Age | Commit message (Collapse) | Author |
|
Previously rb_ractor_interrupt_exec would use an intermediate function
to create a new thread with the actual target function, replacing the
data being passed in with a piece of malloc memory holding the "next"
function and the original data.
Because of this, passing rb_interrupt_exec_flag_value_data to
rb_ractor_interrupt_exec didn't have the intended effect of allowing
data to be passed in and marked.
This commit adds a rb_interrupt_exec_flag_new_thread flag, which
both simplifies the implementation and allows the original data to be
marked.
Notes:
Merged: https://github.com/ruby/ruby/pull/13531
|
|
`fiber_interrupt` hook. (#12839)
Notes:
Merged-By: ioquatix <[email protected]>
|
|
- `rb_thread_fd_close` is deprecated and now a no-op.
- IO operations (including close) no longer take a vm-wide lock.
Notes:
Merged-By: ioquatix <[email protected]>
|
|
Notes:
Merged-By: ioquatix <[email protected]>
|
|
to avoid TLS issue with N:M threads.
Notes:
Merged: https://github.com/ruby/ruby/pull/11142
|
|
introduce
- rb_threadptr_interrupt_exec
- rb_ractor_interrupt_exec
to intercept the thread/ractor execution.
Notes:
Merged: https://github.com/ruby/ruby/pull/11142
|
|
If one thread is reading and another closes that socket, the close
blocks waiting for the read to abort cleanly. This ensures that Ruby is
totally done with the file descriptor _BEFORE_ we tell the OS to close
and potentially re-use it.
When the read is correctly terminated, the close should be unblocked.
That currently works if closing is happening on a thread, but if it's
happening on a fiber with a fiber scheduler, it does NOT work.
This patch ensures that if the close happened in a fiber scheduled
thread, that the scheduler is notified that the fiber is unblocked.
[Bug #20723]
Notes:
Merged: https://github.com/ruby/ruby/pull/11614
|
|
[Feature #20590]
For better of for worse, fork(2) remain the primary provider of
parallelism in Ruby programs. Even though it's frowned uppon in
many circles, and a lot of literature will simply state that only
async-signal safe APIs are safe to use after `fork()`, in practice
most APIs work well as long as you are careful about not forking
while another thread is holding a pthread mutex.
One of the APIs that is known cause fork safety issues is `getaddrinfo`.
If you fork while another thread is inside `getaddrinfo`, a mutex
may be left locked in the child, with no way to unlock it.
I think we could reduce the impact of these problem by preventing
in for the most notorious and common cases, by locking around
`fork(2)` and known unsafe APIs with a read-write lock.
Notes:
Merged: https://github.com/ruby/ruby/pull/10864
|
|
Before this patch, the MN scheduler waits for the IO with the
following steps:
1. `poll(fd, timeout=0)` to check fd is ready or not.
2. if fd is not ready, waits with MN thread scheduler
3. call `func` to issue the blocking I/O call
The advantage of advanced `poll()` is we can wait for the
IO ready for any fds. However `poll()` becomes overhead
for already ready fds.
This patch changes the steps like:
1. call `func` to issue the blocking I/O call
2. if the `func` returns `EWOULDBLOCK` the fd is `O_NONBLOCK`
and we need to wait for fd is ready so that waits with MN
thread scheduler.
In this case, we can wait only for `O_NONBLOCK` fds. Otherwise
it waits with blocking operations such as `read()` system call.
However we don't need to call `poll()` to check fd is ready
in advance.
With this patch we can observe performance improvement
on microbenchmark which repeats blocking I/O (not
`O_NONBLOCK` fd) with and without MN thread scheduler.
```ruby
require 'benchmark'
f = open('/dev/null', 'w')
f.sync = true
TN = 1
N = 1_000_000 / TN
Benchmark.bm{|x|
x.report{
TN.times.map{
Thread.new{
N.times{f.print '.'}
}
}.each(&:join)
}
}
__END__
TN = 1
user system total real
ruby32 0.393966 0.101122 0.495088 ( 0.495235)
ruby33 0.493963 0.089521 0.583484 ( 0.584091)
ruby33+MN 0.639333 0.200843 0.840176 ( 0.840291) <- Slow
this+MN 0.512231 0.099091 0.611322 ( 0.611074) <- Good
```
|
|
|
|
This patch introduce M:N thread scheduler for Ractor system.
In general, M:N thread scheduler employs N native threads (OS threads)
to manage M user-level threads (Ruby threads in this case).
On the Ruby interpreter, 1 native thread is provided for 1 Ractor
and all Ruby threads are managed by the native thread.
From Ruby 1.9, the interpreter uses 1:1 thread scheduler which means
1 Ruby thread has 1 native thread. M:N scheduler change this strategy.
Because of compatibility issue (and stableness issue of the implementation)
main Ractor doesn't use M:N scheduler on default. On the other words,
threads on the main Ractor will be managed with 1:1 thread scheduler.
There are additional settings by environment variables:
`RUBY_MN_THREADS=1` enables M:N thread scheduler on the main ractor.
Note that non-main ractors use the M:N scheduler without this
configuration. With this configuration, single ractor applications
run threads on M:1 thread scheduler (green threads, user-level threads).
`RUBY_MAX_CPU=n` specifies maximum number of native threads for
M:N scheduler (default: 8).
This patch will be reverted soon if non-easy issues are found.
[Bug #19842]
|
|
Because a thread calling IO#close now blocks in a native condvar wait,
it's possible for there to be _no_ threads left to actually handle
incoming signals/ubf calls/etc.
This manifested as failing tests on Solaris 10 (SPARC), because:
* One thread called IO#close, which sent a SIGVTALRM to the other
thread to interrupt it, and then waited on the condvar to be notified
that the reading thread was done.
* One thread was calling IO#read, but it hadn't yet reached the actual
call to select(2) when the SIGVTALRM arrived, so it never unblocked
itself.
This results in a deadlock.
The fix is to use a real Ruby mutex for the close lock; that way, the
closing thread goes into sigwait-sleep and can keep trying to interrupt
the select(2) thread.
See the discussion in: https://github.com/ruby/ruby/pull/7865/
Notes:
Merged-By: ioquatix <[email protected]>
|
|
When one thread is closing a file descriptor whilst another thread is
concurrently reading it, we need to wait for the reading thread to be
done with it to prevent a potential EBADF (or, worse, file descriptor
reuse).
At the moment, that is done by keeping a list of threads still using the
file descriptor in io_close_fptr. It then continually calls
rb_thread_schedule() in fptr_finalize_flush until said list is empty.
That busy-looping seems to behave rather poorly on some OS's,
particulary FreeBSD. It can cause the TestIO#test_race_gets_and_close
test to fail (even with its very long 200 second timeout) because the
closing thread starves out the using thread.
To fix that, I introduce the concept of struct rb_io_close_wait_list; a
list of threads still using a file descriptor that we want to close. We
call `rb_notify_fd_close` to let the thread scheduler know we're closing
a FD, which fills the list with threads. Then, we call
rb_notify_fd_close_wait which will block the thread until all of the
still-using threads are done.
This is implemented with a condition variable sleep, so no busy-looping
is required.
Notes:
Merged: https://github.com/ruby/ruby/pull/7865
|
|
Notes:
Merged-By: ioquatix <[email protected]>
|
|
Notes:
Merged: https://github.com/ruby/ruby/pull/7465
|
|
Notes:
Merged: https://github.com/ruby/ruby/pull/7459
|
|
[Bug #19415]
If multiple threads attemps to load the same file concurrently
it's not a circular dependency issue.
So we check that the existing ThreadShield is owner by the current
fiber before warning about circular dependencies.
Notes:
Merged: https://github.com/ruby/ruby/pull/7257
|
|
This reverts commit fa49651e05a06512e18ccb2f54a7198c9ff579de.
Notes:
Merged: https://github.com/ruby/ruby/pull/7256
|
|
[Bug #19415]
If multiple threads attemps to load the same file concurrently
it's not a circular dependency issue.
So we check that the existing ThreadShield is owner by the current
fiber before warning about circular dependencies.
Notes:
Merged: https://github.com/ruby/ruby/pull/7252
|
|
|
|
This was a public method, so we should probably keep it.
Notes:
Merged: https://github.com/ruby/ruby/pull/6027
|
|
These contents are purely implementation details, not worth appearing in
CAPI documents. [ci skip]
Notes:
Merged: https://github.com/ruby/ruby/pull/4815
|
|
Notes:
Merged: https://github.com/ruby/ruby/pull/3742
|
|
Notes:
Merged: https://github.com/ruby/ruby/pull/3434
|
|
Notes:
Merged: https://github.com/ruby/ruby/pull/3434
|
|
Notes:
Merged: https://github.com/ruby/ruby/pull/3323
|
|
According to MSVC manual (*1), cl.exe can skip including a header file
when that:
- contains #pragma once, or
- starts with #ifndef, or
- starts with #if ! defined.
GCC has a similar trick (*2), but it acts more stricter (e. g. there
must be _no tokens_ outside of #ifndef...#endif).
Sun C lacked #pragma once for a looong time. Oracle Developer Studio
12.5 finally implemented it, but we cannot assume such recent version.
This changeset modifies header files so that each of them include
strictly one #ifndef...#endif. I believe this is the most portable way
to trigger compiler optimizations. [Bug #16770]
*1: https://docs.microsoft.com/en-us/cpp/preprocessor/once
*2: https://gcc.gnu.org/onlinedocs/cppinternals/Guard-Macros.html
Notes:
Merged: https://github.com/ruby/ruby/pull/3023
|
|
Split ruby.h
Notes:
Merged-By: shyouhei <[email protected]>
|
|
Rather trivial, added missed MJIT_FUNC_EXPORTED function declaration.
Notes:
Merged: https://github.com/ruby/ruby/pull/2711
|
|
One day, I could not resist the way it was written. I finally started
to make the code clean. This changeset is the beginning of a series of
housekeeping commits. It is a simple refactoring; split internal.h into
files, so that we can divide and concur in the upcoming commits. No
lines of codes are either added or removed, except the obvious file
headers/footers. The generated binary is identical to the one before.
Notes:
Merged: https://github.com/ruby/ruby/pull/2711
|