summaryrefslogtreecommitdiff
path: root/shape.c
blob: 20153b1c9862968992347417f9c562afc55b07a4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
#include "vm_core.h"
#include "vm_sync.h"
#include "shape.h"
#include "symbol.h"
#include "id_table.h"
#include "internal/class.h"
#include "internal/error.h"
#include "internal/gc.h"
#include "internal/object.h"
#include "internal/symbol.h"
#include "internal/variable.h"
#include "variable.h"
#include <stdbool.h>

#ifndef _WIN32
#include <sys/mman.h>
#endif

#ifndef SHAPE_DEBUG
#define SHAPE_DEBUG (VM_CHECK_MODE > 0)
#endif

#define REDBLACK_CACHE_SIZE (SHAPE_BUFFER_SIZE * 32)

/* This depends on that the allocated memory by Ruby's allocator or
 * mmap is not located at an odd address. */
#define SINGLE_CHILD_TAG 0x1
#define TAG_SINGLE_CHILD(x) (VALUE)((uintptr_t)(x) | SINGLE_CHILD_TAG)
#define SINGLE_CHILD_MASK (~((uintptr_t)SINGLE_CHILD_TAG))
#define SINGLE_CHILD_P(x) ((uintptr_t)(x) & SINGLE_CHILD_TAG)
#define SINGLE_CHILD(x) (rb_shape_t *)((uintptr_t)(x) & SINGLE_CHILD_MASK)
#define ANCESTOR_CACHE_THRESHOLD 10
#define MAX_SHAPE_ID (SHAPE_BUFFER_SIZE - 1)
#define ANCESTOR_SEARCH_MAX_DEPTH 2

static ID id_object_id;

#define LEAF 0
#define BLACK 0x0
#define RED 0x1

static redblack_node_t *
redblack_left(redblack_node_t *node)
{
    if (node->l == LEAF) {
        return LEAF;
    }
    else {
        RUBY_ASSERT(node->l < rb_shape_tree.cache_size);
        redblack_node_t *left = &rb_shape_tree.shape_cache[node->l - 1];
        return left;
    }
}

static redblack_node_t *
redblack_right(redblack_node_t *node)
{
    if (node->r == LEAF) {
        return LEAF;
    }
    else {
        RUBY_ASSERT(node->r < rb_shape_tree.cache_size);
        redblack_node_t *right = &rb_shape_tree.shape_cache[node->r - 1];
        return right;
    }
}

static redblack_node_t *
redblack_find(redblack_node_t *tree, ID key)
{
    if (tree == LEAF) {
        return LEAF;
    }
    else {
        RUBY_ASSERT(redblack_left(tree) == LEAF || redblack_left(tree)->key < tree->key);
        RUBY_ASSERT(redblack_right(tree) == LEAF || redblack_right(tree)->key > tree->key);

        if (tree->key == key) {
            return tree;
        }
        else {
            if (key < tree->key) {
                return redblack_find(redblack_left(tree), key);
            }
            else {
                return redblack_find(redblack_right(tree), key);
            }
        }
    }
}

static inline rb_shape_t *
redblack_value(redblack_node_t *node)
{
    // Color is stored in the bottom bit of the shape pointer
    // Mask away the bit so we get the actual pointer back
    return (rb_shape_t *)((uintptr_t)node->value & ~(uintptr_t)1);
}

#ifdef HAVE_MMAP
static inline char
redblack_color(redblack_node_t *node)
{
    return node && ((uintptr_t)node->value & RED);
}

static inline bool
redblack_red_p(redblack_node_t *node)
{
    return redblack_color(node) == RED;
}

static redblack_id_t
redblack_id_for(redblack_node_t *node)
{
    RUBY_ASSERT(node || node == LEAF);
    if (node == LEAF) {
        return 0;
    }
    else {
        redblack_node_t *redblack_nodes = rb_shape_tree.shape_cache;
        redblack_id_t id = (redblack_id_t)(node - redblack_nodes);
        return id + 1;
    }
}

static redblack_node_t *
redblack_new(char color, ID key, rb_shape_t *value, redblack_node_t *left, redblack_node_t *right)
{
    if (rb_shape_tree.cache_size + 1 >= REDBLACK_CACHE_SIZE) {
        // We're out of cache, just quit
        return LEAF;
    }

    RUBY_ASSERT(left == LEAF || left->key < key);
    RUBY_ASSERT(right == LEAF || right->key > key);

    redblack_node_t *redblack_nodes = rb_shape_tree.shape_cache;
    redblack_node_t *node = &redblack_nodes[(rb_shape_tree.cache_size)++];
    node->key = key;
    node->value = (rb_shape_t *)((uintptr_t)value | color);
    node->l = redblack_id_for(left);
    node->r = redblack_id_for(right);
    return node;
}

static redblack_node_t *
redblack_balance(char color, ID key, rb_shape_t *value, redblack_node_t *left, redblack_node_t *right)
{
    if (color == BLACK) {
        ID new_key, new_left_key, new_right_key;
        rb_shape_t *new_value, *new_left_value, *new_right_value;
        redblack_node_t *new_left_left, *new_left_right, *new_right_left, *new_right_right;

        if (redblack_red_p(left) && redblack_red_p(redblack_left(left))) {
            new_right_key = key;
            new_right_value = value;
            new_right_right = right;

            new_key = left->key;
            new_value = redblack_value(left);
            new_right_left = redblack_right(left);

            new_left_key = redblack_left(left)->key;
            new_left_value = redblack_value(redblack_left(left));

            new_left_left = redblack_left(redblack_left(left));
            new_left_right = redblack_right(redblack_left(left));
        }
        else if (redblack_red_p(left) && redblack_red_p(redblack_right(left))) {
            new_right_key = key;
            new_right_value = value;
            new_right_right = right;

            new_left_key = left->key;
            new_left_value = redblack_value(left);
            new_left_left = redblack_left(left);

            new_key = redblack_right(left)->key;
            new_value = redblack_value(redblack_right(left));
            new_left_right = redblack_left(redblack_right(left));
            new_right_left = redblack_right(redblack_right(left));
        }
        else if (redblack_red_p(right) && redblack_red_p(redblack_left(right))) {
            new_left_key = key;
            new_left_value = value;
            new_left_left = left;

            new_right_key = right->key;
            new_right_value = redblack_value(right);
            new_right_right = redblack_right(right);

            new_key = redblack_left(right)->key;
            new_value = redblack_value(redblack_left(right));
            new_left_right = redblack_left(redblack_left(right));
            new_right_left = redblack_right(redblack_left(right));
        }
        else if (redblack_red_p(right) && redblack_red_p(redblack_right(right))) {
            new_left_key = key;
            new_left_value = value;
            new_left_left = left;

            new_key = right->key;
            new_value = redblack_value(right);
            new_left_right = redblack_left(right);

            new_right_key = redblack_right(right)->key;
            new_right_value = redblack_value(redblack_right(right));
            new_right_left = redblack_left(redblack_right(right));
            new_right_right = redblack_right(redblack_right(right));
        }
        else {
            return redblack_new(color, key, value, left, right);
        }

        RUBY_ASSERT(new_left_key < new_key);
        RUBY_ASSERT(new_right_key > new_key);
        RUBY_ASSERT(new_left_left == LEAF || new_left_left->key < new_left_key);
        RUBY_ASSERT(new_left_right == LEAF || new_left_right->key > new_left_key);
        RUBY_ASSERT(new_left_right == LEAF || new_left_right->key < new_key);
        RUBY_ASSERT(new_right_left == LEAF || new_right_left->key < new_right_key);
        RUBY_ASSERT(new_right_left == LEAF || new_right_left->key > new_key);
        RUBY_ASSERT(new_right_right == LEAF || new_right_right->key > new_right_key);

        return redblack_new(
                RED, new_key, new_value,
                redblack_new(BLACK, new_left_key, new_left_value, new_left_left, new_left_right),
                redblack_new(BLACK, new_right_key, new_right_value, new_right_left, new_right_right));
    }

    return redblack_new(color, key, value, left, right);
}

static redblack_node_t *
redblack_insert_aux(redblack_node_t *tree, ID key, rb_shape_t *value)
{
    if (tree == LEAF) {
        return redblack_new(RED, key, value, LEAF, LEAF);
    }
    else {
        redblack_node_t *left, *right;
        if (key < tree->key) {
            left = redblack_insert_aux(redblack_left(tree), key, value);
            RUBY_ASSERT(left != LEAF);
            right = redblack_right(tree);
            RUBY_ASSERT(right == LEAF || right->key > tree->key);
        }
        else if (key > tree->key) {
            left = redblack_left(tree);
            RUBY_ASSERT(left == LEAF || left->key < tree->key);
            right = redblack_insert_aux(redblack_right(tree), key, value);
            RUBY_ASSERT(right != LEAF);
        }
        else {
            return tree;
        }

        return redblack_balance(
            redblack_color(tree),
            tree->key,
            redblack_value(tree),
            left,
            right
        );
    }
}

static redblack_node_t *
redblack_force_black(redblack_node_t *node)
{
    node->value = redblack_value(node);
    return node;
}

static redblack_node_t *
redblack_insert(redblack_node_t *tree, ID key, rb_shape_t *value)
{
    redblack_node_t *root = redblack_insert_aux(tree, key, value);

    if (redblack_red_p(root)) {
        return redblack_force_black(root);
    }
    else {
        return root;
    }
}
#endif

rb_shape_tree_t rb_shape_tree = { 0 };
static VALUE shape_tree_obj = Qfalse;

rb_shape_t *
rb_shape_get_root_shape(void)
{
    return rb_shape_tree.root_shape;
}

static void
shape_tree_mark(void *data)
{
    rb_shape_t *cursor = rb_shape_get_root_shape();
    rb_shape_t *end = RSHAPE(rb_shape_tree.next_shape_id - 1);
    while (cursor < end) {
        if (cursor->edges && !SINGLE_CHILD_P(cursor->edges)) {
            rb_gc_mark_movable(cursor->edges);
        }
        cursor++;
    }
}

static void
shape_tree_compact(void *data)
{
    rb_shape_t *cursor = rb_shape_get_root_shape();
    rb_shape_t *end = RSHAPE(rb_shape_tree.next_shape_id - 1);
    while (cursor < end) {
        if (cursor->edges && !SINGLE_CHILD_P(cursor->edges)) {
            cursor->edges = rb_gc_location(cursor->edges);
        }
        cursor++;
    }
}

static size_t
shape_tree_memsize(const void *data)
{
    return rb_shape_tree.cache_size * sizeof(redblack_node_t);
}

static const rb_data_type_t shape_tree_type = {
    .wrap_struct_name = "VM/shape_tree",
    .function = {
        .dmark = shape_tree_mark,
        .dfree = NULL, // Nothing to free, done at VM exit in rb_shape_free_all,
        .dsize = shape_tree_memsize,
        .dcompact = shape_tree_compact,
    },
    .flags = RUBY_TYPED_FREE_IMMEDIATELY | RUBY_TYPED_WB_PROTECTED,
};


/*
 * Shape getters
 */

static inline shape_id_t
raw_shape_id(rb_shape_t *shape)
{
    RUBY_ASSERT(shape);
    return (shape_id_t)(shape - rb_shape_tree.shape_list);
}

static inline shape_id_t
shape_id(rb_shape_t *shape, shape_id_t previous_shape_id)
{
    RUBY_ASSERT(shape);
    shape_id_t raw_id = (shape_id_t)(shape - rb_shape_tree.shape_list);
    return raw_id | (previous_shape_id & SHAPE_ID_FLAGS_MASK);
}

#if RUBY_DEBUG
static inline bool
shape_frozen_p(shape_id_t shape_id)
{
    return shape_id & SHAPE_ID_FL_FROZEN;
}
#endif

void
rb_shape_each_shape_id(each_shape_callback callback, void *data)
{
    rb_shape_t *start = rb_shape_get_root_shape();
    rb_shape_t *cursor = start;
    rb_shape_t *end = RSHAPE(rb_shape_tree.next_shape_id);
    while (cursor < end) {
        callback((shape_id_t)(cursor - start), data);
        cursor += 1;
    }
}

RUBY_FUNC_EXPORTED shape_id_t
rb_obj_shape_id(VALUE obj)
{
    if (RB_SPECIAL_CONST_P(obj)) {
        return SPECIAL_CONST_SHAPE_ID;
    }

    if (BUILTIN_TYPE(obj) == T_CLASS || BUILTIN_TYPE(obj) == T_MODULE) {
        VALUE fields_obj = RCLASS_WRITABLE_FIELDS_OBJ(obj);
        if (fields_obj) {
            return RBASIC_SHAPE_ID(fields_obj);
        }
        return ROOT_SHAPE_ID;
    }
    return RBASIC_SHAPE_ID(obj);
}

size_t
rb_shape_depth(shape_id_t shape_id)
{
    size_t depth = 1;
    rb_shape_t *shape = RSHAPE(shape_id);

    while (shape->parent_id != INVALID_SHAPE_ID) {
        depth++;
        shape = RSHAPE(shape->parent_id);
    }

    return depth;
}

static rb_shape_t *
shape_alloc(void)
{
    shape_id_t shape_id = (shape_id_t)RUBY_ATOMIC_FETCH_ADD(rb_shape_tree.next_shape_id, 1);

    if (shape_id == (MAX_SHAPE_ID + 1)) {
        // TODO: Make an OutOfShapesError ??
        rb_bug("Out of shapes");
    }

    return &rb_shape_tree.shape_list[shape_id];
}

static rb_shape_t *
rb_shape_alloc_with_parent_id(ID edge_name, shape_id_t parent_id)
{
    rb_shape_t *shape = shape_alloc();

    shape->edge_name = edge_name;
    shape->next_field_index = 0;
    shape->parent_id = parent_id;
    shape->edges = 0;

    return shape;
}

static rb_shape_t *
rb_shape_alloc(ID edge_name, rb_shape_t *parent, enum shape_type type)
{
    rb_shape_t *shape = rb_shape_alloc_with_parent_id(edge_name, raw_shape_id(parent));
    shape->type = (uint8_t)type;
    shape->capacity = parent->capacity;
    shape->edges = 0;
    return shape;
}

#ifdef HAVE_MMAP
static redblack_node_t *
redblack_cache_ancestors(rb_shape_t *shape)
{
    if (!(shape->ancestor_index || shape->parent_id == INVALID_SHAPE_ID)) {
        redblack_node_t *parent_index;

        parent_index = redblack_cache_ancestors(RSHAPE(shape->parent_id));

        if (shape->type == SHAPE_IVAR) {
            shape->ancestor_index = redblack_insert(parent_index, shape->edge_name, shape);

#if RUBY_DEBUG
            if (shape->ancestor_index) {
                redblack_node_t *inserted_node = redblack_find(shape->ancestor_index, shape->edge_name);
                RUBY_ASSERT(inserted_node);
                RUBY_ASSERT(redblack_value(inserted_node) == shape);
            }
#endif
        }
        else {
            shape->ancestor_index = parent_index;
        }
    }

    return shape->ancestor_index;
}
#else
static redblack_node_t *
redblack_cache_ancestors(rb_shape_t *shape)
{
    return LEAF;
}
#endif

static attr_index_t
shape_grow_capa(attr_index_t current_capa)
{
    const attr_index_t *capacities = rb_shape_tree.capacities;

    // First try to use the next size that will be embeddable in a larger object slot.
    attr_index_t capa;
    while ((capa = *capacities)) {
        if (capa > current_capa) {
            return capa;
        }
        capacities++;
    }

    return (attr_index_t)rb_malloc_grow_capa(current_capa, sizeof(VALUE));
}

static rb_shape_t *
rb_shape_alloc_new_child(ID id, rb_shape_t *shape, enum shape_type shape_type)
{
    rb_shape_t *new_shape = rb_shape_alloc(id, shape, shape_type);

    switch (shape_type) {
      case SHAPE_OBJ_ID:
      case SHAPE_IVAR:
        if (UNLIKELY(shape->next_field_index >= shape->capacity)) {
            RUBY_ASSERT(shape->next_field_index == shape->capacity);
            new_shape->capacity = shape_grow_capa(shape->capacity);
        }
        RUBY_ASSERT(new_shape->capacity > shape->next_field_index);
        new_shape->next_field_index = shape->next_field_index + 1;
        if (new_shape->next_field_index > ANCESTOR_CACHE_THRESHOLD) {
            RB_VM_LOCKING() {
                redblack_cache_ancestors(new_shape);
            }
        }
        break;
      case SHAPE_ROOT:
        rb_bug("Unreachable");
        break;
    }

    return new_shape;
}

#define RUBY_ATOMIC_VALUE_LOAD(x) (VALUE)(RUBY_ATOMIC_PTR_LOAD(x))

static rb_shape_t *
get_next_shape_internal_atomic(rb_shape_t *shape, ID id, enum shape_type shape_type, bool *variation_created, bool new_variations_allowed)
{
    rb_shape_t *res = NULL;

    *variation_created = false;
    VALUE edges_table;

retry:
    edges_table = RUBY_ATOMIC_VALUE_LOAD(shape->edges);

    // If the current shape has children
    if (edges_table) {
        // Check if it only has one child
        if (SINGLE_CHILD_P(edges_table)) {
            rb_shape_t *child = SINGLE_CHILD(edges_table);
            // If the one child has a matching edge name, then great,
            // we found what we want.
            if (child->edge_name == id) {
                res = child;
            }
        }
        else {
            // If it has more than one child, do a hash lookup to find it.
            VALUE lookup_result;
            if (rb_managed_id_table_lookup(edges_table, id, &lookup_result)) {
                res = (rb_shape_t *)lookup_result;
            }
        }
    }

    // If we didn't find the shape we're looking for we create it.
    if (!res) {
        // If we're not allowed to create a new variation, of if we're out of shapes
        // we return TOO_COMPLEX_SHAPE.
        if (!new_variations_allowed || rb_shape_tree.next_shape_id > MAX_SHAPE_ID) {
            res = NULL;
        }
        else {
            VALUE new_edges = 0;

            rb_shape_t *new_shape = rb_shape_alloc_new_child(id, shape, shape_type);

            if (!edges_table) {
                // If the shape had no edge yet, we can directly set the new child
                new_edges = TAG_SINGLE_CHILD(new_shape);
            }
            else {
                // If the edge was single child we need to allocate a table.
                if (SINGLE_CHILD_P(edges_table)) {
                    rb_shape_t *old_child = SINGLE_CHILD(edges_table);
                    new_edges = rb_managed_id_table_new(2);
                    rb_managed_id_table_insert(new_edges, old_child->edge_name, (VALUE)old_child);
                }
                else {
                    new_edges = rb_managed_id_table_dup(edges_table);
                }

                rb_managed_id_table_insert(new_edges, new_shape->edge_name, (VALUE)new_shape);
                *variation_created = true;
            }

            if (edges_table != RUBY_ATOMIC_VALUE_CAS(shape->edges, edges_table, new_edges)) {
                // Another thread updated the table;
                goto retry;
            }
            RB_OBJ_WRITTEN(shape_tree_obj, Qundef, new_edges);
            res = new_shape;
            RB_GC_GUARD(new_edges);
        }
    }

    return res;
}

static rb_shape_t *
get_next_shape_internal(rb_shape_t *shape, ID id, enum shape_type shape_type, bool *variation_created, bool new_variations_allowed)
{
    if (rb_multi_ractor_p()) {
        return get_next_shape_internal_atomic(shape, id, shape_type, variation_created, new_variations_allowed);
    }

    rb_shape_t *res = NULL;
    *variation_created = false;

    VALUE edges_table = shape->edges;

    // If the current shape has children
    if (edges_table) {
        // Check if it only has one child
        if (SINGLE_CHILD_P(edges_table)) {
            rb_shape_t *child = SINGLE_CHILD(edges_table);
            // If the one child has a matching edge name, then great,
            // we found what we want.
            if (child->edge_name == id) {
                res = child;
            }
        }
        else {
            // If it has more than one child, do a hash lookup to find it.
            VALUE lookup_result;
            if (rb_managed_id_table_lookup(edges_table, id, &lookup_result)) {
                res = (rb_shape_t *)lookup_result;
            }
        }
    }

    // If we didn't find the shape we're looking for we create it.
    if (!res) {
        // If we're not allowed to create a new variation, of if we're out of shapes
        // we return TOO_COMPLEX_SHAPE.
        if (!new_variations_allowed || rb_shape_tree.next_shape_id > MAX_SHAPE_ID) {
            res = NULL;
        }
        else {
            rb_shape_t *new_shape = rb_shape_alloc_new_child(id, shape, shape_type);

            if (!edges_table) {
                // If the shape had no edge yet, we can directly set the new child
                shape->edges = TAG_SINGLE_CHILD(new_shape);
            }
            else {
                // If the edge was single child we need to allocate a table.
                if (SINGLE_CHILD_P(edges_table)) {
                    rb_shape_t *old_child = SINGLE_CHILD(edges_table);
                    VALUE new_edges = rb_managed_id_table_new(2);
                    rb_managed_id_table_insert(new_edges, old_child->edge_name, (VALUE)old_child);
                    RB_OBJ_WRITE(shape_tree_obj, &shape->edges, new_edges);
                }

                rb_managed_id_table_insert(shape->edges, new_shape->edge_name, (VALUE)new_shape);
                *variation_created = true;
            }

            res = new_shape;
        }
    }

    return res;
}

static rb_shape_t *
remove_shape_recursive(rb_shape_t *shape, ID id, rb_shape_t **removed_shape)
{
    if (shape->parent_id == INVALID_SHAPE_ID) {
        // We've hit the top of the shape tree and couldn't find the
        // IV we wanted to remove, so return NULL
        *removed_shape = NULL;
        return NULL;
    }
    else {
        if (shape->type == SHAPE_IVAR && shape->edge_name == id) {
            *removed_shape = shape;

            return RSHAPE(shape->parent_id);
        }
        else {
            // This isn't the IV we want to remove, keep walking up.
            rb_shape_t *new_parent = remove_shape_recursive(RSHAPE(shape->parent_id), id, removed_shape);

            // We found a new parent.  Create a child of the new parent that
            // has the same attributes as this shape.
            if (new_parent) {
                bool dont_care;
                rb_shape_t *new_child = get_next_shape_internal(new_parent, shape->edge_name, shape->type, &dont_care, true);
                RUBY_ASSERT(!new_child || new_child->capacity <= shape->capacity);
                return new_child;
            }
            else {
                // We went all the way to the top of the shape tree and couldn't
                // find an IV to remove so return NULL.
                return NULL;
            }
        }
    }
}

static inline shape_id_t transition_complex(shape_id_t shape_id);

static shape_id_t
shape_transition_object_id(shape_id_t original_shape_id)
{
    RUBY_ASSERT(!rb_shape_has_object_id(original_shape_id));

    bool dont_care;
    rb_shape_t *shape = get_next_shape_internal(RSHAPE(original_shape_id), id_object_id, SHAPE_OBJ_ID, &dont_care, true);
    if (!shape) {
        shape = RSHAPE(ROOT_SHAPE_WITH_OBJ_ID);
    }

    RUBY_ASSERT(shape);
    return shape_id(shape, original_shape_id) | SHAPE_ID_FL_HAS_OBJECT_ID;
}

shape_id_t
rb_shape_transition_object_id(VALUE obj)
{
    return shape_transition_object_id(RBASIC_SHAPE_ID(obj));
}

shape_id_t
rb_shape_object_id(shape_id_t original_shape_id)
{
    RUBY_ASSERT(rb_shape_has_object_id(original_shape_id));

    rb_shape_t *shape = RSHAPE(original_shape_id);
    while (shape->type != SHAPE_OBJ_ID) {
        if (UNLIKELY(shape->parent_id == INVALID_SHAPE_ID)) {
            rb_bug("Missing object_id in shape tree");
        }
        shape = RSHAPE(shape->parent_id);
    }

    return shape_id(shape, original_shape_id) | SHAPE_ID_FL_HAS_OBJECT_ID;
}

static inline shape_id_t
transition_complex(shape_id_t shape_id)
{
    uint8_t heap_index = rb_shape_heap_index(shape_id);
    shape_id_t next_shape_id;

    if (heap_index) {
        next_shape_id = rb_shape_root(heap_index - 1) | SHAPE_ID_FL_TOO_COMPLEX;
        if (rb_shape_has_object_id(shape_id)) {
            next_shape_id = shape_transition_object_id(next_shape_id);
        }
    }
    else {
        if (rb_shape_has_object_id(shape_id)) {
            next_shape_id = ROOT_TOO_COMPLEX_WITH_OBJ_ID | (shape_id & SHAPE_ID_FLAGS_MASK);
        }
        else {
            next_shape_id = ROOT_TOO_COMPLEX_SHAPE_ID | (shape_id & SHAPE_ID_FLAGS_MASK);
        }
    }

    RUBY_ASSERT(rb_shape_has_object_id(shape_id) == rb_shape_has_object_id(next_shape_id));

    return next_shape_id;
}

shape_id_t
rb_shape_transition_remove_ivar(VALUE obj, ID id, shape_id_t *removed_shape_id)
{
    shape_id_t original_shape_id = RBASIC_SHAPE_ID(obj);

    RUBY_ASSERT(!rb_shape_too_complex_p(original_shape_id));
    RUBY_ASSERT(!shape_frozen_p(original_shape_id));

    rb_shape_t *removed_shape = NULL;
    rb_shape_t *new_shape = remove_shape_recursive(RSHAPE(original_shape_id), id, &removed_shape);

    if (removed_shape) {
        *removed_shape_id = raw_shape_id(removed_shape);
    }

    if (new_shape) {
        return shape_id(new_shape, original_shape_id);
    }
    else if (removed_shape) {
        // We found the shape to remove, but couldn't create a new variation.
        // We must transition to TOO_COMPLEX.
        shape_id_t next_shape_id = transition_complex(original_shape_id);
        RUBY_ASSERT(rb_shape_has_object_id(next_shape_id) == rb_shape_has_object_id(original_shape_id));
        return next_shape_id;
    }
    return original_shape_id;
}

shape_id_t
rb_shape_transition_frozen(VALUE obj)
{
    RUBY_ASSERT(RB_OBJ_FROZEN(obj));

    shape_id_t shape_id = rb_obj_shape_id(obj);
    return shape_id | SHAPE_ID_FL_FROZEN;
}

shape_id_t
rb_shape_transition_complex(VALUE obj)
{
    return transition_complex(RBASIC_SHAPE_ID(obj));
}

shape_id_t
rb_shape_transition_heap(VALUE obj, size_t heap_index)
{
     return (RBASIC_SHAPE_ID(obj) & (~SHAPE_ID_HEAP_INDEX_MASK)) | rb_shape_root(heap_index);
}

/*
 * This function is used for assertions where we don't want to increment
 * max_iv_count
 */
static inline rb_shape_t *
shape_get_next_iv_shape(rb_shape_t *shape, ID id)
{
    RUBY_ASSERT(!is_instance_id(id) || RTEST(rb_sym2str(ID2SYM(id))));
    bool dont_care;
    return get_next_shape_internal(shape, id, SHAPE_IVAR, &dont_care, true);
}

shape_id_t
rb_shape_get_next_iv_shape(shape_id_t shape_id, ID id)
{
    rb_shape_t *shape = RSHAPE(shape_id);
    rb_shape_t *next_shape = shape_get_next_iv_shape(shape, id);
    return raw_shape_id(next_shape);
}

static bool
shape_get_iv_index(rb_shape_t *shape, ID id, attr_index_t *value)
{
    while (shape->parent_id != INVALID_SHAPE_ID) {
        if (shape->edge_name == id) {
            enum shape_type shape_type;
            shape_type = (enum shape_type)shape->type;

            switch (shape_type) {
              case SHAPE_IVAR:
                RUBY_ASSERT(shape->next_field_index > 0);
                *value = shape->next_field_index - 1;
                return true;
              case SHAPE_ROOT:
                return false;
              case SHAPE_OBJ_ID:
                rb_bug("Ivar should not exist on transition");
            }
        }

        shape = RSHAPE(shape->parent_id);
    }

    return false;
}

static inline rb_shape_t *
shape_get_next(rb_shape_t *shape, VALUE obj, ID id, bool emit_warnings)
{
    RUBY_ASSERT(!is_instance_id(id) || RTEST(rb_sym2str(ID2SYM(id))));

#if RUBY_DEBUG
    attr_index_t index;
    if (shape_get_iv_index(shape, id, &index)) {
        rb_bug("rb_shape_get_next: trying to create ivar that already exists at index %u", index);
    }
#endif

    VALUE klass;
    if (IMEMO_TYPE_P(obj, imemo_class_fields)) { // HACK
        klass = CLASS_OF(obj);
    }
    else {
        klass = rb_obj_class(obj);
    }

    bool allow_new_shape = RCLASS_VARIATION_COUNT(klass) < SHAPE_MAX_VARIATIONS;
    bool variation_created = false;
    rb_shape_t *new_shape = get_next_shape_internal(shape, id, SHAPE_IVAR, &variation_created, allow_new_shape);

    if (!new_shape) {
        // We could create a new variation, transitioning to TOO_COMPLEX.
        return NULL;
    }

    // Check if we should update max_iv_count on the object's class
    if (obj != klass && new_shape->next_field_index > RCLASS_MAX_IV_COUNT(klass)) {
        RCLASS_SET_MAX_IV_COUNT(klass, new_shape->next_field_index);
    }

    if (variation_created) {
        RCLASS_VARIATION_COUNT(klass)++;

        if (emit_warnings && rb_warning_category_enabled_p(RB_WARN_CATEGORY_PERFORMANCE)) {
            if (RCLASS_VARIATION_COUNT(klass) >= SHAPE_MAX_VARIATIONS) {
                rb_category_warn(
                    RB_WARN_CATEGORY_PERFORMANCE,
                    "The class %"PRIsVALUE" reached %d shape variations, instance variables accesses will be slower and memory usage increased.\n"
                    "It is recommended to define instance variables in a consistent order, for instance by eagerly defining them all in the #initialize method.",
                    rb_class_path(klass),
                    SHAPE_MAX_VARIATIONS
                );
            }
        }
    }

    return new_shape;
}

shape_id_t
rb_shape_transition_add_ivar(VALUE obj, ID id)
{
    shape_id_t original_shape_id = RBASIC_SHAPE_ID(obj);
    RUBY_ASSERT(!shape_frozen_p(original_shape_id));

    rb_shape_t *next_shape = shape_get_next(RSHAPE(original_shape_id), obj, id, true);
    if (next_shape) {
        return shape_id(next_shape, original_shape_id);
    }
    else {
        return transition_complex(original_shape_id);
    }
}

shape_id_t
rb_shape_transition_add_ivar_no_warnings(VALUE obj, ID id)
{
    shape_id_t original_shape_id = RBASIC_SHAPE_ID(obj);
    RUBY_ASSERT(!shape_frozen_p(original_shape_id));

    rb_shape_t *next_shape = shape_get_next(RSHAPE(original_shape_id), obj, id, false);
    if (next_shape) {
        return shape_id(next_shape, original_shape_id);
    }
    else {
        return transition_complex(original_shape_id);
    }
}

// Same as rb_shape_get_iv_index, but uses a provided valid shape id and index
// to return a result faster if branches of the shape tree are closely related.
bool
rb_shape_get_iv_index_with_hint(shape_id_t shape_id, ID id, attr_index_t *value, shape_id_t *shape_id_hint)
{
    attr_index_t index_hint = *value;

    if (*shape_id_hint == INVALID_SHAPE_ID) {
        *shape_id_hint = shape_id;
        return rb_shape_get_iv_index(shape_id, id, value);
    }

    rb_shape_t *shape = RSHAPE(shape_id);
    rb_shape_t *initial_shape = shape;
    rb_shape_t *shape_hint = RSHAPE(*shape_id_hint);

    // We assume it's likely shape_id_hint and shape_id have a close common
    // ancestor, so we check up to ANCESTOR_SEARCH_MAX_DEPTH ancestors before
    // eventually using the index, as in case of a match it will be faster.
    // However if the shape doesn't have an index, we walk the entire tree.
    int depth = INT_MAX;
    if (shape->ancestor_index && shape->next_field_index >= ANCESTOR_CACHE_THRESHOLD) {
        depth = ANCESTOR_SEARCH_MAX_DEPTH;
    }

    while (depth > 0 && shape->next_field_index > index_hint) {
        while (shape_hint->next_field_index > shape->next_field_index) {
            shape_hint = RSHAPE(shape_hint->parent_id);
        }

        if (shape_hint == shape) {
            // We've found a common ancestor so use the index hint
            *value = index_hint;
            *shape_id_hint = raw_shape_id(shape);
            return true;
        }
        if (shape->edge_name == id) {
            // We found the matching id before a common ancestor
            *value = shape->next_field_index - 1;
            *shape_id_hint = raw_shape_id(shape);
            return true;
        }

        shape = RSHAPE(shape->parent_id);
        depth--;
    }

    // If the original shape had an index but its ancestor doesn't
    // we switch back to the original one as it will be faster.
    if (!shape->ancestor_index && initial_shape->ancestor_index) {
        shape = initial_shape;
    }
    *shape_id_hint = shape_id;
    return shape_get_iv_index(shape, id, value);
}

static bool
shape_cache_get_iv_index(rb_shape_t *shape, ID id, attr_index_t *value)
{
    if (shape->ancestor_index && shape->next_field_index >= ANCESTOR_CACHE_THRESHOLD) {
        redblack_node_t *node = redblack_find(shape->ancestor_index, id);
        if (node) {
            rb_shape_t *shape = redblack_value(node);
            *value = shape->next_field_index - 1;

#if RUBY_DEBUG
            attr_index_t shape_tree_index;
            RUBY_ASSERT(shape_get_iv_index(shape, id, &shape_tree_index));
            RUBY_ASSERT(shape_tree_index == *value);
#endif

            return true;
        }

        /* Verify the cache is correct by checking that this instance variable
         * does not exist in the shape tree either. */
        RUBY_ASSERT(!shape_get_iv_index(shape, id, value));
    }

    return false;
}

bool
rb_shape_get_iv_index(shape_id_t shape_id, ID id, attr_index_t *value)
{
    // It doesn't make sense to ask for the index of an IV that's stored
    // on an object that is "too complex" as it uses a hash for storing IVs
    RUBY_ASSERT(!rb_shape_too_complex_p(shape_id));

    rb_shape_t *shape = RSHAPE(shape_id);

    if (!shape_cache_get_iv_index(shape, id, value)) {
        // If it wasn't in the ancestor cache, then don't do a linear search
        if (shape->ancestor_index && shape->next_field_index >= ANCESTOR_CACHE_THRESHOLD) {
            return false;
        }
        else {
            return shape_get_iv_index(shape, id, value);
        }
    }

    return true;
}

int32_t
rb_shape_id_offset(void)
{
    return sizeof(uintptr_t) - SHAPE_ID_NUM_BITS / sizeof(uintptr_t);
}

// Rebuild a similar shape with the same ivars but starting from
// a different SHAPE_T_OBJECT, and don't cary over non-canonical transitions
// such as SHAPE_OBJ_ID.
static rb_shape_t *
shape_rebuild(rb_shape_t *initial_shape, rb_shape_t *dest_shape)
{
    rb_shape_t *midway_shape;

    RUBY_ASSERT(initial_shape->type == SHAPE_ROOT);

    if (dest_shape->type != initial_shape->type) {
        midway_shape = shape_rebuild(initial_shape, RSHAPE(dest_shape->parent_id));
        if (UNLIKELY(!midway_shape)) {
            return NULL;
        }
    }
    else {
        midway_shape = initial_shape;
    }

    switch ((enum shape_type)dest_shape->type) {
      case SHAPE_IVAR:
        midway_shape = shape_get_next_iv_shape(midway_shape, dest_shape->edge_name);
        break;
      case SHAPE_OBJ_ID:
      case SHAPE_ROOT:
        break;
    }

    return midway_shape;
}

// Rebuild `dest_shape_id` starting from `initial_shape_id`, and keep only SHAPE_IVAR transitions.
// SHAPE_OBJ_ID and frozen status are lost.
shape_id_t
rb_shape_rebuild(shape_id_t initial_shape_id, shape_id_t dest_shape_id)
{
    RUBY_ASSERT(!rb_shape_too_complex_p(initial_shape_id));
    RUBY_ASSERT(!rb_shape_too_complex_p(dest_shape_id));

    rb_shape_t *next_shape = shape_rebuild(RSHAPE(initial_shape_id), RSHAPE(dest_shape_id));
    if (next_shape) {
        return shape_id(next_shape, initial_shape_id);
    }
    else {
        return transition_complex(initial_shape_id | (dest_shape_id & SHAPE_ID_FL_HAS_OBJECT_ID));
    }
}

void
rb_shape_copy_fields(VALUE dest, VALUE *dest_buf, shape_id_t dest_shape_id, VALUE src, VALUE *src_buf, shape_id_t src_shape_id)
{
    rb_shape_t *dest_shape = RSHAPE(dest_shape_id);
    rb_shape_t *src_shape = RSHAPE(src_shape_id);

    if (src_shape->next_field_index == dest_shape->next_field_index) {
        // Happy path, we can just memcpy the ivptr content
        MEMCPY(dest_buf, src_buf, VALUE, dest_shape->next_field_index);

        // Fire write barriers
        for (uint32_t i = 0; i < dest_shape->next_field_index; i++) {
            RB_OBJ_WRITTEN(dest, Qundef, dest_buf[i]);
        }
    }
    else {
        while (src_shape->parent_id != INVALID_SHAPE_ID) {
            if (src_shape->type == SHAPE_IVAR) {
                while (dest_shape->edge_name != src_shape->edge_name) {
                    if (UNLIKELY(dest_shape->parent_id == INVALID_SHAPE_ID)) {
                        rb_bug("Lost field %s", rb_id2name(src_shape->edge_name));
                    }
                    dest_shape = RSHAPE(dest_shape->parent_id);
                }

                RB_OBJ_WRITE(dest, &dest_buf[dest_shape->next_field_index - 1], src_buf[src_shape->next_field_index - 1]);
            }
            src_shape = RSHAPE(src_shape->parent_id);
        }
    }
}

void
rb_shape_copy_complex_ivars(VALUE dest, VALUE obj, shape_id_t src_shape_id, st_table *fields_table)
{
    // obj is TOO_COMPLEX so we can copy its iv_hash
    st_table *table = st_copy(fields_table);
    if (rb_shape_has_object_id(src_shape_id)) {
        st_data_t id = (st_data_t)id_object_id;
        st_delete(table, &id, NULL);
    }
    rb_obj_init_too_complex(dest, table);
}

size_t
rb_shape_edges_count(shape_id_t shape_id)
{
    rb_shape_t *shape = RSHAPE(shape_id);
    if (shape->edges) {
        if (SINGLE_CHILD_P(shape->edges)) {
            return 1;
        }
        else {
            return rb_managed_id_table_size(shape->edges);
        }
    }
    return 0;
}

size_t
rb_shape_memsize(shape_id_t shape_id)
{
    rb_shape_t *shape = RSHAPE(shape_id);

    size_t memsize = sizeof(rb_shape_t);
    if (shape->edges && !SINGLE_CHILD_P(shape->edges)) {
        memsize += rb_managed_id_table_size(shape->edges);
    }
    return memsize;
}

bool
rb_shape_foreach_field(shape_id_t initial_shape_id, rb_shape_foreach_transition_callback func, void *data)
{
    RUBY_ASSERT(!rb_shape_too_complex_p(initial_shape_id));

    rb_shape_t *shape = RSHAPE(initial_shape_id);
    if (shape->type == SHAPE_ROOT) {
        return true;
    }

    shape_id_t parent_id = shape_id(RSHAPE(shape->parent_id), initial_shape_id);
    if (rb_shape_foreach_field(parent_id, func, data)) {
        switch (func(shape_id(shape, initial_shape_id), data)) {
          case ST_STOP:
            return false;
          case ST_CHECK:
          case ST_CONTINUE:
            break;
          default:
            rb_bug("unreachable");
        }
    }
    return true;
}

#if RUBY_DEBUG
bool
rb_shape_verify_consistency(VALUE obj, shape_id_t shape_id)
{
    if (shape_id == INVALID_SHAPE_ID) {
        rb_bug("Can't set INVALID_SHAPE_ID on an object");
    }

    rb_shape_t *shape = RSHAPE(shape_id);

    bool has_object_id = false;
    while (shape->parent_id != INVALID_SHAPE_ID) {
        if (shape->type == SHAPE_OBJ_ID) {
            has_object_id = true;
            break;
        }
        shape = RSHAPE(shape->parent_id);
    }

    if (rb_shape_has_object_id(shape_id)) {
        if (!has_object_id) {
            rb_p(obj);
            rb_bug("shape_id claim having obj_id but doesn't shape_id=%u, obj=%s", shape_id, rb_obj_info(obj));
        }
    }
    else {
        if (has_object_id) {
            rb_p(obj);
            rb_bug("shape_id claim not having obj_id but it does shape_id=%u, obj=%s", shape_id, rb_obj_info(obj));
        }
    }

    // Make sure SHAPE_ID_HAS_IVAR_MASK is valid.
    if (rb_shape_too_complex_p(shape_id)) {
        RUBY_ASSERT(shape_id & SHAPE_ID_HAS_IVAR_MASK);
    }
    else {
        attr_index_t ivar_count = RSHAPE_LEN(shape_id);
        if (has_object_id) {
            ivar_count--;
        }
        if (ivar_count) {
            RUBY_ASSERT(shape_id & SHAPE_ID_HAS_IVAR_MASK);
        }
        else {
            RUBY_ASSERT(!(shape_id & SHAPE_ID_HAS_IVAR_MASK));
        }
    }

    uint8_t flags_heap_index = rb_shape_heap_index(shape_id);
    if (RB_TYPE_P(obj, T_OBJECT)) {
        size_t shape_id_slot_size = rb_shape_tree.capacities[flags_heap_index - 1] * sizeof(VALUE) + sizeof(struct RBasic);
        size_t actual_slot_size = rb_gc_obj_slot_size(obj);

        if (shape_id_slot_size != actual_slot_size) {
            rb_bug("shape_id heap_index flags mismatch: shape_id_slot_size=%zu, gc_slot_size=%zu\n", shape_id_slot_size, actual_slot_size);
        }
    }
    else {
        if (flags_heap_index) {
            rb_bug("shape_id indicate heap_index > 0 but object is not T_OBJECT: %s", rb_obj_info(obj));
        }
    }

    return true;
}
#endif

#if SHAPE_DEBUG

/*
 * Exposing Shape to Ruby via RubyVM::Shape.of(object)
 */

static VALUE
shape_too_complex(VALUE self)
{
    shape_id_t shape_id = NUM2INT(rb_struct_getmember(self, rb_intern("id")));
    return RBOOL(rb_shape_too_complex_p(shape_id));
}

static VALUE
shape_frozen(VALUE self)
{
    shape_id_t shape_id = NUM2INT(rb_struct_getmember(self, rb_intern("id")));
    return RBOOL(shape_id & SHAPE_ID_FL_FROZEN);
}

static VALUE
shape_has_object_id_p(VALUE self)
{
    shape_id_t shape_id = NUM2INT(rb_struct_getmember(self, rb_intern("id")));
    return RBOOL(rb_shape_has_object_id(shape_id));
}

static VALUE
parse_key(ID key)
{
    if (is_instance_id(key)) {
        return ID2SYM(key);
    }
    return LONG2NUM(key);
}

static VALUE rb_shape_edge_name(rb_shape_t *shape);

static VALUE
shape_id_t_to_rb_cShape(shape_id_t shape_id)
{
    VALUE rb_cShape = rb_const_get(rb_cRubyVM, rb_intern("Shape"));
    rb_shape_t *shape = RSHAPE(shape_id);

    VALUE obj = rb_struct_new(rb_cShape,
            INT2NUM(shape_id),
            INT2NUM(shape_id & SHAPE_ID_OFFSET_MASK),
            INT2NUM(shape->parent_id),
            rb_shape_edge_name(shape),
            INT2NUM(shape->next_field_index),
            INT2NUM(rb_shape_heap_index(shape_id)),
            INT2NUM(shape->type),
            INT2NUM(RSHAPE_CAPACITY(shape_id)));
    rb_obj_freeze(obj);
    return obj;
}

static enum rb_id_table_iterator_result
rb_edges_to_hash(ID key, VALUE value, void *ref)
{
    rb_hash_aset(*(VALUE *)ref, parse_key(key), shape_id_t_to_rb_cShape(raw_shape_id((rb_shape_t *)value)));
    return ID_TABLE_CONTINUE;
}

static VALUE
rb_shape_edges(VALUE self)
{
    rb_shape_t *shape = RSHAPE(NUM2INT(rb_struct_getmember(self, rb_intern("id"))));

    VALUE hash = rb_hash_new();

    if (shape->edges) {
        if (SINGLE_CHILD_P(shape->edges)) {
            rb_shape_t *child = SINGLE_CHILD(shape->edges);
            rb_edges_to_hash(child->edge_name, (VALUE)child, &hash);
        }
        else {
            VALUE edges = shape->edges;
            rb_managed_id_table_foreach(edges, rb_edges_to_hash, &hash);
            RB_GC_GUARD(edges);
        }
    }

    return hash;
}

static VALUE
rb_shape_edge_name(rb_shape_t *shape)
{
    if (shape->edge_name) {
        if (is_instance_id(shape->edge_name)) {
            return ID2SYM(shape->edge_name);
        }
        return INT2NUM(shape->capacity);
    }
    return Qnil;
}

static VALUE
rb_shape_export_depth(VALUE self)
{
    shape_id_t shape_id = NUM2INT(rb_struct_getmember(self, rb_intern("id")));
    return SIZET2NUM(rb_shape_depth(shape_id));
}

static VALUE
rb_shape_parent(VALUE self)
{
    rb_shape_t *shape;
    shape = RSHAPE(NUM2INT(rb_struct_getmember(self, rb_intern("id"))));
    if (shape->parent_id != INVALID_SHAPE_ID) {
        return shape_id_t_to_rb_cShape(shape->parent_id);
    }
    else {
        return Qnil;
    }
}

static VALUE
rb_shape_debug_shape(VALUE self, VALUE obj)
{
    return shape_id_t_to_rb_cShape(rb_obj_shape_id(obj));
}

static VALUE
rb_shape_root_shape(VALUE self)
{
    return shape_id_t_to_rb_cShape(ROOT_SHAPE_ID);
}

static VALUE
rb_shape_shapes_available(VALUE self)
{
    return INT2NUM(MAX_SHAPE_ID - (rb_shape_tree.next_shape_id - 1));
}

static VALUE
rb_shape_exhaust(int argc, VALUE *argv, VALUE self)
{
    rb_check_arity(argc, 0, 1);
    int offset = argc == 1 ? NUM2INT(argv[0]) : 0;
    rb_shape_tree.next_shape_id = MAX_SHAPE_ID - offset + 1;
    return Qnil;
}

static VALUE shape_to_h(rb_shape_t *shape);

static enum rb_id_table_iterator_result collect_keys_and_values(ID key, VALUE value, void *ref)
{
    rb_hash_aset(*(VALUE *)ref, parse_key(key), shape_to_h((rb_shape_t *)value));
    return ID_TABLE_CONTINUE;
}

static VALUE edges(VALUE edges)
{
    VALUE hash = rb_hash_new();
    if (edges) {
        if (SINGLE_CHILD_P(edges)) {
            rb_shape_t *child = SINGLE_CHILD(edges);
            collect_keys_and_values(child->edge_name, (VALUE)child, &hash);
        }
        else {
            rb_managed_id_table_foreach(edges, collect_keys_and_values, &hash);
        }
    }
    return hash;
}

static VALUE
shape_to_h(rb_shape_t *shape)
{
    VALUE rb_shape = rb_hash_new();

    rb_hash_aset(rb_shape, ID2SYM(rb_intern("id")), INT2NUM(raw_shape_id(shape)));
    rb_hash_aset(rb_shape, ID2SYM(rb_intern("edges")), edges(shape->edges));

    if (shape == rb_shape_get_root_shape()) {
        rb_hash_aset(rb_shape, ID2SYM(rb_intern("parent_id")), INT2NUM(ROOT_SHAPE_ID));
    }
    else {
        rb_hash_aset(rb_shape, ID2SYM(rb_intern("parent_id")), INT2NUM(shape->parent_id));
    }

    rb_hash_aset(rb_shape, ID2SYM(rb_intern("edge_name")), rb_id2str(shape->edge_name));
    return rb_shape;
}

static VALUE
shape_transition_tree(VALUE self)
{
    return shape_to_h(rb_shape_get_root_shape());
}

static VALUE
rb_shape_find_by_id(VALUE mod, VALUE id)
{
    shape_id_t shape_id = NUM2UINT(id);
    if (shape_id >= rb_shape_tree.next_shape_id) {
        rb_raise(rb_eArgError, "Shape ID %d is out of bounds\n", shape_id);
    }
    return shape_id_t_to_rb_cShape(shape_id);
}
#endif

#ifdef HAVE_MMAP
#include <sys/mman.h>
#endif

void
Init_default_shapes(void)
{
    size_t *heap_sizes = rb_gc_heap_sizes();
    size_t heaps_count = 0;
    while (heap_sizes[heaps_count]) {
        heaps_count++;
    }
    attr_index_t *capacities = ALLOC_N(attr_index_t, heaps_count + 1);
    capacities[heaps_count] = 0;
    size_t index;
    for (index = 0; index < heaps_count; index++) {
        capacities[index] = (heap_sizes[index] - sizeof(struct RBasic)) / sizeof(VALUE);
    }
    rb_shape_tree.capacities = capacities;

#ifdef HAVE_MMAP
    size_t shape_list_mmap_size = rb_size_mul_or_raise(SHAPE_BUFFER_SIZE, sizeof(rb_shape_t), rb_eRuntimeError);
    rb_shape_tree.shape_list = (rb_shape_t *)mmap(NULL, shape_list_mmap_size,
                         PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
    if (rb_shape_tree.shape_list == MAP_FAILED) {
        rb_shape_tree.shape_list = 0;
    }
    else {
        ruby_annotate_mmap(rb_shape_tree.shape_list, shape_list_mmap_size, "Ruby:Init_default_shapes:shape_list");
    }
#else
    rb_shape_tree.shape_list = xcalloc(SHAPE_BUFFER_SIZE, sizeof(rb_shape_t));
#endif

    if (!rb_shape_tree.shape_list) {
        rb_memerror();
    }

    id_object_id = rb_make_internal_id();

#ifdef HAVE_MMAP
    size_t shape_cache_mmap_size = rb_size_mul_or_raise(REDBLACK_CACHE_SIZE, sizeof(redblack_node_t), rb_eRuntimeError);
    rb_shape_tree.shape_cache = (redblack_node_t *)mmap(NULL, shape_cache_mmap_size,
                         PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
    rb_shape_tree.cache_size = 0;

    // If mmap fails, then give up on the redblack tree cache.
    // We set the cache size such that the redblack node allocators think
    // the cache is full.
    if (rb_shape_tree.shape_cache == MAP_FAILED) {
        rb_shape_tree.shape_cache = 0;
        rb_shape_tree.cache_size = REDBLACK_CACHE_SIZE;
    }
    else {
        ruby_annotate_mmap(rb_shape_tree.shape_cache, shape_cache_mmap_size, "Ruby:Init_default_shapes:shape_cache");
    }
#endif

    rb_gc_register_address(&shape_tree_obj);
    shape_tree_obj = TypedData_Wrap_Struct(0, &shape_tree_type, (void *)1);

    // Root shape
    rb_shape_t *root = rb_shape_alloc_with_parent_id(0, INVALID_SHAPE_ID);
    root->capacity = 0;
    root->type = SHAPE_ROOT;
    rb_shape_tree.root_shape = root;
    RUBY_ASSERT(raw_shape_id(rb_shape_tree.root_shape) == ROOT_SHAPE_ID);
    RUBY_ASSERT(!(raw_shape_id(rb_shape_tree.root_shape) & SHAPE_ID_HAS_IVAR_MASK));

    bool dontcare;
    rb_shape_t *root_with_obj_id = get_next_shape_internal(root, id_object_id, SHAPE_OBJ_ID, &dontcare, true);
    RUBY_ASSERT(raw_shape_id(root_with_obj_id) == ROOT_SHAPE_WITH_OBJ_ID);
    RUBY_ASSERT(root_with_obj_id->type == SHAPE_OBJ_ID);
    RUBY_ASSERT(root_with_obj_id->edge_name == id_object_id);
    RUBY_ASSERT(root_with_obj_id->next_field_index == 1);
    RUBY_ASSERT(!(raw_shape_id(root_with_obj_id) & SHAPE_ID_HAS_IVAR_MASK));
    (void)root_with_obj_id;
}

void
rb_shape_free_all(void)
{
    xfree((void *)rb_shape_tree.capacities);
}

void
Init_shape(void)
{
#if SHAPE_DEBUG
    /* Document-class: RubyVM::Shape
     * :nodoc: */
    VALUE rb_cShape = rb_struct_define_under(rb_cRubyVM, "Shape",
            "id",
            "raw_id",
            "parent_id",
            "edge_name",
            "next_field_index",
            "heap_index",
            "type",
            "capacity",
            NULL);

    rb_define_method(rb_cShape, "parent", rb_shape_parent, 0);
    rb_define_method(rb_cShape, "edges", rb_shape_edges, 0);
    rb_define_method(rb_cShape, "depth", rb_shape_export_depth, 0);
    rb_define_method(rb_cShape, "too_complex?", shape_too_complex, 0);
    rb_define_method(rb_cShape, "shape_frozen?", shape_frozen, 0);
    rb_define_method(rb_cShape, "has_object_id?", shape_has_object_id_p, 0);

    rb_define_const(rb_cShape, "SHAPE_ROOT", INT2NUM(SHAPE_ROOT));
    rb_define_const(rb_cShape, "SHAPE_IVAR", INT2NUM(SHAPE_IVAR));
    rb_define_const(rb_cShape, "SHAPE_ID_NUM_BITS", INT2NUM(SHAPE_ID_NUM_BITS));
    rb_define_const(rb_cShape, "SHAPE_FLAG_SHIFT", INT2NUM(SHAPE_FLAG_SHIFT));
    rb_define_const(rb_cShape, "SPECIAL_CONST_SHAPE_ID", INT2NUM(SPECIAL_CONST_SHAPE_ID));
    rb_define_const(rb_cShape, "SHAPE_MAX_VARIATIONS", INT2NUM(SHAPE_MAX_VARIATIONS));
    rb_define_const(rb_cShape, "SIZEOF_RB_SHAPE_T", INT2NUM(sizeof(rb_shape_t)));
    rb_define_const(rb_cShape, "SIZEOF_REDBLACK_NODE_T", INT2NUM(sizeof(redblack_node_t)));
    rb_define_const(rb_cShape, "SHAPE_BUFFER_SIZE", INT2NUM(sizeof(rb_shape_t) * SHAPE_BUFFER_SIZE));
    rb_define_const(rb_cShape, "REDBLACK_CACHE_SIZE", INT2NUM(sizeof(redblack_node_t) * REDBLACK_CACHE_SIZE));

    rb_define_singleton_method(rb_cShape, "transition_tree", shape_transition_tree, 0);
    rb_define_singleton_method(rb_cShape, "find_by_id", rb_shape_find_by_id, 1);
    rb_define_singleton_method(rb_cShape, "of", rb_shape_debug_shape, 1);
    rb_define_singleton_method(rb_cShape, "root_shape", rb_shape_root_shape, 0);
    rb_define_singleton_method(rb_cShape, "shapes_available", rb_shape_shapes_available, 0);
    rb_define_singleton_method(rb_cShape, "exhaust_shapes", rb_shape_exhaust, -1);
#endif
}