Skip to main content
Log in

Comparisons of Dirichlet, Neumann and Laplacian eigenvalues on graphs and their applications

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we obtain some comparisons of the Dirichlet, Neumann and Laplacian eigenvalues on graphs. We also discuss their rigidities and some of their applications including some Lichnerowicz-type, Fiedler-type and Friedman-type estimates for Dirichlet eigenvalues and Neumann eigenvalues. The comparisons on Neumann eigenvalues can be translated as comparisons on Steklov eigenvalues in our setting. So, some of the results can be viewed as extensions for parts of [11] by Hua-Huang-Wang, and parts of our previous works [20, 21].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Data Availability

No data, models, or code were generated or used during the study.

References

  1. Barlow, M. T.: Random walks and heat kernels on graphs. London Mathematical Society Lecture Note Series, 438. Cambridge University Press, Cambridge, (2017)

  2. Bauer, F., Chung, F., Lin, Y., Liu, Y.: Curvature aspects of graphs. Proc. Amer. Math. Soc. 145(5), 2033–2042 (2017)

    Article  MathSciNet  Google Scholar 

  3. Bobo, H., Yan, H.: Neumann Cheeger constants on graphs. J. Geom. Anal. 28(3), 2166–2184 (2018)

    Article  MathSciNet  Google Scholar 

  4. Chung, F.: Spectral graph theory. CBMS Regional Conference Series in Mathematics, 92. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI. xii+207 pp (1997)

  5. Escobar, J.F.: An isoperimetric inequality and the first Steklov eigenvalue. J. Funct. Anal. 165(1), 101–116 (1999)

    Article  MathSciNet  Google Scholar 

  6. Fiedler, M.: Algebraic connectivity of graphs. Czechoslovak Math. J. 23(98), 298–305 (1973)

    Article  MathSciNet  Google Scholar 

  7. Friedman, J.: Some geometric aspects of graphs and their eigenfunctions. Duke Math. J. 69(3), 487–525 (1993)

    Article  MathSciNet  Google Scholar 

  8. Friedman, J.: Minimum higher eigenvalues of Laplacians on graphs. Duke Math. J. 83(1), 1–18 (1996)

    Article  MathSciNet  Google Scholar 

  9. Grigor’yan, A.: Introduction to analysis on graphs. University Lecture Series, 71. American Mathematical Society, Providence, RI. viii+150 pp (2018)

  10. Horn, R. A., Johnson, C. R.: Matrix analysis. Second edition. Cambridge University Press, Cambridge. xviii+643 pp (2013)

  11. Hua, B., Huang, Y., Wang, Z.: First eigenvalue estimates of Dirichlet-to-Neumann operators on graphs. Calc. Var. Partial Differential Equations 56(6), 178 (2017)

    Article  MathSciNet  Google Scholar 

  12. Hua, B., Huang, Y., Wang, Z.: Cheeger estimates of Dirichlet-to-Neumann operators on infinite subgraphs of graphs. J. Spectr. Theory 12(3), 1079–1108 (2022)

    Article  MathSciNet  Google Scholar 

  13. Klartag, B., Kozma, G., Ralli, P., Tetali, P.: Discrete curvature and abelian groups. Canad. J. Math. 68(3), 655–674 (2016)

    Article  MathSciNet  Google Scholar 

  14. Lichnerowicz, A.: Géométrie des groupes de transformations. (French) Travaux et Recherches Mathématiques, III. Dunod, Paris (1958)

  15. Lin, Y., Lu, L., Yau, S.-T.: Ricci curvature of graphs. Tohoku Math. J. (2) 63(4), 605–627 (2011)

    Article  MathSciNet  Google Scholar 

  16. Münch, F., Wojciechowski, R.K.: Ollivier Ricci curvature for general graph Laplacians: heat equation, Laplacian comparison, non-explosion and diameter bounds. Adv. Math. 356, 106759 (2019)

    Article  MathSciNet  Google Scholar 

  17. Perrin, H.: Le problème de Steklov sur les graphes:définition et intégalités géométriques pour la première valeur propre non nulle. Master’s Thesis, Université de Neuchâtel, (2017)

  18. Perrin, H.: Lower bounds for the first eigenvalue of the Steklov problem on graphs. Calc. Var. Partial Differential Equations 58(2), 58–67 (2019)

    Article  MathSciNet  Google Scholar 

  19. Reilly, R.C.: Applications of the integral of an invariant of the Hessian. Bull. Amer. Math. Soc. 82(4), 579–580 (1976)

    Article  MathSciNet  Google Scholar 

  20. Shi, Y., Yu, C.: Comparison of Steklove eigenvalues and Laplacian eigenvalues on graphs. Proc. Amer. Math. Soc. 150(4), 1505–1517 (2022)

    Article  MathSciNet  Google Scholar 

  21. Shi, Y., Yu, C.: A Lichnerowicz-type estimate for Steklov eigenvalues on graphs and its rigidity. Calc. Var. Partial Differential Equations 61(3), 98 (2022)

    Article  MathSciNet  Google Scholar 

  22. Xia, C., Xiong, C.: Escobar’s conjecture on a sharp lower bound for the first nonzero steklov eigenvalue. Peking Math. J. 7(2), 759–778 (2024)

    Article  MathSciNet  Google Scholar 

  23. Yu, C., Yu, Y.: Monotonicity of Steklov eigenvalues on graphs and applications. Calc. Var. Partial Differential Equations 63(3), 79 (2024)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referee for helpful comments which reduce the length of the paper considerably, and informing us that Perrin [17] has studied the relevance of the Steklov problem on graphs with different possible definitions of boundaries and shown that results on the most general definition of graphs with boundary can be related with results for a more restrictive definition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengjie Yu.

Ethics declarations

Conflicts of Interest

The author declared no potential conflicts of interests with respect to this article.

Additional information

Communicated by A. Mondino.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Y. Shi: Research partially supported by NNSF of China with contract no. 11701355.

C. Yu: Research partially supported by GDNSF with contract no. 2025A1515011144 and NNSF of China with contract no. 11571215.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Yu, C. Comparisons of Dirichlet, Neumann and Laplacian eigenvalues on graphs and their applications. Calc. Var. 64, 305 (2025). https://doi.org/10.1007/s00526-025-03178-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-025-03178-0

Mathematics Subject Classification