. Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001)

    Article  ADS  MATH  Google Scholar 

  21. Chiaverini, J., Leibfried, D., Schaetz, T., Barrett, M.D., Blakestad, R.B., Britton, J., Itano, W.M., Jost, J.D., Knill, E., Langer, C., Ozeri, R., Wineland, D.J.: Realization of quantum error correction. Nature 432, 602–605 (2004)

    Article  ADS  MATH  Google Scholar 

  22. Schindler, P., Barreiro, J.T., Monz, T., Nebendahl, V., Nigg, D., Chwalla, M., Hennrich, M., Blatt, R.: Experimental repetitive quantum error correction. Science 332, 1059–1061 (2011)

    Article  ADS  Google Scholar 

  23. Reed, M.D., DiCarlo, L., Nigg, S.E., Sun, L., Frunzio, L., Girvin, S.M., Schoelkopf, R.J.: Realization of three-qubit quantum error correction with superconducting circuits. Nature 482, 382385 (2012)

    Article  Google Scholar 

  24. Nigg, D., Müller, M., Martinez, E.A., Nigg, D., Schindler, P., Monz, T., Blatt, R., Martin-Delgado, M.A.: Iterative phase optimization of elementary quantum error correcting codes. Phys. Rev. X 6, 031030 (2016)

    Google Scholar 

  25. Müller, M., Rivas, A., Martinez, E.A., Schindler, P., Hennrich, M., Monz, T., Martin-Delgado, M.A., Blatt, R.: Quantum computations on a topologically encoded qubit. Science 345, 302–305 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Taghavi, S., Kosut, R.L., Lidar, D.A.: Channel-optimized quantum error correction. IEEE Trans. Inf. Theory 56, 1461–1473 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Bombin, H., Martin-Delgado, M.A.: Statistical mechanical models and topological color codes. Phys. Rev. A 77, 042322 (2008)

    Article  ADS  Google Scholar 

  28. Kargarian, M., Bombin, H., Martin-Delgado, M.A.: Topological color codes and two-body quantum lattice Hamiltonians. New J. Phys. 12, 025018 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Gupta, M., Pathak, A., Srikanth, R., Panigrahi, P.K.: Non-destructive orthonormal state discrimination (2005). arXiv:quant-ph/0507096

  30. Gupta, M., Pathak, A., Srikanth, R., Panigrahi, P.K.: General circuits for indirecting and distributing measurement in quantum computation. Int. J. Quantum Inf. 5, 62 (2007)

    Article  MATH  Google Scholar 

  31. Sisodia, M., Shukla, A., Pathak, A.: Experimental realization of nondestructive discrimination of Bell states using a five-qubit quantum computer. Phys. Lett. A 381(46), 3860–3874 (2017)

    Article  ADS  Google Scholar 

  32. Pandey, P., Prasath, S., Gupta, M., Panigrahi, P.K.: Automated error correction for generalized Bell states (2010). arXiv:1008.2129

  33. Panigrahi, P.K., Gupta, M., Pathak, A., Srikanth, R.: Circuits for distributing quantum measurement. AIP Conf. Proc. 864, 197 (2006)

    Article  ADS  MATH  Google Scholar 

  34. IBM Quantum Experience. https://www.research.ibm.com/ibm-q/

  35. Wootton, J.R., Loss, D.: A repetition code of 15 qubits (2017). arXiv:1709.00990

  36. Samal, J.R., Gupta, M., Panigrahi, P.K., Kumar, A.: Non-destructive discrimination of Bell states by NMR using a single ancilla qubit. J. Phys. B At. Mol. Opt. Phys. 43, 095508 (2010)

    Article  ADS  Google Scholar 

  37. Manu, V.S., Kumar, A.: Non-destructive discrimination of arbitrary set of orthogonal quantum states by NMR using quantum phase estimation (2011). arXiv:quant-ph/1105.2186v1

  38. Sisodia, M., Verma, V., Thapliyal, K., Pathak, A.: Teleportation of a qubit using entangled non-orthogonal states: a comparative study. Quantum Inf. Process. 16, 76 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Majumder, A., Mohapatra, S., Kumar, A.: Experimental realization of secure multiparty quantum summation using five-qubit IBM quantum computer on cloud (2017). arXiv:quant-ph/1707.07460v1

  40. Kalra, A.R., Prakash, S., Behera, B.K., Panigrahi, P.K.: Experimental demonstration of the no hiding theorem using a 5 qubit quantum computer (2017). arXiv:quant-ph/1707.09462v1

  41. Rundle, R.P., Mills, P.W., Tilma, T., Samson, J.H., Everitt, M.J.: Simple procedure for phase-space measurement and entanglement validation. Phys. Rev. A 96, 022117 (2017)

    Article  ADS  Google Scholar 

  42. Grimaldi, D., Marinov, M.: Distributed measurement systems. Measurement 30, 279–287 (2001)

    Article  Google Scholar 

  43. Gangopadhyay, S., Manabputra, Behera, B.K., Panigrahi, P.K.: Generalization and partial demonstration of an entanglement based Deutsch–Jozsa like algorithm using a 5-qubit quantum computer (2017). arXiv:1708.06375

  44. Sisodia, M., Shukla, A., Thapliyal, K., Pathak, A.: Design and experimental realization of an optimal scheme for teleportion of an n-qubit quantum state. Quantum Inf. Process. 16, 292 (2017)

    Article  ADS  Google Scholar 

  45. Vishnu, P.K., Joy, D., Behera, B.K., Panigrahi, P.K.: Experimental demonstration of non-local controlled-unitary quantum gates using a five-qubit quantum computer (2017). arXiv:1709.05697

  46. Dash, A., Rout, S., Behera, B.K., Panigrahi, P.K.: A verification algorithm and its application to quantum locker in IBM quantum computer (2017). arXiv:1710.05196

  47. Roy, S., Behera, B.K., Panigrahi, P.K.: Experimental realization of quantum violation of entropic noncontextual inequality in four dimension using IBM quantum computer (2017). arXiv:1710.10717

  48. Satyajit, S., Srinivasan, K., Behera, B.K., Panigrahi, P.K.: Discrimination of highly entangled Z-states in IBM quantum computer (2017). arXiv:1712.05485

  49. Li, R., Alvarez-Rodriguez, U., Lamata, L., Solano, E.: Approximate quantum adders with genetic algorithms: an IBM quantum experience. Quantum Meas. Quantum Metrol. 4, 1–7 (2017)

    Article  ADS  Google Scholar 

  50. Wootton, J.R.: Demonstrating non-Abelian braiding of surface code defects in a five qubit experiment. Quantum Sci. Technol. 2, 015006 (2017)

    Article  ADS  Google Scholar 

  51. Berta, M., Wehner, S., Wilde, M.M.: Entropic uncertainty and measurement reversibility. New J. Phys. 18, 073004 (2016)

    Article  ADS  Google Scholar 

  52. Deffner, S.: Demonstration of entanglement assisted invariance on IBM’s quantum experience. Heliyon 3, e00444 (2016)

    Article  Google Scholar 

  53. Huffman, E., Mizel, A.: Violation of noninvasive macrorealism by a superconducting qubit: Implementation of a Leggett–Garg test that addresses the clumsiness loophole. Phys. Rev. A 95, 032131 (2017)

    Article  ADS  Google Scholar 

  54. Alsina, D., Latorre, J.I.: Experimental test of Mermin inequalities on a five-qubit quantum computer. Phys. Rev. A 94, 012314 (2016)

    Article  ADS  Google Scholar 

  55. García-Martín, D., Sierra, G.: Five experimental tests on the 5-qubit IBM quantum computer (2017). arXiv:1712.05642

  56. Das, S., Paul, G.: Experimental test of Hardy’s paradox on a five-qubit quantum computer (2017). arXiv:1712.04925

  57. Balu, R., Castillo, D., Siopsis, G.: Physical realization of topological quantum walks on IBM-Q and beyond (2017). arXiv:1710.03615

  58. Yalçinkaya, İ., Gedik, Z.: Optimization and experimental realization of quantum permutation algorithm. Phys. Rev. A 96, 062339 (2017)

    Article  ADS  Google Scholar 

  59. Kandala, A., Mezzacapo, A., Temme, K., Takita, M., Brink, M., Chow, J.M., Gambetta, J.M.: Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549, 242–246 (2017)

    Article  ADS  Google Scholar 

  60. Alvarez-Rodriguez, U., Sanz, M., Lamata, L., Solano, E.: Quantum artificial life in an IBM quantum computer (2017). arXiv:1711.09442

  61. Schuld, M., Fingerhuth, M., Petruccione, F.: Implementing a distance-based classifier with a quantum interference circuit (2017). arXiv:1703.10793

  62. Behera, B.K., Seth, S., Das, A., Panigrahi, P.K.: Demonstration of entanglement purification and swapping protocol to design quantum repeater in IBM quantum computer (2017). arXiv:1712.00854

  63. Behera, B.K., Reza, T., Gupta, A., Panigrahi, P.K.: Designing quantum router in IBM quantum computer (2018). arXiv:1803.06530

  64. Viyuela, O., Rivas, A., Gasparinetti, S., Wallraff, A., Filipp, S., Martin-Delgado, M.A.: Observation of topological Uhlmann phases with superconducting qubits. npj Quantum Inf. 4, 10 (2018)

    Article  ADS  Google Scholar 

  65. IBM quantum computing platform (userguide). https://quantumexperience.ng.bluemix.net/qx/user-guide

  66. Chuang, I.L., Gershenfeld, N., Kubinec, M.G., Leung, D.W.: Bulk quantum computation with nuclear magnetic resonance: theory and experiment. Proc. R. Soc. 454, 447–467 (1998)

    Article  ADS  MATH  Google Scholar 

  67. James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: Measurement of qubits. Phys. Rev. A 64, 052312 (2001)

    Article  ADS  Google Scholar 

  68. Hebenstreit, M., Alsina, D., Latorre, J., Kraus, B.: Compressed quantum computation using a remote five-qubit quantum computer. Phys. Rev. A 95, 052339 (2017)

    Article  ADS  Google Scholar 

  69. Filipp, S., Maurer, P., Leek, P., Baur, M., Bianchetti, R., Fink, J.M., Göppl, M., Steffen, L., Gambetta, J., Blais, A.: Two-qubit state tomography using a joint dispersive readout. Phys. Rev. Lett. 102, 200402 (2009)

    Article  ADS  Google Scholar 

  70. Shukla, A., Rao, K., Mahesh, T.: Ancilla assisted quantum state tomography in many-qubit registers (2013). arXiv:quant-ph/1304.5851

  71. Pathak, A.: Elements of Quantum Computation and Quantum Communication. Taylor & Francis, London (2013). ISBN:1466517913 9781466517912

    MATH  Google Scholar 

Download references

Acknowledgements

DG and BKB are financially supported by DST Inspire Fellowship. PA would like to thank the National Initiative for Undergraduate Science (NIUS) Physics. The authors are extremely grateful to IBM team and IBM Quantum Experience project. This work does not reflect the views or opinions of IBM or any of its employees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasanta K. Panigrahi.

Appendices

Appendix 1: Results of all above circuits in IBM quantum computer

figure a

Appendix 2: Calibration data of the IBM quantum computer

figure b

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, D., Agarwal, P., Pandey, P. et al. Automated error correction in IBM quantum computer and explicit generalization. Quantum Inf Process 17, 153 (2018). https://doi.org/10.1007/s11128-018-1920-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1920-z

Keywords