Skip to main content
Log in

Glia-related Acute Effects of Risperidone and Haloperidol in Hippocampal Slices and Astrocyte Cultures from Adult Wistar Rats: A Focus on Inflammatory and Trophic Factor Release

  • Research
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Antipsychotics are drugs commonly prescribed to treat a variety of psychiatric conditions. They are classified as typical and atypical, depending on their affinity for dopaminergic and serotonergic receptors. Although neurons have been assumed to be the major mediators of the antipsychotic pharmacological effects, glia, particularly astrocytes, have emerged as important cellular targets for these drugs. In the present study, we investigated the effects of acute treatments with the antipsychotics risperidone and haloperidol of hippocampal slices and astrocyte cultures, focusing on neuron-glia communication and how antipsychotics act in astrocytes. For this, we obtained hippocampal slices and primary astrocyte cultures from 30-day-old Wistar rats and incubated them with risperidone or haloperidol (1 and 10 μM) for 30 min and 24 h, respectively. We evaluated metabolic and enzymatic activities, the glutathione level, the release of inflammatory and trophic factors, as well as the gene expression of signaling proteins. Haloperidol increased glucose metabolism; however, neither of the tested antipsychotics altered the glutathione content or glutamine synthetase and Na+K+-ATPase activities. Haloperidol induced a pro-inflammatory response and risperidone promoted an anti-inflammatory response, while both antipsychotics seemed to decrease trophic support. Haloperidol and risperidone increased Nrf2 and HO-1 gene expression, but only haloperidol upregulated NFκB and AMPK gene expression. Finally, astrocyte cultures confirmed the predominant effect of the tested antipsychotics on glia and their opposite effects on astrocytes. Therefore, antipsychotics cause functional alterations in the hippocampus. This information is important to drive future research for strategies to attenuate antipsychotics-induced neural dysfunction, focusing on glia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Li P, Snyder GL, Vanover KE (2016) Dopamine targeting drugs for the treatment of schizophrenia: past, present and future. Curr Top Med Chem 16:3385–3403. https://doi.org/10.2174/1568026616666160608084834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mauri MC, Paletta S, Maffini M et al (2014) Clinical pharmacology of atypical antipsychotics: an update. EXCLI J 13:1163–1191

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Schmitz I, da Silva A, Bobermin LD et al (2023) The Janus face of antipsychotics in glial cells: focus on glioprotection. Exp Biol Med Maywood NJ 248:2120–2130. https://doi.org/10.1177/15353702231222027

    Article  CAS  Google Scholar 

  4. Stockmeier CA, DiCarlo JJ, Zhang Y et al (1993) Characterization of typical and atypical antipsychotic drugs based on in vivo occupancy of serotonin2 and dopamine2 receptors. J Pharmacol Exp Ther 266:1374–1384

    Article  CAS  PubMed  Google Scholar 

  5. Ali T, Sisay M, Tariku M et al (2021) Antipsychotic-induced extrapyramidal side effects: a systematic review and meta-analysis of observational studies. PLoS ONE 16:e0257129. https://doi.org/10.1371/journal.pone.0257129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Divac N, Prostran M, Jakovcevski I, Cerovac N (2014) Second-generation antipsychotics and extrapyramidal adverse effects. BioMed Res Int 2014:656370. https://doi.org/10.1155/2014/656370

    Article  PubMed  PubMed Central  Google Scholar 

  7. Siafis S, Wu H, Wang D et al (2023) Antipsychotic dose, dopamine D2 receptor occupancy and extrapyramidal side-effects: a systematic review and dose-response meta-analysis. Mol Psychiatry 28:3267–3277. https://doi.org/10.1038/s41380-023-02203-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sykes DA, Moore H, Stott L et al (2017) Extrapyramidal side effects of antipsychotics are linked to their association kinetics at dopamine D2 receptors. Nat Commun 8:763. https://doi.org/10.1038/s41467-017-00716-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bobermin LD, da Silva A, Souza DO, Quincozes-Santos A (2018) Differential effects of typical and atypical antipsychotics on astroglial cells in vitro. Int J Dev Neurosci Off J Int Soc Dev Neurosci 69:1–9. https://doi.org/10.1016/j.ijdevneu.2018.06.001

    Article  CAS  Google Scholar 

  10. Dietz AG, Goldman SA, Nedergaard M (2020) Glial cells in schizophrenia: a unified hypothesis. Lancet Psychiatry 7:272–281. https://doi.org/10.1016/S2215-0366(19)30302-5

    Article  PubMed  Google Scholar 

  11. Quincozes-Santos A, Bobermin LD, Kleinkauf-Rocha J et al (2009) Atypical neuroleptic risperidone modulates glial functions in C6 astroglial cells. Prog Neuropsychopharmacol Biol Psychiatry 33:11–15. https://doi.org/10.1016/j.pnpbp.2008.08.023

    Article  CAS  PubMed  Google Scholar 

  12. Quincozes-Santos A, Santos CL, de Souza Almeida RR et al (2021) Gliotoxicity and glioprotection: the dual role of glial cells. Mol Neurobiol 58:6577–6592. https://doi.org/10.1007/s12035-021-02574-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Verkhratsky A, Nedergaard M (2018) Physiology of astroglia. Physiol Rev 98:239–389. https://doi.org/10.1152/physrev.00042.2016

    Article  CAS  PubMed  Google Scholar 

  14. Bal A, Bachelot T, Savasta M et al (1994) Evidence for dopamine D2 receptor mRNA expression by striatal astrocytes in culture: in situ hybridization and polymerase chain reaction studies. Brain Res Mol Brain Res 23:204–212. https://doi.org/10.1016/0169-328x(94)90227-5

    Article  CAS  PubMed  Google Scholar 

  15. Zanassi P, Paolillo M, Montecucco A et al (1999) Pharmacological and molecular evidence for dopamine D(1) receptor expression by striatal astrocytes in culture. J Neurosci Res 58:544–552. https://doi.org/10.1002/(sici)1097-4547(19991115)58:4%3c544::aid-jnr7%3e3.0.co;2-9

    Article  CAS  PubMed  Google Scholar 

  16. Quincozes-Santos A, Bobermin LD, Tonial RPL et al (2010) Effects of atypical (risperidone) and typical (haloperidol) antipsychotic agents on astroglial functions. Eur Arch Psychiatry Clin Neurosci 260:475–481. https://doi.org/10.1007/s00406-009-0095-0

    Article  PubMed  Google Scholar 

  17. MacDowell KS, García-Bueno B, Madrigal JLM et al (2013) Risperidone normalizes increased inflammatory parameters and restores anti-inflammatory pathways in a model of neuroinflammation. Int J Neuropsychopharmacol 16:121–135. https://doi.org/10.1017/S1461145711001775

    Article  CAS  PubMed  Google Scholar 

  18. Sugino H, Futamura T, Mitsumoto Y et al (2009) Atypical antipsychotics suppress production of proinflammatory cytokines and up-regulate interleukin-10 in lipopolysaccharide-treated mice. Prog Neuropsychopharmacol Biol Psychiatry 33:303–307. https://doi.org/10.1016/j.pnpbp.2008.12.006

    Article  CAS  PubMed  Google Scholar 

  19. Wegrzyn D, Juckel G, Faissner A (2022) Structural and Functional Deviations of the Hippocampus in Schizophrenia and Schizophrenia Animal Models. Int J Mol Sci 23:5482. https://doi.org/10.3390/ijms23105482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jørgensen KN, Nesvåg R, Gunleiksrud S et al (2016) First- and second-generation antipsychotic drug treatment and subcortical brain morphology in schizophrenia. Eur Arch Psychiatry Clin Neurosci 266:451–460. https://doi.org/10.1007/s00406-015-0650-9

    Article  PubMed  Google Scholar 

  21. Nardin P, Tortorelli L, Quincozes-Santos A et al (2009) S100B secretion in acute brain slices: modulation by extracellular levels of Ca2+ and K+. Neurochem Res 34:1603–1611. https://doi.org/10.1007/s11064-009-9949-0

    Article  CAS  PubMed  Google Scholar 

  22. Zanotto C, Abib RT, Batassini C et al (2013) Non-specific inhibitors of aquaporin-4 stimulate S100B secretion in acute hippocampal slices of rats. Brain Res 1491:14–22. https://doi.org/10.1016/j.brainres.2012.10.065

    Article  CAS  PubMed  Google Scholar 

  23. Bellaver B, Souza DG, Souza DO, Quincozes-Santos A (2017) Hippocampal astrocyte cultures from adult and aged rats reproduce changes in glial functionality observed in the aging brain. Mol Neurobiol 54:2969–2985. https://doi.org/10.1007/s12035-016-9880-8

    Article  CAS  PubMed  Google Scholar 

  24. Browne RW, Armstrong D (1998) Reduced glutathione and glutathione disulfide. Methods Mol Biol Clifton NJ 108:347–352. https://doi.org/10.1385/0-89603-472-0:347

    Article  CAS  Google Scholar 

  25. dos Santos AQ, Nardin P, Funchal C et al (2006) Resveratrol increases glutamate uptake and glutamine synthetase activity in C6 glioma cells. Arch Biochem Biophys 453:161–167. https://doi.org/10.1016/j.abb.2006.06.025

    Article  CAS  PubMed  Google Scholar 

  26. Wyse AT, Streck EL, Barros SV et al (2000) Methylmalonate administration decreases Na+, K+-ATPase activity in cerebral cortex of rats. NeuroReport 11:2331–2334. https://doi.org/10.1097/00001756-200007140-00052

    Article  CAS  PubMed  Google Scholar 

  27. Chan KM, Delfert D, Junger KD (1986) A direct colorimetric assay for Ca2+ -stimulated ATPase activity. Anal Biochem 157:375–380. https://doi.org/10.1016/0003-2697(86)90640-8

    Article  CAS  PubMed  Google Scholar 

  28. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  29. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Article  CAS  PubMed  Google Scholar 

  30. de Souza DF, Wartchow K, Hansen F et al (2013) Interleukin-6-induced S100B secretion is inhibited by haloperidol and risperidone. Prog Neuropsychopharmacol Biol Psychiatry 43:14–22. https://doi.org/10.1016/j.pnpbp.2012.12.001

    Article  CAS  PubMed  Google Scholar 

  31. Nardin P, Tramontina AC, Quincozes-Santos A et al (2011) In vitro S100B secretion is reduced by apomorphine: effects of antipsychotics and antioxidants. Prog Neuropsychopharmacol Biol Psychiatry 35:1291–1296. https://doi.org/10.1016/j.pnpbp.2011.04.004

    Article  CAS  PubMed  Google Scholar 

  32. Gawlik-Kotelnicka O, Mielicki W, Rabe-Jabłońska J et al (2016) Impact of lithium alone or in combination with haloperidol on oxidative stress parameters and cell viability in SH-SY5Y cell culture. Acta Neuropsychiatr 28:38–44. https://doi.org/10.1017/neu.2015.47

    Article  PubMed  Google Scholar 

  33. Lee H-G, Wheeler MA, Quintana FJ (2022) Function and therapeutic value of astrocytes in neurological diseases. Nat Rev Drug Discov 21:339–358. https://doi.org/10.1038/s41573-022-00390-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Verkhratsky A, Butt A, Li B et al (2023) Astrocytes in human central nervous system diseases: a frontier for new therapies. Signal Transduct Target Ther 8:396. https://doi.org/10.1038/s41392-023-01628-9

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mühlbauer V, Möhler R, Dichter MN et al (2021) Antipsychotics for agitation and psychosis in people with Alzheimer’s disease and vascular dementia. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD013304.pub2

    Article  PubMed  PubMed Central  Google Scholar 

  36. Raut S, Bhalerao A, Powers M et al (2023) Hypometabolism, Alzheimer’s disease, and possible therapeutic targets: an overview. Cells 12:2019. https://doi.org/10.3390/cells12162019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kowalchuk C, Castellani LN, Chintoh A et al (2019) Antipsychotics and glucose metabolism: how brain and body collide. Am J Physiol-Endocrinol Metab 316:E1–E15. https://doi.org/10.1152/ajpendo.00164.2018

    Article  CAS  PubMed  Google Scholar 

  38. Pizzolato G, Soncrant TT, Rapoport SI (1984) Haloperidol and cerebral metabolism in the conscious rat: relation to pharmacokinetics. J Neurochem 43:724–732. https://doi.org/10.1111/j.1471-4159.1984.tb12792.x

    Article  CAS  PubMed  Google Scholar 

  39. Carli M, Kolachalam S, Longoni B et al (2021) Atypical antipsychotics and metabolic syndrome: from molecular mechanisms to clinical differences. Pharmaceuticals 14:238. https://doi.org/10.3390/ph14030238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Murashita M, Inoue T, Kusumi I et al (2007) Glucose and lipid metabolism of long-term risperidone monotherapy in patients with schizophrenia. Psychiatry Clin Neurosci 61:54–58. https://doi.org/10.1111/j.1440-1819.2007.01610.x

    Article  CAS  PubMed  Google Scholar 

  41. Quincozes-Santos A, Gottfried C (2011) Resveratrol modulates astroglial functions: neuroprotective hypothesis. Ann N Y Acad Sci 1215:72–78. https://doi.org/10.1111/j.1749-6632.2010.05857.x

    Article  CAS  PubMed  Google Scholar 

  42. Pillai A, Parikh V, Terry AV, Mahadik SP (2007) Long-term antipsychotic treatments and crossover studies in rats: differential effects of typical and atypical agents on the expression of antioxidant enzymes and membrane lipid peroxidation in rat brain. J Psychiatr Res 41:372–386. https://doi.org/10.1016/j.jpsychires.2006.01.011

    Article  PubMed  Google Scholar 

  43. Wyse AT, Siebert C, Bobermin LD et al (2020) Changes in inflammatory response, redox status and Na+, K+-ATPase activity in primary astrocyte cultures from female wistar rats subject to ovariectomy. Neurotox Res 37:445–454. https://doi.org/10.1007/s12640-019-00128-5

    Article  CAS  PubMed  Google Scholar 

  44. Al-Amin MM, Nasir Uddin MM, Mahmud Reza H (2013) Effects of antipsychotics on the inflammatory response system of patients with schizophrenia in peripheral blood mononuclear cell cultures. Clin Psychopharmacol Neurosci Off Sci J Korean Coll Neuropsychopharmacol 11:144–151. https://doi.org/10.9758/cpn.2013.11.3.144

    Article  CAS  Google Scholar 

  45. McNamara RK, Jandacek R, Rider T, Tso P (2011) Chronic risperidone normalizes elevated pro-inflammatory cytokine and C-reactive protein production in omega-3 fatty acid deficient rats. Eur J Pharmacol 652:152–156. https://doi.org/10.1016/j.ejphar.2010.11.010

    Article  CAS  PubMed  Google Scholar 

  46. da Cruz Jung IE, Machado AK, da Cruz IBM et al (2016) Haloperidol and Risperidone at high concentrations activate an in vitro inflammatory response of RAW 264.7 macrophage cells by induction of apoptosis and modification of cytokine levels. Psychopharmacology 233:1715–1723. https://doi.org/10.1007/s00213-015-4079-7

    Article  CAS  PubMed  Google Scholar 

  47. Garcia JM, Stillings SA, Leclerc JL et al (2017) Role of Interleukin-10 in Acute Brain Injuries. Front Neurol 8:244. https://doi.org/10.3389/fneur.2017.00244

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bahrambeigi S, Khatamnezhad M, Asri-Rezaei S et al (2021) Pro-oxidant and degenerative effects of haloperidol under inflammatory conditions in rat; the involvement of SIRT1 and NF-κB signaling pathways. Vet Res Forum Int. https://doi.org/10.30466/vrf.2019.105811.2514

    Article  Google Scholar 

  49. Bobermin LD, Roppa RHA, Quincozes-Santos A (2019) Adenosine receptors as a new target for resveratrol-mediated glioprotection. Biochim Biophys Acta Mol Basis Dis 1865:634–647. https://doi.org/10.1016/j.bbadis.2019.01.004

    Article  CAS  PubMed  Google Scholar 

  50. Lopes CR, Cunha RA, Agostinho P (2021) Astrocytes and adenosine A2A receptors: active players in Alzheimer’s disease. Front Neurosci 15:666710. https://doi.org/10.3389/fnins.2021.666710

    Article  PubMed  PubMed Central  Google Scholar 

  51. Capuzzi E, Bartoli F, Crocamo C et al (2017) Acute variations of cytokine levels after antipsychotic treatment in drug-naïve subjects with a first-episode psychosis: a meta-analysis. Neurosci Biobehav Rev 77:122–128. https://doi.org/10.1016/j.neubiorev.2017.03.003

    Article  CAS  PubMed  Google Scholar 

  52. Miller AH, Haroon E, Raison CL, Felger JC (2013) Cytokine targets in the brain: impact on neurotransmitters and neurocircuits. Depress Anxiety 30:297–306. https://doi.org/10.1002/da.22084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tourjman V, Kouassi É, Koué M-È et al (2013) Antipsychotics’ effects on blood levels of cytokines in schizophrenia: a meta-analysis. Schizophr Res 151:43–47. https://doi.org/10.1016/j.schres.2013.10.011

    Article  PubMed  Google Scholar 

  54. Silva AC, Lemos C, Gonçalves FQ et al (2018) Blockade of adenosine A2A receptors recovers early deficits of memory and plasticity in the triple transgenic mouse model of Alzheimer’s disease. Neurobiol Dis 117:72–81. https://doi.org/10.1016/j.nbd.2018.05.024

    Article  CAS  PubMed  Google Scholar 

  55. Cintrón-Colón AF, Almeida-Alves G, Boynton AM, Spitsbergen JM (2020) GDNF synthesis, signaling, and retrograde transport in motor neurons. Cell Tissue Res 382:47–56. https://doi.org/10.1007/s00441-020-03287-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Luo G, Huang Y, Jia B et al (2018) Quetiapine prevents Aβ25-35-induced cell death in cultured neuron by enhancing brain-derived neurotrophic factor release from astrocyte. NeuroReport 29:92–98. https://doi.org/10.1097/WNR.0000000000000911

    Article  CAS  PubMed  Google Scholar 

  57. Dalwadi DA, Kim S, Schetz JA (2017) Activation of the sigma-1 receptor by haloperidol metabolites facilitates brain-derived neurotrophic factor secretion from human astroglia. Neurochem Int 105:21–31. https://doi.org/10.1016/j.neuint.2017.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shao Z, Dyck LE, Wang H, Li X-M (2006) Antipsychotic drugs cause glial cell line–derived neurotrophic factor secretion from C6 glioma cells. J Psychiatry Neurosci 31:32–37

    PubMed  PubMed Central  Google Scholar 

  59. Mitra S, Werner C, Dietz DM (2022) Neuroadaptations and TGF-β signaling: emerging role in models of neuropsychiatric disorders. Mol Psychiatry 27:296–306. https://doi.org/10.1038/s41380-021-01186-y

    Article  CAS  PubMed  Google Scholar 

  60. Dresselhaus EC, Meffert MK (2019) Cellular specificity of NF-κB function in the nervous system. Front Immunol 10:1043. https://doi.org/10.3389/fimmu.2019.01043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Karin M, Delhase M (2000) The IκB kinase (IKK) and NF-κB: key elements of proinflammatory signalling. Semin Immunol 12:85–98. https://doi.org/10.1006/smim.2000.0210

    Article  CAS  PubMed  Google Scholar 

  62. Caruso G, Grasso M, Fidilio A et al (2020) Antioxidant properties of second-generation antipsychotics: focus on microglia. Pharm Basel Switz 13:457. https://doi.org/10.3390/ph13120457

    Article  CAS  Google Scholar 

  63. Liddell JR (2017) Are astrocytes the predominant cell type for activation of Nrf2 in aging and neurodegeneration? Antioxidants. https://doi.org/10.3390/antiox6030065

    Article  PubMed  PubMed Central  Google Scholar 

  64. Markiewicz I, Lukomska B (2006) The role of astrocytes in the physiology and pathology of the central nervous system. Acta Neurobiol Exp 66(4):343–358

    Article  Google Scholar 

  65. Gomes C, Ferreira R, George J et al (2013) Activation of microglial cells triggers a release of brain-derived neurotrophic factor (BDNF) inducing their proliferation in an adenosine A2A receptor-dependent manner: A2A receptor blockade prevents BDNF release and proliferation of microglia. J Neuroinflammation 10:16. https://doi.org/10.1186/1742-2094-10-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS), Universidade Federal do Rio Grande do Sul, and Instituto Nacional de Ciência e Tecnologia (INCTEN/CNPq).

Funding

This research was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS) and Instituto Nacional de Ciência e Tecnologia para Excitotoxicidade e Neuroproteção.

Author information

Authors and Affiliations

Authors

Contributions

AS and AQS conceptualized the study. AS, LDB, CLS, RRSA, LJL, TMS, and MPS performed the experiments. AS, LDB, and AQS performed statistical analysis and written the original draft of the manuscript. MCL, ATSW, CAG, and AQS provided resources and materials/chemicals. All authors revised, edited, and approved the manuscript.

Corresponding author

Correspondence to André Quincozes-Santos.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Ethical Approval

This study protocol was reviewed and approved by the Federal University of Rio Grande do Sul Animal Care and Use Committee (process number 35557).

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, A., Bobermin, L.D., Santos, C.L. et al. Glia-related Acute Effects of Risperidone and Haloperidol in Hippocampal Slices and Astrocyte Cultures from Adult Wistar Rats: A Focus on Inflammatory and Trophic Factor Release. Neurochem Res 50, 22 (2025). https://doi.org/10.1007/s11064-024-04273-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11064-024-04273-y

Keywords