diff options
Diffstat (limited to 'lib/ruby_vm/rjit')
-rw-r--r-- | lib/ruby_vm/rjit/.document | 1 | ||||
-rw-r--r-- | lib/ruby_vm/rjit/assembler.rb | 1160 | ||||
-rw-r--r-- | lib/ruby_vm/rjit/block.rb | 11 | ||||
-rw-r--r-- | lib/ruby_vm/rjit/branch_stub.rb | 24 | ||||
-rw-r--r-- | lib/ruby_vm/rjit/c_pointer.rb | 394 | ||||
-rw-r--r-- | lib/ruby_vm/rjit/c_type.rb | 99 | ||||
-rw-r--r-- | lib/ruby_vm/rjit/code_block.rb | 91 | ||||
-rw-r--r-- | lib/ruby_vm/rjit/compiler.rb | 518 | ||||
-rw-r--r-- | lib/ruby_vm/rjit/context.rb | 377 | ||||
-rw-r--r-- | lib/ruby_vm/rjit/entry_stub.rb | 7 | ||||
-rw-r--r-- | lib/ruby_vm/rjit/exit_compiler.rb | 164 | ||||
-rw-r--r-- | lib/ruby_vm/rjit/hooks.rb | 36 | ||||
-rw-r--r-- | lib/ruby_vm/rjit/insn_compiler.rb | 6046 | ||||
-rw-r--r-- | lib/ruby_vm/rjit/invariants.rb | 155 | ||||
-rw-r--r-- | lib/ruby_vm/rjit/jit_state.rb | 65 | ||||
-rw-r--r-- | lib/ruby_vm/rjit/stats.rb | 191 | ||||
-rw-r--r-- | lib/ruby_vm/rjit/type.rb | 221 |
17 files changed, 0 insertions, 9560 deletions
diff --git a/lib/ruby_vm/rjit/.document b/lib/ruby_vm/rjit/.document deleted file mode 100644 index 0a603afe3d..0000000000 --- a/lib/ruby_vm/rjit/.document +++ /dev/null @@ -1 +0,0 @@ -stats.rb diff --git a/lib/ruby_vm/rjit/assembler.rb b/lib/ruby_vm/rjit/assembler.rb deleted file mode 100644 index 42995e6c8c..0000000000 --- a/lib/ruby_vm/rjit/assembler.rb +++ /dev/null @@ -1,1160 +0,0 @@ -# frozen_string_literal: true -module RubyVM::RJIT - # 8-bit memory access - class BytePtr < Data.define(:reg, :disp); end - - # 32-bit memory access - class DwordPtr < Data.define(:reg, :disp); end - - # 64-bit memory access - QwordPtr = Array - - # SystemV x64 calling convention - C_ARGS = [:rdi, :rsi, :rdx, :rcx, :r8, :r9] - C_RET = :rax - - # https://cdrdv2.intel.com/v1/dl/getContent/671110 - # Mostly an x86_64 assembler, but this also has some stuff that is useful for any architecture. - class Assembler - # rel8 jumps are made with labels - class Label < Data.define(:id, :name); end - - # rel32 is inserted as [Rel32, Rel32Pad..] and converted on #resolve_rel32 - class Rel32 < Data.define(:addr); end - Rel32Pad = Object.new - - # A set of ModR/M values encoded on #insn - class ModRM < Data.define(:mod, :reg, :rm); end - Mod00 = 0b00 # Mod 00: [reg] - Mod01 = 0b01 # Mod 01: [reg]+disp8 - Mod10 = 0b10 # Mod 10: [reg]+disp32 - Mod11 = 0b11 # Mod 11: reg - - # REX = 0100WR0B - REX_B = 0b01000001 - REX_R = 0b01000100 - REX_W = 0b01001000 - - # Operand matchers - R32 = -> (op) { op.is_a?(Symbol) && r32?(op) } - R64 = -> (op) { op.is_a?(Symbol) && r64?(op) } - IMM8 = -> (op) { op.is_a?(Integer) && imm8?(op) } - IMM32 = -> (op) { op.is_a?(Integer) && imm32?(op) } - IMM64 = -> (op) { op.is_a?(Integer) && imm64?(op) } - - def initialize - @bytes = [] - @labels = {} - @label_id = 0 - @comments = Hash.new { |h, k| h[k] = [] } - @blocks = Hash.new { |h, k| h[k] = [] } - @stub_starts = Hash.new { |h, k| h[k] = [] } - @stub_ends = Hash.new { |h, k| h[k] = [] } - @pos_markers = Hash.new { |h, k| h[k] = [] } - end - - def assemble(addr) - set_code_addrs(addr) - resolve_rel32(addr) - resolve_labels - - write_bytes(addr) - - @pos_markers.each do |write_pos, markers| - markers.each { |marker| marker.call(addr + write_pos) } - end - @bytes.size - ensure - @bytes.clear - end - - def size - @bytes.size - end - - # - # Instructions - # - - def add(dst, src) - case [dst, src] - # ADD r/m64, imm8 (Mod 00: [reg]) - in [QwordPtr[R64 => dst_reg], IMM8 => src_imm] - # REX.W + 83 /0 ib - # MI: Operand 1: ModRM:r/m (r, w), Operand 2: imm8/16/32 - insn( - prefix: REX_W, - opcode: 0x83, - mod_rm: ModRM[mod: Mod00, reg: 0, rm: dst_reg], - imm: imm8(src_imm), - ) - # ADD r/m64, imm8 (Mod 11: reg) - in [R64 => dst_reg, IMM8 => src_imm] - # REX.W + 83 /0 ib - # MI: Operand 1: ModRM:r/m (r, w), Operand 2: imm8/16/32 - insn( - prefix: REX_W, - opcode: 0x83, - mod_rm: ModRM[mod: Mod11, reg: 0, rm: dst_reg], - imm: imm8(src_imm), - ) - # ADD r/m64 imm32 (Mod 11: reg) - in [R64 => dst_reg, IMM32 => src_imm] - # REX.W + 81 /0 id - # MI: Operand 1: ModRM:r/m (r, w), Operand 2: imm8/16/32 - insn( - prefix: REX_W, - opcode: 0x81, - mod_rm: ModRM[mod: Mod11, reg: 0, rm: dst_reg], - imm: imm32(src_imm), - ) - # ADD r/m64, r64 (Mod 11: reg) - in [R64 => dst_reg, R64 => src_reg] - # REX.W + 01 /r - # MR: Operand 1: ModRM:r/m (r, w), Operand 2: ModRM:reg (r) - insn( - prefix: REX_W, - opcode: 0x01, - mod_rm: ModRM[mod: Mod11, reg: src_reg, rm: dst_reg], - ) - end - end - - def and(dst, src) - case [dst, src] - # AND r/m64, imm8 (Mod 11: reg) - in [R64 => dst_reg, IMM8 => src_imm] - # REX.W + 83 /4 ib - # MI: Operand 1: ModRM:r/m (r, w), Operand 2: imm8/16/32 - insn( - prefix: REX_W, - opcode: 0x83, - mod_rm: ModRM[mod: Mod11, reg: 4, rm: dst_reg], - imm: imm8(src_imm), - ) - # AND r/m64, imm32 (Mod 11: reg) - in [R64 => dst_reg, IMM32 => src_imm] - # REX.W + 81 /4 id - # MI: Operand 1: ModRM:r/m (r, w), Operand 2: imm8/16/32 - insn( - prefix: REX_W, - opcode: 0x81, - mod_rm: ModRM[mod: Mod11, reg: 4, rm: dst_reg], - imm: imm32(src_imm), - ) - # AND r64, r/m64 (Mod 01: [reg]+disp8) - in [R64 => dst_reg, QwordPtr[R64 => src_reg, IMM8 => src_disp]] - # REX.W + 23 /r - # RM: Operand 1: ModRM:reg (r, w), Operand 2: ModRM:r/m (r) - insn( - prefix: REX_W, - opcode: 0x23, - mod_rm: ModRM[mod: Mod01, reg: dst_reg, rm: src_reg], - disp: imm8(src_disp), - ) - # AND r64, r/m64 (Mod 10: [reg]+disp32) - in [R64 => dst_reg, QwordPtr[R64 => src_reg, IMM32 => src_disp]] - # REX.W + 23 /r - # RM: Operand 1: ModRM:reg (r, w), Operand 2: ModRM:r/m (r) - insn( - prefix: REX_W, - opcode: 0x23, - mod_rm: ModRM[mod: Mod10, reg: dst_reg, rm: src_reg], - disp: imm32(src_disp), - ) - end - end - - def call(dst) - case dst - # CALL rel32 - in Integer => dst_addr - # E8 cd - # D: Operand 1: Offset - insn(opcode: 0xe8, imm: rel32(dst_addr)) - # CALL r/m64 (Mod 11: reg) - in R64 => dst_reg - # FF /2 - # M: Operand 1: ModRM:r/m (r) - insn( - opcode: 0xff, - mod_rm: ModRM[mod: Mod11, reg: 2, rm: dst_reg], - ) - end - end - - def cmove(dst, src) - case [dst, src] - # CMOVE r64, r/m64 (Mod 11: reg) - in [R64 => dst_reg, R64 => src_reg] - # REX.W + 0F 44 /r - # RM: Operand 1: ModRM:reg (r, w), Operand 2: ModRM:r/m (r) - insn( - prefix: REX_W, - opcode: [0x0f, 0x44], - mod_rm: ModRM[mod: Mod11, reg: dst_reg, rm: src_reg], - ) - end - end - - def cmovg(dst, src) - case [dst, src] - # CMOVG r64, r/m64 (Mod 11: reg) - in [R64 => dst_reg, R64 => src_reg] - # REX.W + 0F 4F /r - # RM: Operand 1: ModRM:reg (r, w), Operand 2: ModRM:r/m (r) - insn( - prefix: REX_W, - opcode: [0x0f, 0x4f], - mod_rm: ModRM[mod: Mod11, reg: dst_reg, rm: src_reg], - ) - end - end - - def cmovge(dst, src) - case [dst, src] - # CMOVGE r64, r/m64 (Mod 11: reg) - in [R64 => dst_reg, R64 => src_reg] - # REX.W + 0F 4D /r - # RM: Operand 1: ModRM:reg (r, w), Operand 2: ModRM:r/m (r) - insn( - prefix: REX_W, - opcode: [0x0f, 0x4d], - mod_rm: ModRM[mod: Mod11, reg: dst_reg, rm: src_reg], - ) - end - end - - def cmovl(dst, src) - case [dst, src] - # CMOVL r64, r/m64 (Mod 11: reg) - in [R64 => dst_reg, R64 => src_reg] - # REX.W + 0F 4C /r - # RM: Operand 1: ModRM:reg (r, w), Operand 2: ModRM:r/m (r) - insn( - prefix: REX_W, - opcode: [0x0f, 0x4c], - mod_rm: ModRM[mod: Mod11, reg: dst_reg, rm: src_reg], - ) - end - end - - def cmovle(dst, src) - case [dst, src] - # CMOVLE r64, r/m64 (Mod 11: reg) - in [R64 => dst_reg, R64 => src_reg] - # REX.W + 0F 4E /r - # RM: Operand 1: ModRM:reg (r, w), Operand 2: ModRM:r/m (r) - insn( - prefix: REX_W, - opcode: [0x0f, 0x4e], - mod_rm: ModRM[mod: Mod11, reg: dst_reg, rm: src_reg], - ) - end - end - - def cmovne(dst, src) - case [dst, src] - # CMOVNE r64, r/m64 (Mod 11: reg) - in [R64 => dst_reg, R64 => src_reg] - # REX.W + 0F 45 /r - # RM: Operand 1: ModRM:reg (r, w), Operand 2: ModRM:r/m (r) - insn( - prefix: REX_W, - opcode: [0x0f, 0x45], - mod_rm: ModRM[mod: Mod11, reg: dst_reg, rm: src_reg], - ) - end - end - - def cmovnz(dst, src) - case [dst, src] - # CMOVNZ r64, r/m64 (Mod 11: reg) - in [R64 => dst_reg, R64 => src_reg] - # REX.W + 0F 45 /r - # RM: Operand 1: ModRM:reg (r, w), Operand 2: ModRM:r/m (r) - insn( - prefix: REX_W, - opcode: [0x0f, 0x45], - mod_rm: ModRM[mod: Mod11, reg: dst_reg, rm: src_reg], - ) - end - end - - def cmovz(dst, src) - case [dst, src] - # CMOVZ r64, r/m64 (Mod 11: reg) - in [R64 => dst_reg, R64 => src_reg] - # REX.W + 0F 44 /r - # RM: Operand 1: ModRM:reg (r, w), Operand 2: ModRM:r/m (r) - insn( - prefix: REX_W, - opcode: [0x0f, 0x44], - mod_rm: ModRM[mod: Mod11, reg: dst_reg, rm: src_reg], - ) - # CMOVZ r64, r/m64 (Mod 01: [reg]+disp8) - in [R64 => dst_reg, QwordPtr[R64 => src_reg, IMM8 => src_disp]] - # REX.W + 0F 44 /r - # RM: Operand 1: ModRM:reg (r, w), Operand 2: ModRM:r/m (r) - insn( - prefix: REX_W, - opcode: [0x0f, 0x44], - mod_rm: ModRM[mod: Mod01, reg: dst_reg, rm: src_reg], - disp: imm8(src_disp), - ) - end - end - - def cmp(left, right) - case [left, right] - # CMP r/m8, imm8 (Mod 01: [reg]+disp8) - in [BytePtr[R64 => left_reg, IMM8 => left_disp], IMM8 => right_imm] - # 80 /7 ib - # MI: Operand 1: ModRM:r/m (r), Operand 2: imm8/16/32 - insn( - opcode: 0x80, - mod_rm: ModRM[mod: Mod01, reg: 7, rm: left_reg], - disp: left_disp, - imm: imm8(right_imm), - ) - # CMP r/m32, imm32 (Mod 01: [reg]+disp8) - in [DwordPtr[R64 => left_reg, IMM8 => left_disp], IMM32 => right_imm] - # 81 /7 id - # MI: Operand 1: ModRM:r/m (r), Operand 2: imm8/16/32 - insn( - opcode: 0x81, - mod_rm: ModRM[mod: Mod01, reg: 7, rm: left_reg], - disp: left_disp, - imm: imm32(right_imm), - ) - # CMP r/m64, imm8 (Mod 01: [reg]+disp8) - in [QwordPtr[R64 => left_reg, IMM8 => left_disp], IMM8 => right_imm] - # REX.W + 83 /7 ib - # MI: Operand 1: ModRM:r/m (r), Operand 2: imm8/16/32 - insn( - prefix: REX_W, - opcode: 0x83, - mod_rm: ModRM[mod: Mod01, reg: 7, rm: left_reg], - disp: left_disp, - imm: imm8(right_imm), - ) - # CMP r/m64, imm32 (Mod 01: [reg]+disp8) - in [QwordPtr[R64 => left_reg, IMM8 => left_disp], IMM32 => right_imm] - # REX.W + 81 /7 id - # MI: Operand 1: ModRM:r/m (r), Operand 2: imm8/16/32 - insn( - prefix: REX_W, - opcode: 0x81, - mod_rm: ModRM[mod: Mod01, reg: 7, rm: left_reg], - disp: left_disp, - imm: imm32(right_imm), - ) - # CMP r/m64, imm8 (Mod 10: [reg]+disp32) - in [QwordPtr[R64 => left_reg, IMM32 => left_disp], IMM8 => right_imm] - # REX.W + 83 /7 ib - # MI: Operand 1: ModRM:r/m (r), Operand 2: imm8/16/32 - insn( - prefix: REX_W, - opcode: 0x83, - mod_rm: ModRM[mod: Mod10, reg: 7, rm: left_reg], - disp: imm32(left_disp), - imm: imm8(right_imm), - ) - # CMP r/m64, imm8 (Mod 11: reg) - in [R64 => left_reg, IMM8 => right_imm] - # REX.W + 83 /7 ib - # MI: Operand 1: ModRM:r/m (r), Operand 2: imm8/16/32 - insn( - prefix: REX_W, - opcode: 0x83, - mod_rm: ModRM[mod: Mod11, reg: 7, rm: left_reg], - imm: imm8(right_imm), - ) - # CMP r/m64, imm32 (Mod 11: reg) - in [R64 => left_reg, IMM32 => right_imm] - # REX.W + 81 /7 id - # MI: Operand 1: ModRM:r/m (r), Operand 2: imm8/16/32 - insn( - prefix: REX_W, - opcode: 0x81, - mod_rm: ModRM[mod: Mod11, reg: 7, rm: left_reg], - imm: imm32(right_imm), - ) - # CMP r/m64, r64 (Mod 01: [reg]+disp8) - in [QwordPtr[R64 => left_reg, IMM8 => left_disp], R64 => right_reg] - # REX.W + 39 /r - # MR: Operand 1: ModRM:r/m (r), Operand 2: ModRM:reg (r) - insn( - prefix: REX_W, - opcode: 0x39, - mod_rm: ModRM[mod: Mod01, reg: right_reg, rm: left_reg], - disp: left_disp, - ) - # CMP r/m64, r64 (Mod 10: [reg]+disp32) - in [QwordPtr[R64 => left_reg, IMM32 => left_disp], R64 => right_reg] - # REX.W + 39 /r - # MR: Operand 1: ModRM:r/m (r), Operand 2: ModRM:reg (r) - insn( - prefix: REX_W, - opcode: 0x39, - mod_rm: ModRM[mod: Mod10, reg: right_reg, rm: left_reg], - disp: imm32(left_disp), - ) - # CMP r/m64, r64 (Mod 11: reg) - in [R64 => left_reg, R64 => right_reg] - # REX.W + 39 /r - # MR: Operand 1: ModRM:r/m (r), Operand 2: ModRM:reg (r) - insn( - prefix: REX_W, - opcode: 0x39, - mod_rm: ModRM[mod: Mod11, reg: right_reg, rm: left_reg], - ) - end - end - - def jbe(dst) - case dst - # JBE rel8 - in Label => dst_label - # 76 cb - insn(opcode: 0x76, imm: dst_label) - # JBE rel32 - in Integer => dst_addr - # 0F 86 cd - insn(opcode: [0x0f, 0x86], imm: rel32(dst_addr)) - end - end - - def je(dst) - case dst - # JE rel8 - in Label => dst_label - # 74 cb - insn(opcode: 0x74, imm: dst_label) - # JE rel32 - in Integer => dst_addr - # 0F 84 cd - insn(opcode: [0x0f, 0x84], imm: rel32(dst_addr)) - end - end - - def jl(dst) - case dst - # JL rel32 - in Integer => dst_addr - # 0F 8C cd - insn(opcode: [0x0f, 0x8c], imm: rel32(dst_addr)) - end - end - - def jmp(dst) - case dst - # JZ rel8 - in Label => dst_label - # EB cb - insn(opcode: 0xeb, imm: dst_label) - # JMP rel32 - in Integer => dst_addr - # E9 cd - insn(opcode: 0xe9, imm: rel32(dst_addr)) - # JMP r/m64 (Mod 01: [reg]+disp8) - in QwordPtr[R64 => dst_reg, IMM8 => dst_disp] - # FF /4 - insn(opcode: 0xff, mod_rm: ModRM[mod: Mod01, reg: 4, rm: dst_reg], disp: dst_disp) - # JMP r/m64 (Mod 11: reg) - in R64 => dst_reg - # FF /4 - insn(opcode: 0xff, mod_rm: ModRM[mod: Mod11, reg: 4, rm: dst_reg]) - end - end - - def jne(dst) - case dst - # JNE rel8 - in Label => dst_label - # 75 cb - insn(opcode: 0x75, imm: dst_label) - # JNE rel32 - in Integer => dst_addr - # 0F 85 cd - insn(opcode: [0x0f, 0x85], imm: rel32(dst_addr)) - end - end - - def jnz(dst) - case dst - # JE rel8 - in Label => dst_label - # 75 cb - insn(opcode: 0x75, imm: dst_label) - # JNZ rel32 - in Integer => dst_addr - # 0F 85 cd - insn(opcode: [0x0f, 0x85], imm: rel32(dst_addr)) - end - end - - def jo(dst) - case dst - # JO rel32 - in Integer => dst_addr - # 0F 80 cd - insn(opcode: [0x0f, 0x80], imm: rel32(dst_addr)) - end - end - - def jz(dst) - case dst - # JZ rel8 - in Label => dst_label - # 74 cb - insn(opcode: 0x74, imm: dst_label) - # JZ rel32 - in Integer => dst_addr - # 0F 84 cd - insn(opcode: [0x0f, 0x84], imm: rel32(dst_addr)) - end - end - - def lea(dst, src) - case [dst, src] - # LEA r64,m (Mod 01: [reg]+disp8) - in [R64 => dst_reg, QwordPtr[R64 => src_reg, IMM8 => src_disp]] - # REX.W + 8D /r - # RM: Operand 1: ModRM:reg (w), Operand 2: ModRM:r/m (r) - insn( - prefix: REX_W, - opcode: 0x8d, - mod_rm: ModRM[mod: Mod01, reg: dst_reg, rm: src_reg], - disp: imm8(src_disp), - ) - # LEA r64,m (Mod 10: [reg]+disp32) - in [R64 => dst_reg, QwordPtr[R64 => src_reg, IMM32 => src_disp]] - # REX.W + 8D /r - # RM: Operand 1: ModRM:reg (w), Operand 2: ModRM:r/m (r) - insn( - prefix: REX_W, - opcode: 0x8d, - mod_rm: ModRM[mod: Mod10, reg: dst_reg, rm: src_reg], - disp: imm32(src_disp), - ) - end - end - - def mov(dst, src) - case dst - in R32 => dst_reg - case src - # MOV r32 r/m32 (Mod 01: [reg]+disp8) - in DwordPtr[R64 => src_reg, IMM8 => src_disp] - # 8B /r - # RM: Operand 1: ModRM:reg (w), Operand 2: ModRM:r/m (r) - insn( - opcode: 0x8b, - mod_rm: ModRM[mod: Mod01, reg: dst_reg, rm: src_reg], - disp: src_disp, - ) - # MOV r32, imm32 (Mod 11: reg) - in IMM32 => src_imm - # B8+ rd id - # OI: Operand 1: opcode + rd (w), Operand 2: imm8/16/32/64 - insn( - opcode: 0xb8, - rd: dst_reg, - imm: imm32(src_imm), - ) - end - in R64 => dst_reg - case src - # MOV r64, r/m64 (Mod 00: [reg]) - in QwordPtr[R64 => src_reg] - # REX.W + 8B /r - # RM: Operand 1: ModRM:reg (w), Operand 2: ModRM:r/m (r) - insn( - prefix: REX_W, - opcode: 0x8b, - mod_rm: ModRM[mod: Mod00, reg: dst_reg, rm: src_reg], - ) - # MOV r64, r/m64 (Mod 01: [reg]+disp8) - in QwordPtr[R64 => src_reg, IMM8 => src_disp] - # REX.W + 8B /r - # RM: Operand 1: ModRM:reg (w), Operand 2: ModRM:r/m (r) - insn( - prefix: REX_W, - opcode: 0x8b, - mod_rm: ModRM[mod: Mod01, reg: dst_reg, rm: src_reg], - disp: src_disp, - ) - # MOV r64, r/m64 (Mod 10: [reg]+disp32) - in QwordPtr[R64 => src_reg, IMM32 => src_disp] - # REX.W + 8B /r - # RM: Operand 1: ModRM:reg (w), Operand 2: ModRM:r/m (r) - insn( - prefix: REX_W, - opcode: 0x8b, - mod_rm: ModRM[mod: Mod10, reg: dst_reg, rm: src_reg], - disp: imm32(src_disp), - ) - # MOV r64, r/m64 (Mod 11: reg) - in R64 => src_reg - # REX.W + 8B /r - # RM: Operand 1: ModRM:reg (w), Operand 2: ModRM:r/m (r) - insn( - prefix: REX_W, - opcode: 0x8b, - mod_rm: ModRM[mod: Mod11, reg: dst_reg, rm: src_reg], - ) - # MOV r/m64, imm32 (Mod 11: reg) - in IMM32 => src_imm - # REX.W + C7 /0 id - # MI: Operand 1: ModRM:r/m (w), Operand 2: imm8/16/32/64 - insn( - prefix: REX_W, - opcode: 0xc7, - mod_rm: ModRM[mod: Mod11, reg: 0, rm: dst_reg], - imm: imm32(src_imm), - ) - # MOV r64, imm64 - in IMM64 => src_imm - # REX.W + B8+ rd io - # OI: Operand 1: opcode + rd (w), Operand 2: imm8/16/32/64 - insn( - prefix: REX_W, - opcode: 0xb8, - rd: dst_reg, - imm: imm64(src_imm), - ) - end - in DwordPtr[R64 => dst_reg, IMM8 => dst_disp] - case src - # MOV r/m32, imm32 (Mod 01: [reg]+disp8) - in IMM32 => src_imm - # C7 /0 id - # MI: Operand 1: ModRM:r/m (w), Operand 2: imm8/16/32/64 - insn( - opcode: 0xc7, - mod_rm: ModRM[mod: Mod01, reg: 0, rm: dst_reg], - disp: dst_disp, - imm: imm32(src_imm), - ) - end - in QwordPtr[R64 => dst_reg] - case src - # MOV r/m64, imm32 (Mod 00: [reg]) - in IMM32 => src_imm - # REX.W + C7 /0 id - # MI: Operand 1: ModRM:r/m (w), Operand 2: imm8/16/32/64 - insn( - prefix: REX_W, - opcode: 0xc7, - mod_rm: ModRM[mod: Mod00, reg: 0, rm: dst_reg], - imm: imm32(src_imm), - ) - # MOV r/m64, r64 (Mod 00: [reg]) - in R64 => src_reg - # REX.W + 89 /r - # MR: Operand 1: ModRM:r/m (w), Operand 2: ModRM:reg (r) - insn( - prefix: REX_W, - opcode: 0x89, - mod_rm: ModRM[mod: Mod00, reg: src_reg, rm: dst_reg], - ) - end - in QwordPtr[R64 => dst_reg, IMM8 => dst_disp] - # Optimize encoding when disp is 0 - return mov([dst_reg], src) if dst_disp == 0 - - case src - # MOV r/m64, imm32 (Mod 01: [reg]+disp8) - in IMM32 => src_imm - # REX.W + C7 /0 id - # MI: Operand 1: ModRM:r/m (w), Operand 2: imm8/16/32/64 - insn( - prefix: REX_W, - opcode: 0xc7, - mod_rm: ModRM[mod: Mod01, reg: 0, rm: dst_reg], - disp: dst_disp, - imm: imm32(src_imm), - ) - # MOV r/m64, r64 (Mod 01: [reg]+disp8) - in R64 => src_reg - # REX.W + 89 /r - # MR: Operand 1: ModRM:r/m (w), Operand 2: ModRM:reg (r) - insn( - prefix: REX_W, - opcode: 0x89, - mod_rm: ModRM[mod: Mod01, reg: src_reg, rm: dst_reg], - disp: dst_disp, - ) - end - in QwordPtr[R64 => dst_reg, IMM32 => dst_disp] - case src - # MOV r/m64, imm32 (Mod 10: [reg]+disp32) - in IMM32 => src_imm - # REX.W + C7 /0 id - # MI: Operand 1: ModRM:r/m (w), Operand 2: imm8/16/32/64 - insn( - prefix: REX_W, - opcode: 0xc7, - mod_rm: ModRM[mod: Mod10, reg: 0, rm: dst_reg], - disp: imm32(dst_disp), - imm: imm32(src_imm), - ) - # MOV r/m64, r64 (Mod 10: [reg]+disp32) - in R64 => src_reg - # REX.W + 89 /r - # MR: Operand 1: ModRM:r/m (w), Operand 2: ModRM:reg (r) - insn( - prefix: REX_W, - opcode: 0x89, - mod_rm: ModRM[mod: Mod10, reg: src_reg, rm: dst_reg], - disp: imm32(dst_disp), - ) - end - end - end - - def or(dst, src) - case [dst, src] - # OR r/m64, imm8 (Mod 11: reg) - in [R64 => dst_reg, IMM8 => src_imm] - # REX.W + 83 /1 ib - # MI: Operand 1: ModRM:r/m (r, w), Operand 2: imm8/16/32 - insn( - prefix: REX_W, - opcode: 0x83, - mod_rm: ModRM[mod: Mod11, reg: 1, rm: dst_reg], - imm: imm8(src_imm), - ) - # OR r/m64, imm32 (Mod 11: reg) - in [R64 => dst_reg, IMM32 => src_imm] - # REX.W + 81 /1 id - # MI: Operand 1: ModRM:r/m (r, w), Operand 2: imm8/16/32 - insn( - prefix: REX_W, - opcode: 0x81, - mod_rm: ModRM[mod: Mod11, reg: 1, rm: dst_reg], - imm: imm32(src_imm), - ) - # OR r64, r/m64 (Mod 01: [reg]+disp8) - in [R64 => dst_reg, QwordPtr[R64 => src_reg, IMM8 => src_disp]] - # REX.W + 0B /r - # RM: Operand 1: ModRM:reg (r, w), Operand 2: ModRM:r/m (r) - insn( - prefix: REX_W, - opcode: 0x0b, - mod_rm: ModRM[mod: Mod01, reg: dst_reg, rm: src_reg], - disp: imm8(src_disp), - ) - # OR r64, r/m64 (Mod 10: [reg]+disp32) - in [R64 => dst_reg, QwordPtr[R64 => src_reg, IMM32 => src_disp]] - # REX.W + 0B /r - # RM: Operand 1: ModRM:reg (r, w), Operand 2: ModRM:r/m (r) - insn( - prefix: REX_W, - opcode: 0x0b, - mod_rm: ModRM[mod: Mod10, reg: dst_reg, rm: src_reg], - disp: imm32(src_disp), - ) - end - end - - def push(src) - case src - # PUSH r64 - in R64 => src_reg - # 50+rd - # O: Operand 1: opcode + rd (r) - insn(opcode: 0x50, rd: src_reg) - end - end - - def pop(dst) - case dst - # POP r64 - in R64 => dst_reg - # 58+ rd - # O: Operand 1: opcode + rd (r) - insn(opcode: 0x58, rd: dst_reg) - end - end - - def ret - # RET - # Near return: A return to a procedure within the current code segment - insn(opcode: 0xc3) - end - - def sar(dst, src) - case [dst, src] - in [R64 => dst_reg, IMM8 => src_imm] - # REX.W + C1 /7 ib - # MI: Operand 1: ModRM:r/m (r, w), Operand 2: imm8 - insn( - prefix: REX_W, - opcode: 0xc1, - mod_rm: ModRM[mod: Mod11, reg: 7, rm: dst_reg], - imm: imm8(src_imm), - ) - end - end - - def sub(dst, src) - case [dst, src] - # SUB r/m64, imm8 (Mod 11: reg) - in [R64 => dst_reg, IMM8 => src_imm] - # REX.W + 83 /5 ib - # MI: Operand 1: ModRM:r/m (r, w), Operand 2: imm8/16/32 - insn( - prefix: REX_W, - opcode: 0x83, - mod_rm: ModRM[mod: Mod11, reg: 5, rm: dst_reg], - imm: imm8(src_imm), - ) - # SUB r/m64, r64 (Mod 11: reg) - in [R64 => dst_reg, R64 => src_reg] - # REX.W + 29 /r - # MR: Operand 1: ModRM:r/m (r, w), Operand 2: ModRM:reg (r) - insn( - prefix: REX_W, - opcode: 0x29, - mod_rm: ModRM[mod: Mod11, reg: src_reg, rm: dst_reg], - ) - end - end - - def test(left, right) - case [left, right] - # TEST r/m8*, imm8 (Mod 01: [reg]+disp8) - in [BytePtr[R64 => left_reg, IMM8 => left_disp], IMM8 => right_imm] - # REX + F6 /0 ib - # MI: Operand 1: ModRM:r/m (r), Operand 2: imm8/16/32 - insn( - opcode: 0xf6, - mod_rm: ModRM[mod: Mod01, reg: 0, rm: left_reg], - disp: left_disp, - imm: imm8(right_imm), - ) - # TEST r/m64, imm32 (Mod 01: [reg]+disp8) - in [QwordPtr[R64 => left_reg, IMM8 => left_disp], IMM32 => right_imm] - # REX.W + F7 /0 id - # MI: Operand 1: ModRM:r/m (r), Operand 2: imm8/16/32 - insn( - prefix: REX_W, - opcode: 0xf7, - mod_rm: ModRM[mod: Mod01, reg: 0, rm: left_reg], - disp: left_disp, - imm: imm32(right_imm), - ) - # TEST r/m64, imm32 (Mod 10: [reg]+disp32) - in [QwordPtr[R64 => left_reg, IMM32 => left_disp], IMM32 => right_imm] - # REX.W + F7 /0 id - # MI: Operand 1: ModRM:r/m (r), Operand 2: imm8/16/32 - insn( - prefix: REX_W, - opcode: 0xf7, - mod_rm: ModRM[mod: Mod10, reg: 0, rm: left_reg], - disp: imm32(left_disp), - imm: imm32(right_imm), - ) - # TEST r/m64, imm32 (Mod 11: reg) - in [R64 => left_reg, IMM32 => right_imm] - # REX.W + F7 /0 id - # MI: Operand 1: ModRM:r/m (r), Operand 2: imm8/16/32 - insn( - prefix: REX_W, - opcode: 0xf7, - mod_rm: ModRM[mod: Mod11, reg: 0, rm: left_reg], - imm: imm32(right_imm), - ) - # TEST r/m32, r32 (Mod 11: reg) - in [R32 => left_reg, R32 => right_reg] - # 85 /r - # MR: Operand 1: ModRM:r/m (r), Operand 2: ModRM:reg (r) - insn( - opcode: 0x85, - mod_rm: ModRM[mod: Mod11, reg: right_reg, rm: left_reg], - ) - # TEST r/m64, r64 (Mod 11: reg) - in [R64 => left_reg, R64 => right_reg] - # REX.W + 85 /r - # MR: Operand 1: ModRM:r/m (r), Operand 2: ModRM:reg (r) - insn( - prefix: REX_W, - opcode: 0x85, - mod_rm: ModRM[mod: Mod11, reg: right_reg, rm: left_reg], - ) - end - end - - def xor(dst, src) - case [dst, src] - # XOR r/m64, r64 (Mod 11: reg) - in [R64 => dst_reg, R64 => src_reg] - # REX.W + 31 /r - # MR: Operand 1: ModRM:r/m (r, w), Operand 2: ModRM:reg (r) - insn( - prefix: REX_W, - opcode: 0x31, - mod_rm: ModRM[mod: Mod11, reg: src_reg, rm: dst_reg], - ) - end - end - - # - # Utilities - # - - attr_reader :comments - - def comment(message) - @comments[@bytes.size] << message - end - - # Mark the starting address of a block - def block(block) - @blocks[@bytes.size] << block - end - - # Mark the starting/ending addresses of a stub - def stub(stub) - @stub_starts[@bytes.size] << stub - yield - ensure - @stub_ends[@bytes.size] << stub - end - - def pos_marker(&block) - @pos_markers[@bytes.size] << block - end - - def new_label(name) - Label.new(id: @label_id += 1, name:) - end - - # @param [RubyVM::RJIT::Assembler::Label] label - def write_label(label) - @labels[label] = @bytes.size - end - - def incr_counter(name) - if C.rjit_opts.stats - comment("increment counter #{name}") - mov(:rax, C.rb_rjit_counters[name].to_i) - add([:rax], 1) # TODO: lock - end - end - - private - - def insn(prefix: 0, opcode:, rd: nil, mod_rm: nil, disp: nil, imm: nil) - # Determine prefix - if rd - prefix |= REX_B if extended_reg?(rd) - opcode += reg_code(rd) - end - if mod_rm - prefix |= REX_R if mod_rm.reg.is_a?(Symbol) && extended_reg?(mod_rm.reg) - prefix |= REX_B if mod_rm.rm.is_a?(Symbol) && extended_reg?(mod_rm.rm) - end - - # Encode insn - if prefix > 0 - @bytes.push(prefix) - end - @bytes.push(*Array(opcode)) - if mod_rm - mod_rm_byte = encode_mod_rm( - mod: mod_rm.mod, - reg: mod_rm.reg.is_a?(Symbol) ? reg_code(mod_rm.reg) : mod_rm.reg, - rm: mod_rm.rm.is_a?(Symbol) ? reg_code(mod_rm.rm) : mod_rm.rm, - ) - @bytes.push(mod_rm_byte) - end - if disp - @bytes.push(*Array(disp)) - end - if imm - @bytes.push(*imm) - end - end - - def reg_code(reg) - reg_code_extended(reg).first - end - - # Table 2-2. 32-Bit Addressing Forms with the ModR/M Byte - # - # 7 6 5 4 3 2 1 0 - # +--+--+--+--+--+--+--+--+ - # | Mod | Reg/ | R/M | - # | | Opcode | | - # +--+--+--+--+--+--+--+--+ - # - # The r/m field can specify a register as an operand or it can be combined - # with the mod field to encode an addressing mode. - # - # /0: R/M is 0 (not used) - # /r: R/M is a register - def encode_mod_rm(mod:, reg: 0, rm: 0) - if mod > 0b11 - raise ArgumentError, "too large Mod: #{mod}" - end - if reg > 0b111 - raise ArgumentError, "too large Reg/Opcode: #{reg}" - end - if rm > 0b111 - raise ArgumentError, "too large R/M: #{rm}" - end - (mod << 6) + (reg << 3) + rm - end - - # ib: 1 byte - def imm8(imm) - unless imm8?(imm) - raise ArgumentError, "unexpected imm8: #{imm}" - end - [imm].pack('c').unpack('c*') # TODO: consider uimm - end - - # id: 4 bytes - def imm32(imm) - unless imm32?(imm) - raise ArgumentError, "unexpected imm32: #{imm}" - end - [imm].pack('l').unpack('c*') # TODO: consider uimm - end - - # io: 8 bytes - def imm64(imm) - unless imm64?(imm) - raise ArgumentError, "unexpected imm64: #{imm}" - end - imm_bytes(imm, 8) - end - - def imm_bytes(imm, num_bytes) - bytes = [] - bits = imm - num_bytes.times do - bytes << (bits & 0xff) - bits >>= 8 - end - if bits != 0 - raise ArgumentError, "unexpected imm with #{num_bytes} bytes: #{imm}" - end - bytes - end - - def rel32(addr) - [Rel32.new(addr), Rel32Pad, Rel32Pad, Rel32Pad] - end - - def set_code_addrs(write_addr) - (@bytes.size + 1).times do |index| - @blocks.fetch(index, []).each do |block| - block.start_addr = write_addr + index - end - @stub_starts.fetch(index, []).each do |stub| - stub.start_addr = write_addr + index - end - @stub_ends.fetch(index, []).each do |stub| - stub.end_addr = write_addr + index - end - end - end - - def resolve_rel32(write_addr) - @bytes.each_with_index do |byte, index| - if byte.is_a?(Rel32) - src_addr = write_addr + index + 4 # offset 4 bytes for rel32 itself - dst_addr = byte.addr - rel32 = dst_addr - src_addr - raise "unexpected offset: #{rel32}" unless imm32?(rel32) - imm32(rel32).each_with_index do |rel_byte, rel_index| - @bytes[index + rel_index] = rel_byte - end - end - end - end - - def resolve_labels - @bytes.each_with_index do |byte, index| - if byte.is_a?(Label) - src_index = index + 1 # offset 1 byte for rel8 itself - dst_index = @labels.fetch(byte) - rel8 = dst_index - src_index - raise "unexpected offset: #{rel8}" unless imm8?(rel8) - @bytes[index] = rel8 - end - end - end - - def write_bytes(addr) - Fiddle::Pointer.new(addr)[0, @bytes.size] = @bytes.pack('c*') - end - end - - module OperandMatcher - def imm8?(imm) - (-0x80..0x7f).include?(imm) - end - - def imm32?(imm) - (-0x8000_0000..0x7fff_ffff).include?(imm) # TODO: consider uimm - end - - def imm64?(imm) - (-0x8000_0000_0000_0000..0xffff_ffff_ffff_ffff).include?(imm) - end - - def r32?(reg) - if extended_reg?(reg) - reg.end_with?('d') - else - reg.start_with?('e') - end - end - - def r64?(reg) - if extended_reg?(reg) - reg.match?(/\Ar\d+\z/) - else - reg.start_with?('r') - end - end - - def extended_reg?(reg) - reg_code_extended(reg).last - end - - def reg_code_extended(reg) - case reg - # Not extended - when :al, :ax, :eax, :rax then [0, false] - when :cl, :cx, :ecx, :rcx then [1, false] - when :dl, :dx, :edx, :rdx then [2, false] - when :bl, :bx, :ebx, :rbx then [3, false] - when :ah, :sp, :esp, :rsp then [4, false] - when :ch, :bp, :ebp, :rbp then [5, false] - when :dh, :si, :esi, :rsi then [6, false] - when :bh, :di, :edi, :rdi then [7, false] - # Extended - when :r8b, :r8w, :r8d, :r8 then [0, true] - when :r9b, :r9w, :r9d, :r9 then [1, true] - when :r10b, :r10w, :r10d, :r10 then [2, true] - when :r11b, :r11w, :r11d, :r11 then [3, true] - when :r12b, :r12w, :r12d, :r12 then [4, true] - when :r13b, :r13w, :r13d, :r13 then [5, true] - when :r14b, :r14w, :r14d, :r14 then [6, true] - when :r15b, :r15w, :r15d, :r15 then [7, true] - else raise ArgumentError, "unexpected reg: #{reg.inspect}" - end - end - end - - class Assembler - include OperandMatcher - extend OperandMatcher - end -end diff --git a/lib/ruby_vm/rjit/block.rb b/lib/ruby_vm/rjit/block.rb deleted file mode 100644 index cfdaade8b1..0000000000 --- a/lib/ruby_vm/rjit/block.rb +++ /dev/null @@ -1,11 +0,0 @@ -class RubyVM::RJIT::Block < Struct.new( - :iseq, # @param `` - :pc, # @param [Integer] Starting PC - :ctx, # @param [RubyVM::RJIT::Context] **Starting** Context (TODO: freeze?) - :start_addr, # @param [Integer] Starting address of this block's JIT code - :entry_exit, # @param [Integer] Address of entry exit (optional) - :incoming, # @param [Array<RubyVM::RJIT::BranchStub>] Incoming branches - :invalidated, # @param [TrueClass,FalseClass] true if already invalidated -) - def initialize(incoming: [], invalidated: false, **) = super -end diff --git a/lib/ruby_vm/rjit/branch_stub.rb b/lib/ruby_vm/rjit/branch_stub.rb deleted file mode 100644 index b9fe78b744..0000000000 --- a/lib/ruby_vm/rjit/branch_stub.rb +++ /dev/null @@ -1,24 +0,0 @@ -module RubyVM::RJIT - # Branch shapes - Next0 = :Next0 # target0 is a fallthrough - Next1 = :Next1 # target1 is a fallthrough - Default = :Default # neither targets is a fallthrough - - class BranchStub < Struct.new( - :iseq, # @param [RubyVM::RJIT::CPointer::Struct_rb_iseq_struct] Branch target ISEQ - :shape, # @param [Symbol] Next0, Next1, or Default - :target0, # @param [RubyVM::RJIT::BranchTarget] First branch target - :target1, # @param [RubyVM::RJIT::BranchTarget,NilClass] Second branch target (optional) - :compile, # @param [Proc] A callback to (re-)generate this branch stub - :start_addr, # @param [Integer] Stub source start address to be re-generated - :end_addr, # @param [Integer] Stub source end address to be re-generated - ) - end - - class BranchTarget < Struct.new( - :pc, - :ctx, - :address, - ) - end -end diff --git a/lib/ruby_vm/rjit/c_pointer.rb b/lib/ruby_vm/rjit/c_pointer.rb deleted file mode 100644 index db00c4cd11..0000000000 --- a/lib/ruby_vm/rjit/c_pointer.rb +++ /dev/null @@ -1,394 +0,0 @@ -module RubyVM::RJIT - # Every class under this namespace is a pointer. Even if the type is - # immediate, it shouldn't be dereferenced until `*` is called. - module CPointer - # Note: We'd like to avoid alphabetic method names to avoid a conflict - # with member methods. to_i and to_s are considered an exception. - class Struct - # @param name [String] - # @param sizeof [Integer] - # @param members [Hash{ Symbol => [RubyVM::RJIT::CType::*, Integer, TrueClass] }] - def initialize(addr, sizeof, members) - @addr = addr - @sizeof = sizeof - @members = members - end - - # Get a raw address - def to_i - @addr - end - - # Serialized address for generated code - def to_s - "0x#{@addr.to_s(16)}" - end - - # Pointer diff - def -(struct) - raise ArgumentError if self.class != struct.class - (@addr - struct.to_i) / @sizeof - end - - # Primitive API that does no automatic dereference - # TODO: remove this? - # @param member [Symbol] - def [](member) - type, offset = @members.fetch(member) - type.new(@addr + offset / 8) - end - - private - - # @param member [Symbol] - # @param value [Object] - def []=(member, value) - type, offset = @members.fetch(member) - type[@addr + offset / 8] = value - end - - # @param size [Integer] - # @param members [Hash{ Symbol => [Integer, RubyVM::RJIT::CType::*] }] - def self.define(size, members) - Class.new(self) do - # Return the size of this type - define_singleton_method(:size) { size } - - # Return the offset to a field - define_singleton_method(:offsetof) do |field, *fields| - member, offset = members.fetch(field) - offset /= 8 - unless fields.empty? - offset += member.offsetof(*fields) - end - offset - end - - # Return member names - define_singleton_method(:members) { members.keys } - - define_method(:initialize) do |addr = nil| - if addr.nil? # TODO: get rid of this feature later - addr = Fiddle.malloc(size) - end - super(addr, size, members) - end - - members.each do |member, (type, offset, to_ruby)| - # Intelligent API that does automatic dereference - define_method(member) do - value = self[member] - if value.respond_to?(:*) - value = value.* - end - if to_ruby - value = C.to_ruby(value) - end - value - end - - define_method("#{member}=") do |value| - if to_ruby - value = C.to_value(value) - end - self[member] = value - end - end - end - end - end - - # Note: We'd like to avoid alphabetic method names to avoid a conflict - # with member methods. to_i is considered an exception. - class Union - # @param _name [String] To be used when it starts defining a union pointer class - # @param sizeof [Integer] - # @param members [Hash{ Symbol => RubyVM::RJIT::CType::* }] - def initialize(addr, sizeof, members) - @addr = addr - @sizeof = sizeof - @members = members - end - - # Get a raw address - def to_i - @addr - end - - # Move addr to access this pointer like an array - def +(index) - raise ArgumentError unless index.is_a?(Integer) - self.class.new(@addr + index * @sizeof) - end - - # Pointer diff - def -(union) - raise ArgumentError if self.class != union.class - (@addr - union.instance_variable_get(:@addr)) / @sizeof - end - - # @param sizeof [Integer] - # @param members [Hash{ Symbol => RubyVM::RJIT::CType::* }] - def self.define(sizeof, members) - Class.new(self) do - # Return the size of this type - define_singleton_method(:sizeof) { sizeof } - - # Part of Struct's offsetof implementation - define_singleton_method(:offsetof) do |field, *fields| - member = members.fetch(field) - offset = 0 - unless fields.empty? - offset += member.offsetof(*fields) - end - offset - end - - define_method(:initialize) do |addr| - super(addr, sizeof, members) - end - - members.each do |member, type| - # Intelligent API that does automatic dereference - define_method(member) do - value = type.new(@addr) - if value.respond_to?(:*) - value = value.* - end - value - end - end - end - end - end - - class Immediate - # @param addr [Integer] - # @param size [Integer] - # @param pack [String] - def initialize(addr, size, pack) - @addr = addr - @size = size - @pack = pack - end - - # Get a raw address - def to_i - @addr - end - - # Move addr to addess this pointer like an array - def +(index) - Immediate.new(@addr + index * @size, @size, @pack) - end - - # Dereference - def * - self[0] - end - - # Array access - def [](index) - return nil if @addr == 0 - Fiddle::Pointer.new(@addr + index * @size)[0, @size].unpack1(@pack) - end - - # Array set - def []=(index, value) - Fiddle::Pointer.new(@addr + index * @size)[0, @size] = [value].pack(@pack) - end - - # Serialized address for generated code. Used for embedding things like body->iseq_encoded. - def to_s - "0x#{Integer(@addr).to_s(16)}" - end - - # @param fiddle_type [Integer] Fiddle::TYPE_* - def self.define(fiddle_type) - size = Fiddle::PackInfo::SIZE_MAP.fetch(fiddle_type) - pack = Fiddle::PackInfo::PACK_MAP.fetch(fiddle_type) - - Class.new(self) do - define_method(:initialize) do |addr| - super(addr, size, pack) - end - - define_singleton_method(:size) do - size - end - - # Type-level []=: Used by struct fields - define_singleton_method(:[]=) do |addr, value| - Fiddle::Pointer.new(addr)[0, size] = [value].pack(pack) - end - end - end - end - - # -Fiddle::TYPE_CHAR Immediate with special handling of true/false - class Bool < Immediate.define(-Fiddle::TYPE_CHAR) - # Dereference - def * - return nil if @addr == 0 - super != 0 - end - - def self.[]=(addr, value) - super(addr, value ? 1 : 0) - end - end - - # Basically Immediate but without #* to skip auto-dereference of structs. - class Array - attr_reader :type - - # @param addr [Integer] - # @param type [Class] RubyVM::RJIT::CType::* - def initialize(addr, type) - @addr = addr - @type = type - end - - # Array access - def [](index) - @type.new(@addr)[index] - end - - # Array set - # @param index [Integer] - # @param value [Integer, RubyVM::RJIT::CPointer::Struct] an address itself or an object that return an address with to_i - def []=(index, value) - @type.new(@addr)[index] = value - end - - private - - def self.define(block) - Class.new(self) do - define_method(:initialize) do |addr| - super(addr, block.call) - end - end - end - end - - class Pointer - attr_reader :type - - # @param addr [Integer] - # @param type [Class] RubyVM::RJIT::CType::* - def initialize(addr, type) - @addr = addr - @type = type - end - - # Move addr to addess this pointer like an array - def +(index) - raise ArgumentError unless index.is_a?(Integer) - Pointer.new(@addr + index * Fiddle::SIZEOF_VOIDP, @type) - end - - # Dereference - def * - return nil if dest_addr == 0 - @type.new(dest_addr) - end - - # Array access - def [](index) - (self + index).* - end - - # Array set - # @param index [Integer] - # @param value [Integer, RubyVM::RJIT::CPointer::Struct] an address itself or an object that return an address with to_i - def []=(index, value) - Fiddle::Pointer.new(@addr + index * Fiddle::SIZEOF_VOIDP)[0, Fiddle::SIZEOF_VOIDP] = - [value.to_i].pack(Fiddle::PackInfo::PACK_MAP[Fiddle::TYPE_VOIDP]) - end - - # Get a raw address - def to_i - @addr - end - - private - - def dest_addr - Fiddle::Pointer.new(@addr)[0, Fiddle::SIZEOF_VOIDP].unpack1(Fiddle::PackInfo::PACK_MAP[Fiddle::TYPE_VOIDP]) - end - - def self.define(block) - Class.new(self) do - define_method(:initialize) do |addr| - super(addr, block.call) - end - - # Type-level []=: Used by struct fields - # @param addr [Integer] - # @param value [Integer, RubyVM::RJIT::CPointer::Struct] an address itself, or an object that return an address with to_i - define_singleton_method(:[]=) do |addr, value| - value = value.to_i - Fiddle::Pointer.new(addr)[0, Fiddle::SIZEOF_VOIDP] = [value].pack(Fiddle::PackInfo::PACK_MAP[Fiddle::TYPE_VOIDP]) - end - end - end - end - - class BitField - # @param addr [Integer] - # @param width [Integer] - # @param offset [Integer] - def initialize(addr, width, offset) - @addr = addr - @width = width - @offset = offset - end - - # Dereference - def * - byte = Fiddle::Pointer.new(@addr)[0, Fiddle::SIZEOF_CHAR].unpack('c').first - if @width == 1 - bit = (1 & (byte >> @offset)) - bit == 1 - elsif @width <= 8 && @offset == 0 - bitmask = @width.times.map { |i| 1 << i }.sum - byte & bitmask - else - raise NotImplementedError.new("not-implemented bit field access: width=#{@width} offset=#{@offset}") - end - end - - # @param width [Integer] - # @param offset [Integer] - def self.define(width, offset) - Class.new(self) do - define_method(:initialize) do |addr| - super(addr, width, offset) - end - end - end - end - - # Give a name to a dynamic CPointer class to see it on inspect - def self.with_class_name(prefix, name, cache: false, &block) - return block.call if !name.nil? && name.empty? - - # Use a cached result only if cache: true - class_name = "#{prefix}_#{name}" - klass = - if cache && self.const_defined?(class_name) - self.const_get(class_name) - else - block.call - end - - # Give it a name unless it's already defined - unless self.const_defined?(class_name) - self.const_set(class_name, klass) - end - - klass - end - end -end diff --git a/lib/ruby_vm/rjit/c_type.rb b/lib/ruby_vm/rjit/c_type.rb deleted file mode 100644 index 98011f9f61..0000000000 --- a/lib/ruby_vm/rjit/c_type.rb +++ /dev/null @@ -1,99 +0,0 @@ -require 'fiddle' -require 'fiddle/pack' -require_relative 'c_pointer' - -module RubyVM::RJIT - module CType - module Struct - # @param name [String] - # @param members [Hash{ Symbol => [Integer, RubyVM::RJIT::CType::*] }] - def self.new(name, sizeof, **members) - name = members.keys.join('_') if name.empty? - CPointer.with_class_name('Struct', name) do - CPointer::Struct.define(sizeof, members) - end - end - end - - module Union - # @param name [String] - # @param members [Hash{ Symbol => RubyVM::RJIT::CType::* }] - def self.new(name, sizeof, **members) - name = members.keys.join('_') if name.empty? - CPointer.with_class_name('Union', name) do - CPointer::Union.define(sizeof, members) - end - end - end - - module Immediate - # @param fiddle_type [Integer] - def self.new(fiddle_type) - name = Fiddle.constants.find do |const| - const.start_with?('TYPE_') && Fiddle.const_get(const) == fiddle_type.abs - end&.name - name = name.delete_prefix('TYPE_') - if fiddle_type.negative? - name.prepend('U') - end - CPointer.with_class_name('Immediate', name, cache: true) do - CPointer::Immediate.define(fiddle_type) - end - end - - # @param type [String] - def self.parse(ctype) - new(Fiddle::Importer.parse_ctype(ctype)) - end - - def self.find(size, signed) - fiddle_type = TYPE_MAP.fetch(size) - fiddle_type = -fiddle_type unless signed - new(fiddle_type) - end - - TYPE_MAP = Fiddle::PackInfo::SIZE_MAP.map { |type, size| [size, type.abs] }.to_h - private_constant :TYPE_MAP - end - - module Bool - def self.new - CPointer::Bool - end - end - - class Array - def self.new(&block) - CPointer.with_class_name('Array', block.object_id.to_s) do - CPointer::Array.define(block) - end - end - end - - class Pointer - # This takes a block to avoid "stack level too deep" on a cyclic reference - # @param block [Proc] - def self.new(&block) - CPointer.with_class_name('Pointer', block.object_id.to_s) do - CPointer::Pointer.define(block) - end - end - end - - module BitField - # @param width [Integer] - # @param offset [Integer] - def self.new(width, offset) - CPointer.with_class_name('BitField', "#{offset}_#{width}") do - CPointer::BitField.define(width, offset) - end - end - end - - # Types that are referenced but not part of code generation targets - Stub = ::Struct.new(:name) - - # Types that it failed to figure out from the header - Unknown = Module.new - end -end diff --git a/lib/ruby_vm/rjit/code_block.rb b/lib/ruby_vm/rjit/code_block.rb deleted file mode 100644 index 260bd98671..0000000000 --- a/lib/ruby_vm/rjit/code_block.rb +++ /dev/null @@ -1,91 +0,0 @@ -module RubyVM::RJIT - class CodeBlock - # @param mem_block [Integer] JIT buffer address - # @param mem_size [Integer] JIT buffer size - # @param outliend [TrueClass,FalseClass] true for outlined CodeBlock - def initialize(mem_block:, mem_size:, outlined: false) - @comments = Hash.new { |h, k| h[k] = [] } if dump_disasm? - @mem_block = mem_block - @mem_size = mem_size - @write_pos = 0 - @outlined = outlined - end - - # @param asm [RubyVM::RJIT::Assembler] - def write(asm) - return 0 if @write_pos + asm.size >= @mem_size - - start_addr = write_addr - - # Write machine code - C.mprotect_write(@mem_block, @mem_size) - @write_pos += asm.assemble(start_addr) - C.mprotect_exec(@mem_block, @mem_size) - - end_addr = write_addr - - # Convert comment indexes to addresses - asm.comments.each do |index, comments| - @comments[start_addr + index] += comments if dump_disasm? - end - asm.comments.clear - - # Dump disasm if --rjit-dump-disasm - if C.rjit_opts.dump_disasm && start_addr < end_addr - dump_disasm(start_addr, end_addr) - end - start_addr - end - - def set_write_addr(addr) - @write_pos = addr - @mem_block - @comments.delete(addr) if dump_disasm? - end - - def with_write_addr(addr) - old_write_pos = @write_pos - set_write_addr(addr) - yield - ensure - @write_pos = old_write_pos - end - - def write_addr - @mem_block + @write_pos - end - - def include?(addr) - (@mem_block...(@mem_block + @mem_size)).include?(addr) - end - - def dump_disasm(from, to, io: STDOUT, color: true, test: false) - C.dump_disasm(from, to, test:).each do |address, mnemonic, op_str| - @comments.fetch(address, []).each do |comment| - io.puts colorize(" # #{comment}", bold: true, color:) - end - io.puts colorize(" 0x#{format("%x", address)}: #{mnemonic} #{op_str}", color:) - end - io.puts - end - - private - - def colorize(text, bold: false, color:) - return text unless color - buf = +'' - buf << "\e[1m" if bold - buf << "\e[34m" if @outlined - buf << text - buf << "\e[0m" - buf - end - - def bold(text) - "\e[1m#{text}\e[0m" - end - - def dump_disasm? - C.rjit_opts.dump_disasm - end - end -end diff --git a/lib/ruby_vm/rjit/compiler.rb b/lib/ruby_vm/rjit/compiler.rb deleted file mode 100644 index e5c3adf0ec..0000000000 --- a/lib/ruby_vm/rjit/compiler.rb +++ /dev/null @@ -1,518 +0,0 @@ -require 'ruby_vm/rjit/assembler' -require 'ruby_vm/rjit/block' -require 'ruby_vm/rjit/branch_stub' -require 'ruby_vm/rjit/code_block' -require 'ruby_vm/rjit/context' -require 'ruby_vm/rjit/entry_stub' -require 'ruby_vm/rjit/exit_compiler' -require 'ruby_vm/rjit/insn_compiler' -require 'ruby_vm/rjit/instruction' -require 'ruby_vm/rjit/invariants' -require 'ruby_vm/rjit/jit_state' -require 'ruby_vm/rjit/type' - -module RubyVM::RJIT - # Compilation status - KeepCompiling = :KeepCompiling - CantCompile = :CantCompile - EndBlock = :EndBlock - - # Ruby constants - Qtrue = Fiddle::Qtrue - Qfalse = Fiddle::Qfalse - Qnil = Fiddle::Qnil - Qundef = Fiddle::Qundef - - # Callee-saved registers - # TODO: support using r12/r13 here - EC = :r14 - CFP = :r15 - SP = :rbx - - # Scratch registers: rax, rcx, rdx - - # Mark objects in this Array during GC - GC_REFS = [] - - # Maximum number of versions per block - # 1 means always create generic versions - MAX_VERSIONS = 4 - - class Compiler - attr_accessor :write_pos - - def self.decode_insn(encoded) - INSNS.fetch(C.rb_vm_insn_decode(encoded)) - end - - def initialize - mem_size = C.rjit_opts.exec_mem_size * 1024 * 1024 - mem_block = C.mmap(mem_size) - @cb = CodeBlock.new(mem_block: mem_block, mem_size: mem_size / 2) - @ocb = CodeBlock.new(mem_block: mem_block + mem_size / 2, mem_size: mem_size / 2, outlined: true) - @exit_compiler = ExitCompiler.new - @insn_compiler = InsnCompiler.new(@cb, @ocb, @exit_compiler) - Invariants.initialize(@cb, @ocb, self, @exit_compiler) - end - - # Compile an ISEQ from its entry point. - # @param iseq `RubyVM::RJIT::CPointer::Struct_rb_iseq_t` - # @param cfp `RubyVM::RJIT::CPointer::Struct_rb_control_frame_t` - def compile(iseq, cfp) - return unless supported_platform? - pc = cfp.pc.to_i - jit = JITState.new(iseq:, cfp:) - asm = Assembler.new - compile_prologue(asm, iseq, pc) - compile_block(asm, jit:, pc:) - iseq.body.jit_entry = @cb.write(asm) - rescue Exception => e - STDERR.puts "#{e.class}: #{e.message}" - STDERR.puts e.backtrace - exit 1 - end - - # Compile an entry. - # @param entry [RubyVM::RJIT::EntryStub] - def entry_stub_hit(entry_stub, cfp) - # Compile a new entry guard as a next entry - pc = cfp.pc.to_i - next_entry = Assembler.new.then do |asm| - compile_entry_chain_guard(asm, cfp.iseq, pc) - @cb.write(asm) - end - - # Try to find an existing compiled version of this block - ctx = Context.new - block = find_block(cfp.iseq, pc, ctx) - if block - # If an existing block is found, generate a jump to the block. - asm = Assembler.new - asm.jmp(block.start_addr) - @cb.write(asm) - else - # If this block hasn't yet been compiled, generate blocks after the entry guard. - asm = Assembler.new - jit = JITState.new(iseq: cfp.iseq, cfp:) - compile_block(asm, jit:, pc:, ctx:) - @cb.write(asm) - - block = jit.block - end - - # Regenerate the previous entry - @cb.with_write_addr(entry_stub.start_addr) do - # The last instruction of compile_entry_chain_guard is jne - asm = Assembler.new - asm.jne(next_entry) - @cb.write(asm) - end - - return block.start_addr - rescue Exception => e - STDERR.puts e.full_message - exit 1 - end - - # Compile a branch stub. - # @param branch_stub [RubyVM::RJIT::BranchStub] - # @param cfp `RubyVM::RJIT::CPointer::Struct_rb_control_frame_t` - # @param target0_p [TrueClass,FalseClass] - # @return [Integer] The starting address of the compiled branch stub - def branch_stub_hit(branch_stub, cfp, target0_p) - # Update cfp->pc for `jit.at_current_insn?` - target = target0_p ? branch_stub.target0 : branch_stub.target1 - cfp.pc = target.pc - - # Reuse an existing block if it already exists - block = find_block(branch_stub.iseq, target.pc, target.ctx) - - # If the branch stub's jump is the last code, allow overwriting part of - # the old branch code with the new block code. - fallthrough = block.nil? && @cb.write_addr == branch_stub.end_addr - if fallthrough - # If the branch stub's jump is the last code, allow overwriting part of - # the old branch code with the new block code. - @cb.set_write_addr(branch_stub.start_addr) - branch_stub.shape = target0_p ? Next0 : Next1 - Assembler.new.tap do |branch_asm| - branch_stub.compile.call(branch_asm) - @cb.write(branch_asm) - end - end - - # Reuse or generate a block - if block - target.address = block.start_addr - else - jit = JITState.new(iseq: branch_stub.iseq, cfp:) - target.address = Assembler.new.then do |asm| - compile_block(asm, jit:, pc: target.pc, ctx: target.ctx.dup) - @cb.write(asm) - end - block = jit.block - end - block.incoming << branch_stub # prepare for invalidate_block - - # Re-generate the branch code for non-fallthrough cases - unless fallthrough - @cb.with_write_addr(branch_stub.start_addr) do - branch_asm = Assembler.new - branch_stub.compile.call(branch_asm) - @cb.write(branch_asm) - end - end - - return target.address - rescue Exception => e - STDERR.puts e.full_message - exit 1 - end - - # @param iseq `RubyVM::RJIT::CPointer::Struct_rb_iseq_t` - # @param pc [Integer] - def invalidate_blocks(iseq, pc) - list_blocks(iseq, pc).each do |block| - invalidate_block(block) - end - - # If they were the ISEQ's first blocks, re-compile RJIT entry as well - if iseq.body.iseq_encoded.to_i == pc - iseq.body.jit_entry = 0 - iseq.body.jit_entry_calls = 0 - end - end - - def invalidate_block(block) - iseq = block.iseq - # Avoid touching GCed ISEQs. We assume it won't be re-entered. - return unless C.imemo_type_p(iseq, C.imemo_iseq) - - # Remove this block from the version array - remove_block(iseq, block) - - # Invalidate the block with entry exit - unless block.invalidated - @cb.with_write_addr(block.start_addr) do - asm = Assembler.new - asm.comment('invalidate_block') - asm.jmp(block.entry_exit) - @cb.write(asm) - end - block.invalidated = true - end - - # Re-stub incoming branches - block.incoming.each do |branch_stub| - target = [branch_stub.target0, branch_stub.target1].compact.find do |target| - target.pc == block.pc && target.ctx == block.ctx - end - next if target.nil? - # TODO: Could target.address be a stub address? Is invalidation not needed in that case? - - # If the target being re-generated is currently a fallthrough block, - # the fallthrough code must be rewritten with a jump to the stub. - if target.address == branch_stub.end_addr - branch_stub.shape = Default - end - - target.address = Assembler.new.then do |ocb_asm| - @exit_compiler.compile_branch_stub(block.ctx, ocb_asm, branch_stub, target == branch_stub.target0) - @ocb.write(ocb_asm) - end - @cb.with_write_addr(branch_stub.start_addr) do - branch_asm = Assembler.new - branch_stub.compile.call(branch_asm) - @cb.write(branch_asm) - end - end - end - - private - - # Callee-saved: rbx, rsp, rbp, r12, r13, r14, r15 - # Caller-saved: rax, rdi, rsi, rdx, rcx, r8, r9, r10, r11 - # - # @param asm [RubyVM::RJIT::Assembler] - def compile_prologue(asm, iseq, pc) - asm.comment('RJIT entry point') - - # Save callee-saved registers used by JITed code - asm.push(CFP) - asm.push(EC) - asm.push(SP) - - # Move arguments EC and CFP to dedicated registers - asm.mov(EC, :rdi) - asm.mov(CFP, :rsi) - - # Load sp to a dedicated register - asm.mov(SP, [CFP, C.rb_control_frame_t.offsetof(:sp)]) # rbx = cfp->sp - - # Setup cfp->jit_return - asm.mov(:rax, leave_exit) - asm.mov([CFP, C.rb_control_frame_t.offsetof(:jit_return)], :rax) - - # We're compiling iseqs that we *expect* to start at `insn_idx`. But in - # the case of optional parameters, the interpreter can set the pc to a - # different location depending on the optional parameters. If an iseq - # has optional parameters, we'll add a runtime check that the PC we've - # compiled for is the same PC that the interpreter wants us to run with. - # If they don't match, then we'll take a side exit. - if iseq.body.param.flags.has_opt - compile_entry_chain_guard(asm, iseq, pc) - end - end - - def compile_entry_chain_guard(asm, iseq, pc) - entry_stub = EntryStub.new - stub_addr = Assembler.new.then do |ocb_asm| - @exit_compiler.compile_entry_stub(ocb_asm, entry_stub) - @ocb.write(ocb_asm) - end - - asm.comment('guard expected PC') - asm.mov(:rax, pc) - asm.cmp([CFP, C.rb_control_frame_t.offsetof(:pc)], :rax) - - asm.stub(entry_stub) do - asm.jne(stub_addr) - end - end - - # @param asm [RubyVM::RJIT::Assembler] - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - def compile_block(asm, jit:, pc:, ctx: Context.new) - # Mark the block start address and prepare an exit code storage - ctx = limit_block_versions(jit.iseq, pc, ctx) - block = Block.new(iseq: jit.iseq, pc:, ctx: ctx.dup) - jit.block = block - asm.block(block) - - iseq = jit.iseq - asm.comment("Block: #{iseq.body.location.label}@#{C.rb_iseq_path(iseq)}:#{iseq_lineno(iseq, pc)}") - - # Compile each insn - index = (pc - iseq.body.iseq_encoded.to_i) / C.VALUE.size - while index < iseq.body.iseq_size - # Set the current instruction - insn = self.class.decode_insn(iseq.body.iseq_encoded[index]) - jit.pc = (iseq.body.iseq_encoded + index).to_i - jit.stack_size_for_pc = ctx.stack_size - jit.side_exit_for_pc.clear - - # If previous instruction requested to record the boundary - if jit.record_boundary_patch_point - # Generate an exit to this instruction and record it - exit_pos = Assembler.new.then do |ocb_asm| - @exit_compiler.compile_side_exit(jit.pc, ctx, ocb_asm) - @ocb.write(ocb_asm) - end - Invariants.record_global_inval_patch(asm, exit_pos) - jit.record_boundary_patch_point = false - end - - # In debug mode, verify our existing assumption - if C.rjit_opts.verify_ctx && jit.at_current_insn? - verify_ctx(jit, ctx) - end - - case status = @insn_compiler.compile(jit, ctx, asm, insn) - when KeepCompiling - # For now, reset the chain depth after each instruction as only the - # first instruction in the block can concern itself with the depth. - ctx.chain_depth = 0 - - index += insn.len - when EndBlock - # TODO: pad nops if entry exit exists (not needed for x86_64?) - break - when CantCompile - # Rewind stack_size using ctx.with_stack_size to allow stack_size changes - # before you return CantCompile. - @exit_compiler.compile_side_exit(jit.pc, ctx.with_stack_size(jit.stack_size_for_pc), asm) - - # If this is the first instruction, this block never needs to be invalidated. - if block.pc == iseq.body.iseq_encoded.to_i + index * C.VALUE.size - block.invalidated = true - end - - break - else - raise "compiling #{insn.name} returned unexpected status: #{status.inspect}" - end - end - - incr_counter(:compiled_block_count) - add_block(iseq, block) - end - - def leave_exit - @leave_exit ||= Assembler.new.then do |asm| - @exit_compiler.compile_leave_exit(asm) - @ocb.write(asm) - end - end - - def incr_counter(name) - if C.rjit_opts.stats - C.rb_rjit_counters[name][0] += 1 - end - end - - # Produce a generic context when the block version limit is hit for the block - def limit_block_versions(iseq, pc, ctx) - # Guard chains implement limits separately, do nothing - if ctx.chain_depth > 0 - return ctx.dup - end - - # If this block version we're about to add will hit the version limit - if list_blocks(iseq, pc).size + 1 >= MAX_VERSIONS - # Produce a generic context that stores no type information, - # but still respects the stack_size and sp_offset constraints. - # This new context will then match all future requests. - generic_ctx = Context.new - generic_ctx.stack_size = ctx.stack_size - generic_ctx.sp_offset = ctx.sp_offset - - if ctx.diff(generic_ctx) == TypeDiff::Incompatible - raise 'should substitute a compatible context' - end - - return generic_ctx - end - - return ctx.dup - end - - def list_blocks(iseq, pc) - rjit_blocks(iseq)[pc] - end - - # @param [Integer] pc - # @param [RubyVM::RJIT::Context] ctx - # @return [RubyVM::RJIT::Block,NilClass] - def find_block(iseq, pc, ctx) - versions = rjit_blocks(iseq)[pc] - - best_version = nil - best_diff = Float::INFINITY - - versions.each do |block| - # Note that we always prefer the first matching - # version found because of inline-cache chains - case ctx.diff(block.ctx) - in TypeDiff::Compatible[diff] if diff < best_diff - best_version = block - best_diff = diff - else - end - end - - return best_version - end - - # @param [RubyVM::RJIT::Block] block - def add_block(iseq, block) - rjit_blocks(iseq)[block.pc] << block - end - - # @param [RubyVM::RJIT::Block] block - def remove_block(iseq, block) - rjit_blocks(iseq)[block.pc].delete(block) - end - - def rjit_blocks(iseq) - # Guard against ISEQ GC at random moments - - unless C.imemo_type_p(iseq, C.imemo_iseq) - return Hash.new { |h, k| h[k] = [] } - end - - unless iseq.body.rjit_blocks - iseq.body.rjit_blocks = Hash.new { |blocks, pc| blocks[pc] = [] } - # For some reason, rb_rjit_iseq_mark didn't protect this Hash - # from being freed. So we rely on GC_REFS to keep the Hash. - GC_REFS << iseq.body.rjit_blocks - end - iseq.body.rjit_blocks - end - - def iseq_lineno(iseq, pc) - C.rb_iseq_line_no(iseq, (pc - iseq.body.iseq_encoded.to_i) / C.VALUE.size) - rescue RangeError # bignum too big to convert into `unsigned long long' (RangeError) - -1 - end - - # Verify the ctx's types and mappings against the compile-time stack, self, and locals. - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - def verify_ctx(jit, ctx) - # Only able to check types when at current insn - assert(jit.at_current_insn?) - - self_val = jit.peek_at_self - self_val_type = Type.from(self_val) - - # Verify self operand type - assert_compatible(self_val_type, ctx.get_opnd_type(SelfOpnd)) - - # Verify stack operand types - [ctx.stack_size, MAX_TEMP_TYPES].min.times do |i| - learned_mapping, learned_type = ctx.get_opnd_mapping(StackOpnd[i]) - stack_val = jit.peek_at_stack(i) - val_type = Type.from(stack_val) - - case learned_mapping - in MapToSelf - if C.to_value(self_val) != C.to_value(stack_val) - raise "verify_ctx: stack value was mapped to self, but values did not match:\n"\ - "stack: #{stack_val.inspect}, self: #{self_val.inspect}" - end - in MapToLocal[local_idx] - local_val = jit.peek_at_local(local_idx) - if C.to_value(local_val) != C.to_value(stack_val) - raise "verify_ctx: stack value was mapped to local, but values did not match:\n"\ - "stack: #{stack_val.inspect}, local: #{local_val.inspect}" - end - in MapToStack - # noop - end - - # If the actual type differs from the learned type - assert_compatible(val_type, learned_type) - end - - # Verify local variable types - local_table_size = jit.iseq.body.local_table_size - [local_table_size, MAX_TEMP_TYPES].min.times do |i| - learned_type = ctx.get_local_type(i) - local_val = jit.peek_at_local(i) - local_type = Type.from(local_val) - - assert_compatible(local_type, learned_type) - end - end - - def assert_compatible(actual_type, ctx_type) - if actual_type.diff(ctx_type) == TypeDiff::Incompatible - raise "verify_ctx: ctx type (#{ctx_type.type.inspect}) is incompatible with actual type (#{actual_type.type.inspect})" - end - end - - def assert(cond) - unless cond - raise "'#{cond.inspect}' was not true" - end - end - - def supported_platform? - return @supported_platform if defined?(@supported_platform) - @supported_platform = RUBY_PLATFORM.match?(/x86_64/).tap do |supported| - warn "warning: RJIT does not support #{RUBY_PLATFORM} yet" unless supported - end - end - end -end diff --git a/lib/ruby_vm/rjit/context.rb b/lib/ruby_vm/rjit/context.rb deleted file mode 100644 index a2a7ecc6dc..0000000000 --- a/lib/ruby_vm/rjit/context.rb +++ /dev/null @@ -1,377 +0,0 @@ -module RubyVM::RJIT - # Maximum number of temp value types we keep track of - MAX_TEMP_TYPES = 8 - # Maximum number of local variable types we keep track of - MAX_LOCAL_TYPES = 8 - - # Operand to a YARV bytecode instruction - SelfOpnd = :SelfOpnd # The value is self - StackOpnd = Data.define(:index) # Temporary stack operand with stack index - - # Potential mapping of a value on the temporary stack to self, - # a local variable, or constant so that we can track its type - MapToStack = :MapToStack # Normal stack value - MapToSelf = :MapToSelf # Temp maps to the self operand - MapToLocal = Data.define(:local_index) # Temp maps to a local variable with index - - class Context < Struct.new( - :stack_size, # @param [Integer] The number of values on the stack - :sp_offset, # @param [Integer] JIT sp offset relative to the interpreter's sp - :chain_depth, # @param [Integer] jit_chain_guard depth - :local_types, # @param [Array<RubyVM::RJIT::Type>] Local variable types we keep track of - :temp_types, # @param [Array<RubyVM::RJIT::Type>] Temporary variable types we keep track of - :self_type, # @param [RubyVM::RJIT::Type] Type we track for self - :temp_mapping, # @param [Array<Symbol>] Mapping of temp stack entries to types we track - ) - def initialize( - stack_size: 0, - sp_offset: 0, - chain_depth: 0, - local_types: [Type::Unknown] * MAX_LOCAL_TYPES, - temp_types: [Type::Unknown] * MAX_TEMP_TYPES, - self_type: Type::Unknown, - temp_mapping: [MapToStack] * MAX_TEMP_TYPES - ) = super - - # Deep dup by default for safety - def dup - ctx = super - ctx.local_types = ctx.local_types.dup - ctx.temp_types = ctx.temp_types.dup - ctx.temp_mapping = ctx.temp_mapping.dup - ctx - end - - # Create a new Context instance with a given stack_size and sp_offset adjusted - # accordingly. This is useful when you want to virtually rewind a stack_size for - # generating a side exit while considering past sp_offset changes on gen_save_sp. - def with_stack_size(stack_size) - ctx = self.dup - ctx.sp_offset -= ctx.stack_size - stack_size - ctx.stack_size = stack_size - ctx - end - - def stack_opnd(depth_from_top) - [SP, C.VALUE.size * (self.sp_offset - 1 - depth_from_top)] - end - - def sp_opnd(offset_bytes = 0) - [SP, (C.VALUE.size * self.sp_offset) + offset_bytes] - end - - # Push one new value on the temp stack with an explicit mapping - # Return a pointer to the new stack top - def stack_push_mapping(mapping_temp_type) - stack_size = self.stack_size - - # Keep track of the type and mapping of the value - if stack_size < MAX_TEMP_TYPES - mapping, temp_type = mapping_temp_type - self.temp_mapping[stack_size] = mapping - self.temp_types[stack_size] = temp_type - - case mapping - in MapToLocal[idx] - assert(idx < MAX_LOCAL_TYPES) - else - end - end - - self.stack_size += 1 - self.sp_offset += 1 - - return self.stack_opnd(0) - end - - # Push one new value on the temp stack - # Return a pointer to the new stack top - def stack_push(val_type) - return self.stack_push_mapping([MapToStack, val_type]) - end - - # Push the self value on the stack - def stack_push_self - return self.stack_push_mapping([MapToStack, Type::Unknown]) - end - - # Push a local variable on the stack - def stack_push_local(local_idx) - if local_idx >= MAX_LOCAL_TYPES - return self.stack_push(Type::Unknown) - end - - return self.stack_push_mapping([MapToLocal[local_idx], Type::Unknown]) - end - - # Pop N values off the stack - # Return a pointer to the stack top before the pop operation - def stack_pop(n = 1) - assert(n <= self.stack_size) - - top = self.stack_opnd(0) - - # Clear the types of the popped values - n.times do |i| - idx = self.stack_size - i - 1 - - if idx < MAX_TEMP_TYPES - self.temp_types[idx] = Type::Unknown - self.temp_mapping[idx] = MapToStack - end - end - - self.stack_size -= n - self.sp_offset -= n - - return top - end - - def shift_stack(argc) - assert(argc < self.stack_size) - - method_name_index = self.stack_size - argc - 1 - - (method_name_index...(self.stack_size - 1)).each do |i| - if i + 1 < MAX_TEMP_TYPES - self.temp_types[i] = self.temp_types[i + 1] - self.temp_mapping[i] = self.temp_mapping[i + 1] - end - end - self.stack_pop(1) - end - - # Get the type of an instruction operand - def get_opnd_type(opnd) - case opnd - in SelfOpnd - self.self_type - in StackOpnd[idx] - assert(idx < self.stack_size) - stack_idx = self.stack_size - 1 - idx - - # If outside of tracked range, do nothing - if stack_idx >= MAX_TEMP_TYPES - return Type::Unknown - end - - mapping = self.temp_mapping[stack_idx] - - case mapping - in MapToSelf - self.self_type - in MapToStack - self.temp_types[self.stack_size - 1 - idx] - in MapToLocal[idx] - assert(idx < MAX_LOCAL_TYPES) - self.local_types[idx] - end - end - end - - # Get the currently tracked type for a local variable - def get_local_type(idx) - self.local_types[idx] || Type::Unknown - end - - # Upgrade (or "learn") the type of an instruction operand - # This value must be compatible and at least as specific as the previously known type. - # If this value originated from self, or an lvar, the learned type will be - # propagated back to its source. - def upgrade_opnd_type(opnd, opnd_type) - case opnd - in SelfOpnd - self.self_type = self.self_type.upgrade(opnd_type) - in StackOpnd[idx] - assert(idx < self.stack_size) - stack_idx = self.stack_size - 1 - idx - - # If outside of tracked range, do nothing - if stack_idx >= MAX_TEMP_TYPES - return - end - - mapping = self.temp_mapping[stack_idx] - - case mapping - in MapToSelf - self.self_type = self.self_type.upgrade(opnd_type) - in MapToStack - self.temp_types[stack_idx] = self.temp_types[stack_idx].upgrade(opnd_type) - in MapToLocal[idx] - assert(idx < MAX_LOCAL_TYPES) - self.local_types[idx] = self.local_types[idx].upgrade(opnd_type) - end - end - end - - # Get both the type and mapping (where the value originates) of an operand. - # This is can be used with stack_push_mapping or set_opnd_mapping to copy - # a stack value's type while maintaining the mapping. - def get_opnd_mapping(opnd) - opnd_type = self.get_opnd_type(opnd) - - case opnd - in SelfOpnd - return [MapToSelf, opnd_type] - in StackOpnd[idx] - assert(idx < self.stack_size) - stack_idx = self.stack_size - 1 - idx - - if stack_idx < MAX_TEMP_TYPES - return [self.temp_mapping[stack_idx], opnd_type] - else - # We can't know the source of this stack operand, so we assume it is - # a stack-only temporary. type will be UNKNOWN - assert(opnd_type == Type::Unknown) - return [MapToStack, opnd_type] - end - end - end - - # Overwrite both the type and mapping of a stack operand. - def set_opnd_mapping(opnd, mapping_opnd_type) - case opnd - in SelfOpnd - raise 'self always maps to self' - in StackOpnd[idx] - assert(idx < self.stack_size) - stack_idx = self.stack_size - 1 - idx - - # If outside of tracked range, do nothing - if stack_idx >= MAX_TEMP_TYPES - return - end - - mapping, opnd_type = mapping_opnd_type - self.temp_mapping[stack_idx] = mapping - - # Only used when mapping == MAP_STACK - self.temp_types[stack_idx] = opnd_type - end - end - - # Set the type of a local variable - def set_local_type(local_idx, local_type) - if local_idx >= MAX_LOCAL_TYPES - return - end - - # If any values on the stack map to this local we must detach them - MAX_TEMP_TYPES.times do |stack_idx| - case self.temp_mapping[stack_idx] - in MapToStack - # noop - in MapToSelf - # noop - in MapToLocal[idx] - if idx == local_idx - self.temp_types[stack_idx] = self.local_types[idx] - self.temp_mapping[stack_idx] = MapToStack - else - # noop - end - end - end - - self.local_types[local_idx] = local_type - end - - # Erase local variable type information - # eg: because of a call we can't track - def clear_local_types - # When clearing local types we must detach any stack mappings to those - # locals. Even if local values may have changed, stack values will not. - MAX_TEMP_TYPES.times do |stack_idx| - case self.temp_mapping[stack_idx] - in MapToStack - # noop - in MapToSelf - # noop - in MapToLocal[local_idx] - self.temp_types[stack_idx] = self.local_types[local_idx] - self.temp_mapping[stack_idx] = MapToStack - end - end - - # Clear the local types - self.local_types = [Type::Unknown] * MAX_LOCAL_TYPES - end - - # Compute a difference score for two context objects - def diff(dst) - # Self is the source context (at the end of the predecessor) - src = self - - # Can only lookup the first version in the chain - if dst.chain_depth != 0 - return TypeDiff::Incompatible - end - - # Blocks with depth > 0 always produce new versions - # Sidechains cannot overlap - if src.chain_depth != 0 - return TypeDiff::Incompatible - end - - if dst.stack_size != src.stack_size - return TypeDiff::Incompatible - end - - if dst.sp_offset != src.sp_offset - return TypeDiff::Incompatible - end - - # Difference sum - diff = 0 - - # Check the type of self - diff += case src.self_type.diff(dst.self_type) - in TypeDiff::Compatible[diff] then diff - in TypeDiff::Incompatible then return TypeDiff::Incompatible - end - - # For each local type we track - src.local_types.size.times do |i| - t_src = src.local_types[i] - t_dst = dst.local_types[i] - diff += case t_src.diff(t_dst) - in TypeDiff::Compatible[diff] then diff - in TypeDiff::Incompatible then return TypeDiff::Incompatible - end - end - - # For each value on the temp stack - src.stack_size.times do |i| - src_mapping, src_type = src.get_opnd_mapping(StackOpnd[i]) - dst_mapping, dst_type = dst.get_opnd_mapping(StackOpnd[i]) - - # If the two mappings aren't the same - if src_mapping != dst_mapping - if dst_mapping == MapToStack - # We can safely drop information about the source of the temp - # stack operand. - diff += 1 - else - return TypeDiff::Incompatible - end - end - - diff += case src_type.diff(dst_type) - in TypeDiff::Compatible[diff] then diff - in TypeDiff::Incompatible then return TypeDiff::Incompatible - end - end - - return TypeDiff::Compatible[diff] - end - - private - - def assert(cond) - unless cond - raise "'#{cond.inspect}' was not true" - end - end - end -end diff --git a/lib/ruby_vm/rjit/entry_stub.rb b/lib/ruby_vm/rjit/entry_stub.rb deleted file mode 100644 index 9bcef14053..0000000000 --- a/lib/ruby_vm/rjit/entry_stub.rb +++ /dev/null @@ -1,7 +0,0 @@ -module RubyVM::RJIT - class EntryStub < Struct.new( - :start_addr, # @param [Integer] Stub source start address to be re-generated - :end_addr, # @param [Integer] Stub source end address to be re-generated - ) - end -end diff --git a/lib/ruby_vm/rjit/exit_compiler.rb b/lib/ruby_vm/rjit/exit_compiler.rb deleted file mode 100644 index 1ced2141a4..0000000000 --- a/lib/ruby_vm/rjit/exit_compiler.rb +++ /dev/null @@ -1,164 +0,0 @@ -module RubyVM::RJIT - class ExitCompiler - def initialize = freeze - - # Used for invalidating a block on entry. - # @param pc [Integer] - # @param asm [RubyVM::RJIT::Assembler] - def compile_entry_exit(pc, ctx, asm, cause:) - # Fix pc/sp offsets for the interpreter - save_pc_and_sp(pc, ctx, asm, reset_sp_offset: false) - - # Increment per-insn exit counter - count_insn_exit(pc, asm) - - # Restore callee-saved registers - asm.comment("#{cause}: entry exit") - asm.pop(SP) - asm.pop(EC) - asm.pop(CFP) - - asm.mov(C_RET, Qundef) - asm.ret - end - - # Set to cfp->jit_return by default for leave insn - # @param asm [RubyVM::RJIT::Assembler] - def compile_leave_exit(asm) - asm.comment('default cfp->jit_return') - - # Restore callee-saved registers - asm.pop(SP) - asm.pop(EC) - asm.pop(CFP) - - # :rax is written by #leave - asm.ret - end - - # Fire cfunc events on invalidation by TracePoint - # @param asm [RubyVM::RJIT::Assembler] - def compile_full_cfunc_return(asm) - # This chunk of code expects REG_EC to be filled properly and - # RAX to contain the return value of the C method. - - asm.comment('full cfunc return') - asm.mov(C_ARGS[0], EC) - asm.mov(C_ARGS[1], :rax) - asm.call(C.rjit_full_cfunc_return) - - # TODO: count the exit - - # Restore callee-saved registers - asm.pop(SP) - asm.pop(EC) - asm.pop(CFP) - - asm.mov(C_RET, Qundef) - asm.ret - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def compile_side_exit(pc, ctx, asm) - # Fix pc/sp offsets for the interpreter - save_pc_and_sp(pc, ctx.dup, asm) # dup to avoid sp_offset update - - # Increment per-insn exit counter - count_insn_exit(pc, asm) - - # Restore callee-saved registers - asm.comment("exit to interpreter on #{pc_to_insn(pc).name}") - asm.pop(SP) - asm.pop(EC) - asm.pop(CFP) - - asm.mov(C_RET, Qundef) - asm.ret - end - - # @param asm [RubyVM::RJIT::Assembler] - # @param entry_stub [RubyVM::RJIT::EntryStub] - def compile_entry_stub(asm, entry_stub) - # Call rb_rjit_entry_stub_hit - asm.comment('entry stub hit') - asm.mov(C_ARGS[0], to_value(entry_stub)) - asm.call(C.rb_rjit_entry_stub_hit) - - # Jump to the address returned by rb_rjit_entry_stub_hit - asm.jmp(:rax) - end - - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - # @param branch_stub [RubyVM::RJIT::BranchStub] - # @param target0_p [TrueClass,FalseClass] - def compile_branch_stub(ctx, asm, branch_stub, target0_p) - # Call rb_rjit_branch_stub_hit - iseq = branch_stub.iseq - if C.rjit_opts.dump_disasm && C.imemo_type_p(iseq, C.imemo_iseq) # Guard against ISEQ GC at random moments - asm.comment("branch stub hit: #{iseq.body.location.label}@#{C.rb_iseq_path(iseq)}:#{iseq_lineno(iseq, target0_p ? branch_stub.target0.pc : branch_stub.target1.pc)}") - end - asm.mov(:rdi, to_value(branch_stub)) - asm.mov(:esi, ctx.sp_offset) - asm.mov(:edx, target0_p ? 1 : 0) - asm.call(C.rb_rjit_branch_stub_hit) - - # Jump to the address returned by rb_rjit_branch_stub_hit - asm.jmp(:rax) - end - - private - - def pc_to_insn(pc) - Compiler.decode_insn(C.VALUE.new(pc).*) - end - - # @param pc [Integer] - # @param asm [RubyVM::RJIT::Assembler] - def count_insn_exit(pc, asm) - if C.rjit_opts.stats - insn = Compiler.decode_insn(C.VALUE.new(pc).*) - asm.comment("increment insn exit: #{insn.name}") - asm.mov(:rax, (C.rjit_insn_exits + insn.bin).to_i) - asm.add([:rax], 1) # TODO: lock - end - if C.rjit_opts.trace_exits - asm.comment('rjit_record_exit_stack') - asm.mov(C_ARGS[0], pc) - asm.call(C.rjit_record_exit_stack) - end - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def save_pc_and_sp(pc, ctx, asm, reset_sp_offset: true) - # Update pc (TODO: manage PC offset?) - asm.comment("save PC#{' and SP' if ctx.sp_offset != 0} to CFP") - asm.mov(:rax, pc) # rax = jit.pc - asm.mov([CFP, C.rb_control_frame_t.offsetof(:pc)], :rax) # cfp->pc = rax - - # Update sp - if ctx.sp_offset != 0 - asm.add(SP, C.VALUE.size * ctx.sp_offset) # sp += stack_size - asm.mov([CFP, C.rb_control_frame_t.offsetof(:sp)], SP) # cfp->sp = sp - if reset_sp_offset - ctx.sp_offset = 0 - end - end - end - - def to_value(obj) - GC_REFS << obj - C.to_value(obj) - end - - def iseq_lineno(iseq, pc) - C.rb_iseq_line_no(iseq, (pc - iseq.body.iseq_encoded.to_i) / C.VALUE.size) - rescue RangeError # bignum too big to convert into `unsigned long long' (RangeError) - -1 - end - end -end diff --git a/lib/ruby_vm/rjit/hooks.rb b/lib/ruby_vm/rjit/hooks.rb deleted file mode 100644 index ea9d7bf5a8..0000000000 --- a/lib/ruby_vm/rjit/hooks.rb +++ /dev/null @@ -1,36 +0,0 @@ -module RubyVM::RJIT - module Hooks # :nodoc: all - def self.on_bop_redefined(_redefined_flag, _bop) - # C.rjit_cancel_all("BOP is redefined") - end - - def self.on_cme_invalidate(cme) - cme = C.rb_callable_method_entry_struct.new(cme) - Invariants.on_cme_invalidate(cme) - end - - def self.on_ractor_spawn - # C.rjit_cancel_all("Ractor is spawned") - end - - # Global constant changes like const_set - def self.on_constant_state_changed(id) - Invariants.on_constant_state_changed(id) - end - - # ISEQ-specific constant invalidation - def self.on_constant_ic_update(iseq, ic, insn_idx) - iseq = C.rb_iseq_t.new(iseq) - ic = C.IC.new(ic) - Invariants.on_constant_ic_update(iseq, ic, insn_idx) - end - - def self.on_tracing_invalidate_all(_new_iseq_events) - Invariants.on_tracing_invalidate_all - end - - def self.on_update_references - Invariants.on_update_references - end - end -end diff --git a/lib/ruby_vm/rjit/insn_compiler.rb b/lib/ruby_vm/rjit/insn_compiler.rb deleted file mode 100644 index a33ba9f468..0000000000 --- a/lib/ruby_vm/rjit/insn_compiler.rb +++ /dev/null @@ -1,6046 +0,0 @@ -# frozen_string_literal: true -module RubyVM::RJIT - class InsnCompiler - # struct rb_calling_info. Storing flags instead of ci. - CallingInfo = Struct.new(:argc, :flags, :kwarg, :ci_addr, :send_shift, :block_handler) do - def kw_splat = flags & C::VM_CALL_KW_SPLAT != 0 - end - - # @param ocb [CodeBlock] - # @param exit_compiler [RubyVM::RJIT::ExitCompiler] - def initialize(cb, ocb, exit_compiler) - @ocb = ocb - @exit_compiler = exit_compiler - - @cfunc_codegen_table = {} - register_cfunc_codegen_funcs - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - # @param insn `RubyVM::RJIT::Instruction` - def compile(jit, ctx, asm, insn) - asm.incr_counter(:rjit_insns_count) - - stack = ctx.stack_size.times.map do |stack_idx| - ctx.get_opnd_type(StackOpnd[ctx.stack_size - stack_idx - 1]).type - end - locals = jit.iseq.body.local_table_size.times.map do |local_idx| - (ctx.local_types[local_idx] || Type::Unknown).type - end - - insn_idx = format('%04d', (jit.pc.to_i - jit.iseq.body.iseq_encoded.to_i) / C.VALUE.size) - asm.comment("Insn: #{insn_idx} #{insn.name} (stack: [#{stack.join(', ')}], locals: [#{locals.join(', ')}])") - - # 83/102 - case insn.name - when :nop then nop(jit, ctx, asm) - when :getlocal then getlocal(jit, ctx, asm) - when :setlocal then setlocal(jit, ctx, asm) - when :getblockparam then getblockparam(jit, ctx, asm) - # setblockparam - when :getblockparamproxy then getblockparamproxy(jit, ctx, asm) - when :getspecial then getspecial(jit, ctx, asm) - # setspecial - when :getinstancevariable then getinstancevariable(jit, ctx, asm) - when :setinstancevariable then setinstancevariable(jit, ctx, asm) - when :getclassvariable then getclassvariable(jit, ctx, asm) - when :setclassvariable then setclassvariable(jit, ctx, asm) - when :opt_getconstant_path then opt_getconstant_path(jit, ctx, asm) - when :getconstant then getconstant(jit, ctx, asm) - # setconstant - when :getglobal then getglobal(jit, ctx, asm) - # setglobal - when :putnil then putnil(jit, ctx, asm) - when :putself then putself(jit, ctx, asm) - when :putobject then putobject(jit, ctx, asm) - when :putspecialobject then putspecialobject(jit, ctx, asm) - when :putstring then putstring(jit, ctx, asm) - when :putchilledstring then putchilledstring(jit, ctx, asm) - when :concatstrings then concatstrings(jit, ctx, asm) - when :anytostring then anytostring(jit, ctx, asm) - when :toregexp then toregexp(jit, ctx, asm) - when :intern then intern(jit, ctx, asm) - when :newarray then newarray(jit, ctx, asm) - when :duparray then duparray(jit, ctx, asm) - # duphash - when :expandarray then expandarray(jit, ctx, asm) - when :concatarray then concatarray(jit, ctx, asm) - when :splatarray then splatarray(jit, ctx, asm) - when :newhash then newhash(jit, ctx, asm) - when :newrange then newrange(jit, ctx, asm) - when :pop then pop(jit, ctx, asm) - when :dup then dup(jit, ctx, asm) - when :dupn then dupn(jit, ctx, asm) - when :swap then swap(jit, ctx, asm) - # opt_reverse - when :topn then topn(jit, ctx, asm) - when :setn then setn(jit, ctx, asm) - when :adjuststack then adjuststack(jit, ctx, asm) - when :defined then defined(jit, ctx, asm) - when :definedivar then definedivar(jit, ctx, asm) - # checkmatch - when :checkkeyword then checkkeyword(jit, ctx, asm) - # checktype - # defineclass - # definemethod - # definesmethod - when :send then send(jit, ctx, asm) - when :opt_send_without_block then opt_send_without_block(jit, ctx, asm) - when :objtostring then objtostring(jit, ctx, asm) - when :opt_str_freeze then opt_str_freeze(jit, ctx, asm) - when :opt_ary_freeze then opt_ary_freeze(jit, ctx, asm) - when :opt_hash_freeze then opt_hash_freeze(jit, ctx, asm) - when :opt_nil_p then opt_nil_p(jit, ctx, asm) - # opt_str_uminus - when :opt_newarray_send then opt_newarray_send(jit, ctx, asm) - when :invokesuper then invokesuper(jit, ctx, asm) - when :invokeblock then invokeblock(jit, ctx, asm) - when :leave then leave(jit, ctx, asm) - when :throw then throw(jit, ctx, asm) - when :jump then jump(jit, ctx, asm) - when :branchif then branchif(jit, ctx, asm) - when :branchunless then branchunless(jit, ctx, asm) - when :branchnil then branchnil(jit, ctx, asm) - # once - when :opt_case_dispatch then opt_case_dispatch(jit, ctx, asm) - when :opt_plus then opt_plus(jit, ctx, asm) - when :opt_minus then opt_minus(jit, ctx, asm) - when :opt_mult then opt_mult(jit, ctx, asm) - when :opt_div then opt_div(jit, ctx, asm) - when :opt_mod then opt_mod(jit, ctx, asm) - when :opt_eq then opt_eq(jit, ctx, asm) - when :opt_neq then opt_neq(jit, ctx, asm) - when :opt_lt then opt_lt(jit, ctx, asm) - when :opt_le then opt_le(jit, ctx, asm) - when :opt_gt then opt_gt(jit, ctx, asm) - when :opt_ge then opt_ge(jit, ctx, asm) - when :opt_ltlt then opt_ltlt(jit, ctx, asm) - when :opt_and then opt_and(jit, ctx, asm) - when :opt_or then opt_or(jit, ctx, asm) - when :opt_aref then opt_aref(jit, ctx, asm) - when :opt_aset then opt_aset(jit, ctx, asm) - # opt_aset_with - # opt_aref_with - when :opt_length then opt_length(jit, ctx, asm) - when :opt_size then opt_size(jit, ctx, asm) - when :opt_empty_p then opt_empty_p(jit, ctx, asm) - when :opt_succ then opt_succ(jit, ctx, asm) - when :opt_not then opt_not(jit, ctx, asm) - when :opt_regexpmatch2 then opt_regexpmatch2(jit, ctx, asm) - # invokebuiltin - when :opt_invokebuiltin_delegate then opt_invokebuiltin_delegate(jit, ctx, asm) - when :opt_invokebuiltin_delegate_leave then opt_invokebuiltin_delegate_leave(jit, ctx, asm) - when :getlocal_WC_0 then getlocal_WC_0(jit, ctx, asm) - when :getlocal_WC_1 then getlocal_WC_1(jit, ctx, asm) - when :setlocal_WC_0 then setlocal_WC_0(jit, ctx, asm) - when :setlocal_WC_1 then setlocal_WC_1(jit, ctx, asm) - when :putobject_INT2FIX_0_ then putobject_INT2FIX_0_(jit, ctx, asm) - when :putobject_INT2FIX_1_ then putobject_INT2FIX_1_(jit, ctx, asm) - else CantCompile - end - end - - private - - # - # Insns - # - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def nop(jit, ctx, asm) - # Do nothing - KeepCompiling - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def getlocal(jit, ctx, asm) - idx = jit.operand(0) - level = jit.operand(1) - jit_getlocal_generic(jit, ctx, asm, idx:, level:) - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def getlocal_WC_0(jit, ctx, asm) - idx = jit.operand(0) - jit_getlocal_generic(jit, ctx, asm, idx:, level: 0) - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def getlocal_WC_1(jit, ctx, asm) - idx = jit.operand(0) - jit_getlocal_generic(jit, ctx, asm, idx:, level: 1) - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def setlocal(jit, ctx, asm) - idx = jit.operand(0) - level = jit.operand(1) - jit_setlocal_generic(jit, ctx, asm, idx:, level:) - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def setlocal_WC_0(jit, ctx, asm) - idx = jit.operand(0) - jit_setlocal_generic(jit, ctx, asm, idx:, level: 0) - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def setlocal_WC_1(jit, ctx, asm) - idx = jit.operand(0) - jit_setlocal_generic(jit, ctx, asm, idx:, level: 1) - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def getblockparam(jit, ctx, asm) - # EP level - level = jit.operand(1) - - # Save the PC and SP because we might allocate - jit_prepare_routine_call(jit, ctx, asm) - - # A mirror of the interpreter code. Checking for the case - # where it's pushing rb_block_param_proxy. - side_exit = side_exit(jit, ctx) - - # Load environment pointer EP from CFP - ep_reg = :rax - jit_get_ep(asm, level, reg: ep_reg) - - # Bail when VM_ENV_FLAGS(ep, VM_FRAME_FLAG_MODIFIED_BLOCK_PARAM) is non zero - # FIXME: This is testing bits in the same place that the WB check is testing. - # We should combine these at some point - asm.test([ep_reg, C.VALUE.size * C::VM_ENV_DATA_INDEX_FLAGS], C::VM_FRAME_FLAG_MODIFIED_BLOCK_PARAM) - - # If the frame flag has been modified, then the actual proc value is - # already in the EP and we should just use the value. - frame_flag_modified = asm.new_label('frame_flag_modified') - asm.jnz(frame_flag_modified) - - # This instruction writes the block handler to the EP. If we need to - # fire a write barrier for the write, then exit (we'll let the - # interpreter handle it so it can fire the write barrier). - # flags & VM_ENV_FLAG_WB_REQUIRED - asm.test([ep_reg, C.VALUE.size * C::VM_ENV_DATA_INDEX_FLAGS], C::VM_ENV_FLAG_WB_REQUIRED) - - # if (flags & VM_ENV_FLAG_WB_REQUIRED) != 0 - asm.jnz(side_exit) - - # Convert the block handler in to a proc - # call rb_vm_bh_to_procval(const rb_execution_context_t *ec, VALUE block_handler) - asm.mov(C_ARGS[0], EC) - # The block handler for the current frame - # note, VM_ASSERT(VM_ENV_LOCAL_P(ep)) - asm.mov(C_ARGS[1], [ep_reg, C.VALUE.size * C::VM_ENV_DATA_INDEX_SPECVAL]) - asm.call(C.rb_vm_bh_to_procval) - - # Load environment pointer EP from CFP (again) - ep_reg = :rcx - jit_get_ep(asm, level, reg: ep_reg) - - # Write the value at the environment pointer - idx = jit.operand(0) - offs = -(C.VALUE.size * idx) - asm.mov([ep_reg, offs], C_RET); - - # Set the frame modified flag - asm.mov(:rax, [ep_reg, C.VALUE.size * C::VM_ENV_DATA_INDEX_FLAGS]) # flag_check - asm.or(:rax, C::VM_FRAME_FLAG_MODIFIED_BLOCK_PARAM) # modified_flag - asm.mov([ep_reg, C.VALUE.size * C::VM_ENV_DATA_INDEX_FLAGS], :rax) - - asm.write_label(frame_flag_modified) - - # Push the proc on the stack - stack_ret = ctx.stack_push(Type::Unknown) - ep_reg = :rax - jit_get_ep(asm, level, reg: ep_reg) - asm.mov(:rax, [ep_reg, offs]) - asm.mov(stack_ret, :rax) - - KeepCompiling - end - - # setblockparam - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def getblockparamproxy(jit, ctx, asm) - # To get block_handler - unless jit.at_current_insn? - defer_compilation(jit, ctx, asm) - return EndBlock - end - - starting_context = ctx.dup # make a copy for use with jit_chain_guard - - # A mirror of the interpreter code. Checking for the case - # where it's pushing rb_block_param_proxy. - side_exit = side_exit(jit, ctx) - - # EP level - level = jit.operand(1) - - # Peek at the block handler so we can check whether it's nil - comptime_handler = jit.peek_at_block_handler(level) - - # When a block handler is present, it should always be a GC-guarded - # pointer (VM_BH_ISEQ_BLOCK_P) - if comptime_handler != 0 && comptime_handler & 0x3 != 0x1 - asm.incr_counter(:getblockpp_not_gc_guarded) - return CantCompile - end - - # Load environment pointer EP from CFP - ep_reg = :rax - jit_get_ep(asm, level, reg: ep_reg) - - # Bail when VM_ENV_FLAGS(ep, VM_FRAME_FLAG_MODIFIED_BLOCK_PARAM) is non zero - asm.test([ep_reg, C.VALUE.size * C::VM_ENV_DATA_INDEX_FLAGS], C::VM_FRAME_FLAG_MODIFIED_BLOCK_PARAM) - asm.jnz(counted_exit(side_exit, :getblockpp_block_param_modified)) - - # Load the block handler for the current frame - # note, VM_ASSERT(VM_ENV_LOCAL_P(ep)) - block_handler = :rax - asm.mov(block_handler, [ep_reg, C.VALUE.size * C::VM_ENV_DATA_INDEX_SPECVAL]) - - # Specialize compilation for the case where no block handler is present - if comptime_handler == 0 - # Bail if there is a block handler - asm.cmp(block_handler, 0) - - jit_chain_guard(:jnz, jit, starting_context, asm, counted_exit(side_exit, :getblockpp_block_handler_none)) - - putobject(jit, ctx, asm, val: Qnil) - else - # Block handler is a tagged pointer. Look at the tag. 0x03 is from VM_BH_ISEQ_BLOCK_P(). - asm.and(block_handler, 0x3) - - # Bail unless VM_BH_ISEQ_BLOCK_P(bh). This also checks for null. - asm.cmp(block_handler, 0x1) - - jit_chain_guard(:jnz, jit, starting_context, asm, counted_exit(side_exit, :getblockpp_not_iseq_block)) - - # Push rb_block_param_proxy. It's a root, so no need to use jit_mov_gc_ptr. - top = ctx.stack_push(Type::BlockParamProxy) - asm.mov(:rax, C.rb_block_param_proxy) - asm.mov(top, :rax) - end - - jump_to_next_insn(jit, ctx, asm) - - EndBlock - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def getspecial(jit, ctx, asm) - # This takes two arguments, key and type - # key is only used when type == 0 - # A non-zero type determines which type of backref to fetch - #rb_num_t key = jit.jit_get_arg(0); - rtype = jit.operand(1) - - if rtype == 0 - # not yet implemented - return CantCompile; - elsif rtype & 0x01 != 0 - # Fetch a "special" backref based on a char encoded by shifting by 1 - - # Can raise if matchdata uninitialized - jit_prepare_routine_call(jit, ctx, asm) - - # call rb_backref_get() - asm.comment('rb_backref_get') - asm.call(C.rb_backref_get) - - asm.mov(C_ARGS[0], C_RET) # backref - case [rtype >> 1].pack('c') - in ?& - asm.comment("rb_reg_last_match") - asm.call(C.rb_reg_last_match) - in ?` - asm.comment("rb_reg_match_pre") - asm.call(C.rb_reg_match_pre) - in ?' - asm.comment("rb_reg_match_post") - asm.call(C.rb_reg_match_post) - in ?+ - asm.comment("rb_reg_match_last") - asm.call(C.rb_reg_match_last) - end - - stack_ret = ctx.stack_push(Type::Unknown) - asm.mov(stack_ret, C_RET) - - KeepCompiling - else - # Fetch the N-th match from the last backref based on type shifted by 1 - - # Can raise if matchdata uninitialized - jit_prepare_routine_call(jit, ctx, asm) - - # call rb_backref_get() - asm.comment('rb_backref_get') - asm.call(C.rb_backref_get) - - # rb_reg_nth_match((int)(type >> 1), backref); - asm.comment('rb_reg_nth_match') - asm.mov(C_ARGS[0], rtype >> 1) - asm.mov(C_ARGS[1], C_RET) # backref - asm.call(C.rb_reg_nth_match) - - stack_ret = ctx.stack_push(Type::Unknown) - asm.mov(stack_ret, C_RET) - - KeepCompiling - end - end - - # setspecial - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def getinstancevariable(jit, ctx, asm) - # Specialize on a compile-time receiver, and split a block for chain guards - unless jit.at_current_insn? - defer_compilation(jit, ctx, asm) - return EndBlock - end - - id = jit.operand(0) - comptime_obj = jit.peek_at_self - - jit_getivar(jit, ctx, asm, comptime_obj, id, nil, SelfOpnd) - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def setinstancevariable(jit, ctx, asm) - starting_context = ctx.dup # make a copy for use with jit_chain_guard - - # Defer compilation so we can specialize on a runtime `self` - unless jit.at_current_insn? - defer_compilation(jit, ctx, asm) - return EndBlock - end - - ivar_name = jit.operand(0) - comptime_receiver = jit.peek_at_self - - # If the comptime receiver is frozen, writing an IV will raise an exception - # and we don't want to JIT code to deal with that situation. - if C.rb_obj_frozen_p(comptime_receiver) - asm.incr_counter(:setivar_frozen) - return CantCompile - end - - # Check if the comptime receiver is a T_OBJECT - receiver_t_object = C::BUILTIN_TYPE(comptime_receiver) == C::T_OBJECT - - # If the receiver isn't a T_OBJECT, or uses a custom allocator, - # then just write out the IV write as a function call. - # too-complex shapes can't use index access, so we use rb_ivar_get for them too. - if !receiver_t_object || shape_too_complex?(comptime_receiver) || ctx.chain_depth >= 10 - asm.comment('call rb_vm_setinstancevariable') - - ic = jit.operand(1) - - # The function could raise exceptions. - # Note that this modifies REG_SP, which is why we do it first - jit_prepare_routine_call(jit, ctx, asm) - - # Get the operands from the stack - val_opnd = ctx.stack_pop(1) - - # Call rb_vm_setinstancevariable(iseq, obj, id, val, ic); - asm.mov(:rdi, jit.iseq.to_i) - asm.mov(:rsi, [CFP, C.rb_control_frame_t.offsetof(:self)]) - asm.mov(:rdx, ivar_name) - asm.mov(:rcx, val_opnd) - asm.mov(:r8, ic) - asm.call(C.rb_vm_setinstancevariable) - else - # Get the iv index - shape_id = C.rb_shape_get_shape_id(comptime_receiver) - ivar_index = C.rb_shape_get_iv_index(shape_id, ivar_name) - - # Get the receiver - asm.mov(:rax, [CFP, C.rb_control_frame_t.offsetof(:self)]) - - # Generate a side exit - side_exit = side_exit(jit, ctx) - - # Upgrade type - guard_object_is_heap(jit, ctx, asm, :rax, SelfOpnd, :setivar_not_heap) - - asm.comment('guard shape') - asm.cmp(DwordPtr[:rax, C.rb_shape_id_offset], shape_id) - megamorphic_side_exit = counted_exit(side_exit, :setivar_megamorphic) - jit_chain_guard(:jne, jit, starting_context, asm, megamorphic_side_exit) - - # If we don't have an instance variable index, then we need to - # transition out of the current shape. - if ivar_index.nil? - shape = C.rb_shape_get_shape_by_id(shape_id) - - current_capacity = shape.capacity - dest_shape = C.rb_shape_get_next_no_warnings(shape, comptime_receiver, ivar_name) - new_shape_id = C.rb_shape_id(dest_shape) - - if new_shape_id == C::OBJ_TOO_COMPLEX_SHAPE_ID - asm.incr_counter(:setivar_too_complex) - return CantCompile - end - - ivar_index = shape.next_iv_index - - # If the new shape has a different capacity, we need to - # reallocate the object. - needs_extension = dest_shape.capacity != shape.capacity - - if needs_extension - # Generate the C call so that runtime code will increase - # the capacity and set the buffer. - asm.mov(C_ARGS[0], :rax) - asm.mov(C_ARGS[1], current_capacity) - asm.mov(C_ARGS[2], dest_shape.capacity) - asm.call(C.rb_ensure_iv_list_size) - - # Load the receiver again after the function call - asm.mov(:rax, [CFP, C.rb_control_frame_t.offsetof(:self)]) - end - - write_val = ctx.stack_pop(1) - jit_write_iv(asm, comptime_receiver, :rax, :rcx, ivar_index, write_val, needs_extension) - - # Store the new shape - asm.comment('write shape') - asm.mov(:rax, [CFP, C.rb_control_frame_t.offsetof(:self)]) # reload after jit_write_iv - asm.mov(DwordPtr[:rax, C.rb_shape_id_offset], new_shape_id) - else - # If the iv index already exists, then we don't need to - # transition to a new shape. The reason is because we find - # the iv index by searching up the shape tree. If we've - # made the transition already, then there's no reason to - # update the shape on the object. Just set the IV. - write_val = ctx.stack_pop(1) - jit_write_iv(asm, comptime_receiver, :rax, :rcx, ivar_index, write_val, false) - end - - skip_wb = asm.new_label('skip_wb') - # If the value we're writing is an immediate, we don't need to WB - asm.test(write_val, C::RUBY_IMMEDIATE_MASK) - asm.jnz(skip_wb) - - # If the value we're writing is nil or false, we don't need to WB - asm.cmp(write_val, Qnil) - asm.jbe(skip_wb) - - asm.comment('write barrier') - asm.mov(C_ARGS[0], [CFP, C.rb_control_frame_t.offsetof(:self)]) # reload after jit_write_iv - asm.mov(C_ARGS[1], write_val) - asm.call(C.rb_gc_writebarrier) - - asm.write_label(skip_wb) - end - - KeepCompiling - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def getclassvariable(jit, ctx, asm) - # rb_vm_getclassvariable can raise exceptions. - jit_prepare_routine_call(jit, ctx, asm) - - asm.mov(C_ARGS[0], [CFP, C.rb_control_frame_t.offsetof(:iseq)]) - asm.mov(C_ARGS[1], CFP) - asm.mov(C_ARGS[2], jit.operand(0)) - asm.mov(C_ARGS[3], jit.operand(1)) - asm.call(C.rb_vm_getclassvariable) - - top = ctx.stack_push(Type::Unknown) - asm.mov(top, C_RET) - - KeepCompiling - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def setclassvariable(jit, ctx, asm) - # rb_vm_setclassvariable can raise exceptions. - jit_prepare_routine_call(jit, ctx, asm) - - asm.mov(C_ARGS[0], [CFP, C.rb_control_frame_t.offsetof(:iseq)]) - asm.mov(C_ARGS[1], CFP) - asm.mov(C_ARGS[2], jit.operand(0)) - asm.mov(C_ARGS[3], ctx.stack_pop(1)) - asm.mov(C_ARGS[4], jit.operand(1)) - asm.call(C.rb_vm_setclassvariable) - - KeepCompiling - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def opt_getconstant_path(jit, ctx, asm) - # Cut the block for invalidation - unless jit.at_current_insn? - defer_compilation(jit, ctx, asm) - return EndBlock - end - - ic = C.iseq_inline_constant_cache.new(jit.operand(0)) - idlist = ic.segments - - # Make sure there is an exit for this block as the interpreter might want - # to invalidate this block from rb_rjit_constant_ic_update(). - # For now, we always take an entry exit even if it was a side exit. - Invariants.ensure_block_entry_exit(jit, cause: 'opt_getconstant_path') - - # See vm_ic_hit_p(). The same conditions are checked in yjit_constant_ic_update(). - ice = ic.entry - if ice.nil? - # In this case, leave a block that unconditionally side exits - # for the interpreter to invalidate. - asm.incr_counter(:optgetconst_not_cached) - return CantCompile - end - - if ice.ic_cref # with cref - # Cache is keyed on a certain lexical scope. Use the interpreter's cache. - side_exit = side_exit(jit, ctx) - - # Call function to verify the cache. It doesn't allocate or call methods. - asm.mov(C_ARGS[0], ic.to_i) - asm.mov(C_ARGS[1], [CFP, C.rb_control_frame_t.offsetof(:ep)]) - asm.call(C.rb_vm_ic_hit_p) - - # Check the result. SysV only specifies one byte for _Bool return values, - # so it's important we only check one bit to ignore the higher bits in the register. - asm.test(C_RET, 1) - asm.jz(counted_exit(side_exit, :optgetconst_cache_miss)) - - asm.mov(:rax, ic.to_i) # inline_cache - asm.mov(:rax, [:rax, C.iseq_inline_constant_cache.offsetof(:entry)]) # ic_entry - asm.mov(:rax, [:rax, C.iseq_inline_constant_cache_entry.offsetof(:value)]) # ic_entry_val - - # Push ic->entry->value - stack_top = ctx.stack_push(Type::Unknown) - asm.mov(stack_top, :rax) - else # without cref - # TODO: implement this - # Optimize for single ractor mode. - # if !assume_single_ractor_mode(jit, ocb) - # return CantCompile - # end - - # Invalidate output code on any constant writes associated with - # constants referenced within the current block. - Invariants.assume_stable_constant_names(jit, idlist) - - putobject(jit, ctx, asm, val: ice.value) - end - - jump_to_next_insn(jit, ctx, asm) - EndBlock - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def getconstant(jit, ctx, asm) - id = jit.operand(0) - - # vm_get_ev_const can raise exceptions. - jit_prepare_routine_call(jit, ctx, asm) - - allow_nil_opnd = ctx.stack_pop(1) - klass_opnd = ctx.stack_pop(1) - - asm.mov(C_ARGS[0], EC) - asm.mov(C_ARGS[1], klass_opnd) - asm.mov(C_ARGS[2], id) - asm.mov(C_ARGS[3], allow_nil_opnd) - asm.call(C.rb_vm_get_ev_const) - - top = ctx.stack_push(Type::Unknown) - asm.mov(top, C_RET) - - KeepCompiling - end - - # setconstant - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def getglobal(jit, ctx, asm) - gid = jit.operand(0) - - # Save the PC and SP because we might make a Ruby call for warning - jit_prepare_routine_call(jit, ctx, asm) - - asm.mov(C_ARGS[0], gid) - asm.call(C.rb_gvar_get) - - top = ctx.stack_push(Type::Unknown) - asm.mov(top, C_RET) - - KeepCompiling - end - - # setglobal - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def putnil(jit, ctx, asm) - putobject(jit, ctx, asm, val: Qnil) - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def putself(jit, ctx, asm) - stack_top = ctx.stack_push_self - asm.mov(:rax, [CFP, C.rb_control_frame_t.offsetof(:self)]) - asm.mov(stack_top, :rax) - KeepCompiling - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def putobject(jit, ctx, asm, val: jit.operand(0)) - # Push it to the stack - val_type = Type.from(C.to_ruby(val)) - stack_top = ctx.stack_push(val_type) - if asm.imm32?(val) - asm.mov(stack_top, val) - else # 64-bit immediates can't be directly written to memory - asm.mov(:rax, val) - asm.mov(stack_top, :rax) - end - - KeepCompiling - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def putspecialobject(jit, ctx, asm) - object_type = jit.operand(0) - if object_type == C::VM_SPECIAL_OBJECT_VMCORE - stack_top = ctx.stack_push(Type::UnknownHeap) - asm.mov(:rax, C.rb_mRubyVMFrozenCore) - asm.mov(stack_top, :rax) - KeepCompiling - else - # TODO: implement for VM_SPECIAL_OBJECT_CBASE and - # VM_SPECIAL_OBJECT_CONST_BASE - CantCompile - end - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def putstring(jit, ctx, asm) - put_val = jit.operand(0, ruby: true) - - # Save the PC and SP because the callee will allocate - jit_prepare_routine_call(jit, ctx, asm) - - asm.mov(C_ARGS[0], EC) - asm.mov(C_ARGS[1], to_value(put_val)) - asm.mov(C_ARGS[2], 0) - asm.call(C.rb_ec_str_resurrect) - - stack_top = ctx.stack_push(Type::TString) - asm.mov(stack_top, C_RET) - - KeepCompiling - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def putchilledstring(jit, ctx, asm) - put_val = jit.operand(0, ruby: true) - - # Save the PC and SP because the callee will allocate - jit_prepare_routine_call(jit, ctx, asm) - - asm.mov(C_ARGS[0], EC) - asm.mov(C_ARGS[1], to_value(put_val)) - asm.mov(C_ARGS[2], 1) - asm.call(C.rb_ec_str_resurrect) - - stack_top = ctx.stack_push(Type::TString) - asm.mov(stack_top, C_RET) - - KeepCompiling - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def concatstrings(jit, ctx, asm) - n = jit.operand(0) - - # Save the PC and SP because we are allocating - jit_prepare_routine_call(jit, ctx, asm) - - asm.lea(:rax, ctx.sp_opnd(-C.VALUE.size * n)) - - # call rb_str_concat_literals(size_t n, const VALUE *strings); - asm.mov(C_ARGS[0], n) - asm.mov(C_ARGS[1], :rax) - asm.call(C.rb_str_concat_literals) - - ctx.stack_pop(n) - stack_ret = ctx.stack_push(Type::TString) - asm.mov(stack_ret, C_RET) - - KeepCompiling - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def anytostring(jit, ctx, asm) - # Save the PC and SP since we might call #to_s - jit_prepare_routine_call(jit, ctx, asm) - - str = ctx.stack_pop(1) - val = ctx.stack_pop(1) - - asm.mov(C_ARGS[0], str) - asm.mov(C_ARGS[1], val) - asm.call(C.rb_obj_as_string_result) - - # Push the return value - stack_ret = ctx.stack_push(Type::TString) - asm.mov(stack_ret, C_RET) - - KeepCompiling - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def toregexp(jit, ctx, asm) - opt = jit.operand(0, signed: true) - cnt = jit.operand(1) - - # Save the PC and SP because this allocates an object and could - # raise an exception. - jit_prepare_routine_call(jit, ctx, asm) - - asm.lea(:rax, ctx.sp_opnd(-C.VALUE.size * cnt)) # values_ptr - ctx.stack_pop(cnt) - - asm.mov(C_ARGS[0], 0) - asm.mov(C_ARGS[1], cnt) - asm.mov(C_ARGS[2], :rax) # values_ptr - asm.call(C.rb_ary_tmp_new_from_values) - - # Save the array so we can clear it later - asm.push(C_RET) - asm.push(C_RET) # Alignment - - asm.mov(C_ARGS[0], C_RET) - asm.mov(C_ARGS[1], opt) - asm.call(C.rb_reg_new_ary) - - # The actual regex is in RAX now. Pop the temp array from - # rb_ary_tmp_new_from_values into C arg regs so we can clear it - asm.pop(:rcx) # Alignment - asm.pop(:rcx) # ary - - # The value we want to push on the stack is in RAX right now - stack_ret = ctx.stack_push(Type::UnknownHeap) - asm.mov(stack_ret, C_RET) - - # Clear the temp array. - asm.mov(C_ARGS[0], :rcx) # ary - asm.call(C.rb_ary_clear) - - KeepCompiling - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def intern(jit, ctx, asm) - # Save the PC and SP because we might allocate - jit_prepare_routine_call(jit, ctx, asm); - - str = ctx.stack_pop(1) - asm.mov(C_ARGS[0], str) - asm.call(C.rb_str_intern) - - # Push the return value - stack_ret = ctx.stack_push(Type::Unknown) - asm.mov(stack_ret, C_RET) - - KeepCompiling - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def newarray(jit, ctx, asm) - n = jit.operand(0) - - # Save the PC and SP because we are allocating - jit_prepare_routine_call(jit, ctx, asm) - - # If n is 0, then elts is never going to be read, so we can just pass null - if n == 0 - values_ptr = 0 - else - asm.comment('load pointer to array elts') - offset_magnitude = C.VALUE.size * n - values_opnd = ctx.sp_opnd(-(offset_magnitude)) - asm.lea(:rax, values_opnd) - values_ptr = :rax - end - - # call rb_ec_ary_new_from_values(struct rb_execution_context_struct *ec, long n, const VALUE *elts); - asm.mov(C_ARGS[0], EC) - asm.mov(C_ARGS[1], n) - asm.mov(C_ARGS[2], values_ptr) - asm.call(C.rb_ec_ary_new_from_values) - - ctx.stack_pop(n) - stack_ret = ctx.stack_push(Type::TArray) - asm.mov(stack_ret, C_RET) - - KeepCompiling - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def duparray(jit, ctx, asm) - ary = jit.operand(0) - - # Save the PC and SP because we are allocating - jit_prepare_routine_call(jit, ctx, asm) - - # call rb_ary_resurrect(VALUE ary); - asm.comment('call rb_ary_resurrect') - asm.mov(C_ARGS[0], ary) - asm.call(C.rb_ary_resurrect) - - stack_ret = ctx.stack_push(Type::TArray) - asm.mov(stack_ret, C_RET) - - KeepCompiling - end - - # duphash - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def expandarray(jit, ctx, asm) - # Both arguments are rb_num_t which is unsigned - num = jit.operand(0) - flag = jit.operand(1) - - # If this instruction has the splat flag, then bail out. - if flag & 0x01 != 0 - asm.incr_counter(:expandarray_splat) - return CantCompile - end - - # If this instruction has the postarg flag, then bail out. - if flag & 0x02 != 0 - asm.incr_counter(:expandarray_postarg) - return CantCompile - end - - side_exit = side_exit(jit, ctx) - - array_opnd = ctx.stack_opnd(0) - array_stack_opnd = StackOpnd[0] - - # num is the number of requested values. If there aren't enough in the - # array then we're going to push on nils. - if ctx.get_opnd_type(array_stack_opnd) == Type::Nil - ctx.stack_pop(1) # pop after using the type info - # special case for a, b = nil pattern - # push N nils onto the stack - num.times do - push_opnd = ctx.stack_push(Type::Nil) - asm.mov(push_opnd, Qnil) - end - return KeepCompiling - end - - # Move the array from the stack and check that it's an array. - asm.mov(:rax, array_opnd) - guard_object_is_array(jit, ctx, asm, :rax, :rcx, array_stack_opnd, :expandarray_not_array) - ctx.stack_pop(1) # pop after using the type info - - # If we don't actually want any values, then just return. - if num == 0 - return KeepCompiling - end - - jit_array_len(asm, :rax, :rcx) - - # Only handle the case where the number of values in the array is greater - # than or equal to the number of values requested. - asm.cmp(:rcx, num) - asm.jl(counted_exit(side_exit, :expandarray_rhs_too_small)) - - # Conditionally load the address of the heap array into REG1. - # (struct RArray *)(obj)->as.heap.ptr - #asm.mov(:rax, array_opnd) - asm.mov(:rcx, [:rax, C.RBasic.offsetof(:flags)]) - asm.test(:rcx, C::RARRAY_EMBED_FLAG); - asm.mov(:rcx, [:rax, C.RArray.offsetof(:as, :heap, :ptr)]) - - # Load the address of the embedded array into REG1. - # (struct RArray *)(obj)->as.ary - asm.lea(:rax, [:rax, C.RArray.offsetof(:as, :ary)]) - - asm.cmovnz(:rcx, :rax) - - # Loop backward through the array and push each element onto the stack. - (num - 1).downto(0).each do |i| - top = ctx.stack_push(Type::Unknown) - asm.mov(:rax, [:rcx, i * C.VALUE.size]) - asm.mov(top, :rax) - end - - KeepCompiling - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def concatarray(jit, ctx, asm) - # Save the PC and SP because the callee may allocate - # Note that this modifies REG_SP, which is why we do it first - jit_prepare_routine_call(jit, ctx, asm) - - # Get the operands from the stack - ary2st_opnd = ctx.stack_pop(1) - ary1_opnd = ctx.stack_pop(1) - - # Call rb_vm_concat_array(ary1, ary2st) - asm.mov(C_ARGS[0], ary1_opnd) - asm.mov(C_ARGS[1], ary2st_opnd) - asm.call(C.rb_vm_concat_array) - - stack_ret = ctx.stack_push(Type::TArray) - asm.mov(stack_ret, C_RET) - - KeepCompiling - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def splatarray(jit, ctx, asm) - flag = jit.operand(0) - - # Save the PC and SP because the callee may allocate - # Note that this modifies REG_SP, which is why we do it first - jit_prepare_routine_call(jit, ctx, asm) - - # Get the operands from the stack - ary_opnd = ctx.stack_pop(1) - - # Call rb_vm_splat_array(flag, ary) - asm.mov(C_ARGS[0], flag) - asm.mov(C_ARGS[1], ary_opnd) - asm.call(C.rb_vm_splat_array) - - stack_ret = ctx.stack_push(Type::TArray) - asm.mov(stack_ret, C_RET) - - KeepCompiling - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def newhash(jit, ctx, asm) - num = jit.operand(0) - - # Save the PC and SP because we are allocating - jit_prepare_routine_call(jit, ctx, asm) - - if num != 0 - # val = rb_hash_new_with_size(num / 2); - asm.mov(C_ARGS[0], num / 2) - asm.call(C.rb_hash_new_with_size) - - # Save the allocated hash as we want to push it after insertion - asm.push(C_RET) - asm.push(C_RET) # x86 alignment - - # Get a pointer to the values to insert into the hash - asm.lea(:rcx, ctx.stack_opnd(num - 1)) - - # rb_hash_bulk_insert(num, STACK_ADDR_FROM_TOP(num), val); - asm.mov(C_ARGS[0], num) - asm.mov(C_ARGS[1], :rcx) - asm.mov(C_ARGS[2], C_RET) - asm.call(C.rb_hash_bulk_insert) - - asm.pop(:rax) - asm.pop(:rax) - - ctx.stack_pop(num) - stack_ret = ctx.stack_push(Type::Hash) - asm.mov(stack_ret, :rax) - else - # val = rb_hash_new(); - asm.call(C.rb_hash_new) - stack_ret = ctx.stack_push(Type::Hash) - asm.mov(stack_ret, C_RET) - end - - KeepCompiling - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def newrange(jit, ctx, asm) - flag = jit.operand(0) - - # rb_range_new() allocates and can raise - jit_prepare_routine_call(jit, ctx, asm) - - # val = rb_range_new(low, high, (int)flag); - asm.mov(C_ARGS[0], ctx.stack_opnd(1)) - asm.mov(C_ARGS[1], ctx.stack_opnd(0)) - asm.mov(C_ARGS[2], flag) - asm.call(C.rb_range_new) - - ctx.stack_pop(2) - stack_ret = ctx.stack_push(Type::UnknownHeap) - asm.mov(stack_ret, C_RET) - - KeepCompiling - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def pop(jit, ctx, asm) - ctx.stack_pop - KeepCompiling - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def dup(jit, ctx, asm) - dup_val = ctx.stack_opnd(0) - mapping, tmp_type = ctx.get_opnd_mapping(StackOpnd[0]) - - loc0 = ctx.stack_push_mapping([mapping, tmp_type]) - asm.mov(:rax, dup_val) - asm.mov(loc0, :rax) - - KeepCompiling - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def dupn(jit, ctx, asm) - n = jit.operand(0) - - # In practice, seems to be only used for n==2 - if n != 2 - return CantCompile - end - - opnd1 = ctx.stack_opnd(1) - opnd0 = ctx.stack_opnd(0) - - mapping1 = ctx.get_opnd_mapping(StackOpnd[1]) - mapping0 = ctx.get_opnd_mapping(StackOpnd[0]) - - dst1 = ctx.stack_push_mapping(mapping1) - asm.mov(:rax, opnd1) - asm.mov(dst1, :rax) - - dst0 = ctx.stack_push_mapping(mapping0) - asm.mov(:rax, opnd0) - asm.mov(dst0, :rax) - - KeepCompiling - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def swap(jit, ctx, asm) - stack_swap(jit, ctx, asm, 0, 1) - KeepCompiling - end - - # opt_reverse - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def topn(jit, ctx, asm) - n = jit.operand(0) - - top_n_val = ctx.stack_opnd(n) - mapping = ctx.get_opnd_mapping(StackOpnd[n]) - loc0 = ctx.stack_push_mapping(mapping) - asm.mov(:rax, top_n_val) - asm.mov(loc0, :rax) - - KeepCompiling - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def setn(jit, ctx, asm) - n = jit.operand(0) - - top_val = ctx.stack_pop(0) - dst_opnd = ctx.stack_opnd(n) - asm.mov(:rax, top_val) - asm.mov(dst_opnd, :rax) - - mapping = ctx.get_opnd_mapping(StackOpnd[0]) - ctx.set_opnd_mapping(StackOpnd[n], mapping) - - KeepCompiling - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def adjuststack(jit, ctx, asm) - n = jit.operand(0) - ctx.stack_pop(n) - KeepCompiling - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def defined(jit, ctx, asm) - op_type = jit.operand(0) - obj = jit.operand(1, ruby: true) - pushval = jit.operand(2, ruby: true) - - # Save the PC and SP because the callee may allocate - # Note that this modifies REG_SP, which is why we do it first - jit_prepare_routine_call(jit, ctx, asm) - - # Get the operands from the stack - v_opnd = ctx.stack_pop(1) - - # Call vm_defined(ec, reg_cfp, op_type, obj, v) - asm.mov(C_ARGS[0], EC) - asm.mov(C_ARGS[1], CFP) - asm.mov(C_ARGS[2], op_type) - asm.mov(C_ARGS[3], to_value(obj)) - asm.mov(C_ARGS[4], v_opnd) - asm.call(C.rb_vm_defined) - - asm.test(C_RET, 255) - asm.mov(:rax, Qnil) - asm.mov(:rcx, to_value(pushval)) - asm.cmovnz(:rax, :rcx) - - # Push the return value onto the stack - out_type = if C::SPECIAL_CONST_P(pushval) - Type::UnknownImm - else - Type::Unknown - end - stack_ret = ctx.stack_push(out_type) - asm.mov(stack_ret, :rax) - - KeepCompiling - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def definedivar(jit, ctx, asm) - # Defer compilation so we can specialize base on a runtime receiver - unless jit.at_current_insn? - defer_compilation(jit, ctx, asm) - return EndBlock - end - - ivar_name = jit.operand(0) - # Value that will be pushed on the stack if the ivar is defined. In practice this is always the - # string "instance-variable". If the ivar is not defined, nil will be pushed instead. - pushval = jit.operand(2, ruby: true) - - # Get the receiver - recv = :rcx - asm.mov(recv, [CFP, C.rb_control_frame_t.offsetof(:self)]) - - # Specialize base on compile time values - comptime_receiver = jit.peek_at_self - - if shape_too_complex?(comptime_receiver) - # Fall back to calling rb_ivar_defined - - # Save the PC and SP because the callee may allocate - # Note that this modifies REG_SP, which is why we do it first - jit_prepare_routine_call(jit, ctx, asm) # clobbers :rax - - # Call rb_ivar_defined(recv, ivar_name) - asm.mov(C_ARGS[0], recv) - asm.mov(C_ARGS[1], ivar_name) - asm.call(C.rb_ivar_defined) - - # if (rb_ivar_defined(recv, ivar_name)) { - # val = pushval; - # } - asm.test(C_RET, 255) - asm.mov(:rax, Qnil) - asm.mov(:rcx, to_value(pushval)) - asm.cmovnz(:rax, :rcx) - - # Push the return value onto the stack - out_type = C::SPECIAL_CONST_P(pushval) ? Type::UnknownImm : Type::Unknown - stack_ret = ctx.stack_push(out_type) - asm.mov(stack_ret, :rax) - - return KeepCompiling - end - - shape_id = C.rb_shape_get_shape_id(comptime_receiver) - ivar_exists = C.rb_shape_get_iv_index(shape_id, ivar_name) - - side_exit = side_exit(jit, ctx) - - # Guard heap object (recv_opnd must be used before stack_pop) - guard_object_is_heap(jit, ctx, asm, recv, SelfOpnd) - - shape_opnd = DwordPtr[recv, C.rb_shape_id_offset] - - asm.comment('guard shape') - asm.cmp(shape_opnd, shape_id) - jit_chain_guard(:jne, jit, ctx, asm, side_exit) - - result = ivar_exists ? C.to_value(pushval) : Qnil - putobject(jit, ctx, asm, val: result) - - # Jump to next instruction. This allows guard chains to share the same successor. - jump_to_next_insn(jit, ctx, asm) - - return EndBlock - end - - # checkmatch - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def checkkeyword(jit, ctx, asm) - # When a keyword is unspecified past index 32, a hash will be used - # instead. This can only happen in iseqs taking more than 32 keywords. - if jit.iseq.body.param.keyword.num >= 32 - return CantCompile - end - - # The EP offset to the undefined bits local - bits_offset = jit.operand(0) - - # The index of the keyword we want to check - index = jit.operand(1, signed: true) - - # Load environment pointer EP - ep_reg = :rax - jit_get_ep(asm, 0, reg: ep_reg) - - # VALUE kw_bits = *(ep - bits) - bits_opnd = [ep_reg, C.VALUE.size * -bits_offset] - - # unsigned int b = (unsigned int)FIX2ULONG(kw_bits); - # if ((b & (0x01 << idx))) { - # - # We can skip the FIX2ULONG conversion by shifting the bit we test - bit_test = 0x01 << (index + 1) - asm.test(bits_opnd, bit_test) - asm.mov(:rax, Qfalse) - asm.mov(:rcx, Qtrue) - asm.cmovz(:rax, :rcx) - - stack_ret = ctx.stack_push(Type::UnknownImm) - asm.mov(stack_ret, :rax) - - KeepCompiling - end - - # checktype - # defineclass - # definemethod - # definesmethod - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def send(jit, ctx, asm) - # Specialize on a compile-time receiver, and split a block for chain guards - unless jit.at_current_insn? - defer_compilation(jit, ctx, asm) - return EndBlock - end - - cd = C.rb_call_data.new(jit.operand(0)) - blockiseq = jit.operand(1) - - # calling->ci - mid = C.vm_ci_mid(cd.ci) - calling = build_calling(ci: cd.ci, block_handler: blockiseq) - - if calling.flags & C::VM_CALL_FORWARDING != 0 - return CantCompile - end - - # vm_sendish - cme, comptime_recv_klass = jit_search_method(jit, ctx, asm, mid, calling) - if cme == CantCompile - return CantCompile - end - jit_call_general(jit, ctx, asm, mid, calling, cme, comptime_recv_klass) - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def opt_send_without_block(jit, ctx, asm, cd: C.rb_call_data.new(jit.operand(0))) - # Specialize on a compile-time receiver, and split a block for chain guards - unless jit.at_current_insn? - defer_compilation(jit, ctx, asm) - return EndBlock - end - - # calling->ci - mid = C.vm_ci_mid(cd.ci) - calling = build_calling(ci: cd.ci, block_handler: C::VM_BLOCK_HANDLER_NONE) - - # vm_sendish - cme, comptime_recv_klass = jit_search_method(jit, ctx, asm, mid, calling) - if cme == CantCompile - return CantCompile - end - jit_call_general(jit, ctx, asm, mid, calling, cme, comptime_recv_klass) - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def objtostring(jit, ctx, asm) - unless jit.at_current_insn? - defer_compilation(jit, ctx, asm) - return EndBlock - end - - recv = ctx.stack_opnd(0) - comptime_recv = jit.peek_at_stack(0) - - if C.RB_TYPE_P(comptime_recv, C::RUBY_T_STRING) - side_exit = side_exit(jit, ctx) - - jit_guard_known_klass(jit, ctx, asm, C.rb_class_of(comptime_recv), recv, StackOpnd[0], comptime_recv, side_exit) - # No work needed. The string value is already on the top of the stack. - KeepCompiling - else - cd = C.rb_call_data.new(jit.operand(0)) - opt_send_without_block(jit, ctx, asm, cd:) - end - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def opt_ary_freeze(jit, ctx, asm) - unless Invariants.assume_bop_not_redefined(jit, C::ARRAY_REDEFINED_OP_FLAG, C::BOP_FREEZE) - return CantCompile; - end - - ary = jit.operand(0, ruby: true) - - # Push the return value onto the stack - stack_ret = ctx.stack_push(Type::CArray) - asm.mov(:rax, to_value(ary)) - asm.mov(stack_ret, :rax) - - KeepCompiling - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def opt_hash_freeze(jit, ctx, asm) - unless Invariants.assume_bop_not_redefined(jit, C::HASH_REDEFINED_OP_FLAG, C::BOP_FREEZE) - return CantCompile; - end - - hash = jit.operand(0, ruby: true) - - # Push the return value onto the stack - stack_ret = ctx.stack_push(Type::CHash) - asm.mov(:rax, to_value(hash)) - asm.mov(stack_ret, :rax) - - KeepCompiling - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def opt_str_freeze(jit, ctx, asm) - unless Invariants.assume_bop_not_redefined(jit, C::STRING_REDEFINED_OP_FLAG, C::BOP_FREEZE) - return CantCompile; - end - - str = jit.operand(0, ruby: true) - - # Push the return value onto the stack - stack_ret = ctx.stack_push(Type::CString) - asm.mov(:rax, to_value(str)) - asm.mov(stack_ret, :rax) - - KeepCompiling - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def opt_nil_p(jit, ctx, asm) - opt_send_without_block(jit, ctx, asm) - end - - # opt_str_uminus - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def opt_newarray_send(jit, ctx, asm) - type = C.ID2SYM jit.operand(1) - - case type - when :min then opt_newarray_min(jit, ctx, asm) - when :max then opt_newarray_max(jit, ctx, asm) - when :hash then opt_newarray_hash(jit, ctx, asm) - else - return CantCompile - end - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def opt_newarray_min(jit, ctx, asm) - num = jit.operand(0) - - # Save the PC and SP because we may allocate - jit_prepare_routine_call(jit, ctx, asm) - - offset_magnitude = C.VALUE.size * num - values_opnd = ctx.sp_opnd(-offset_magnitude) - asm.lea(:rax, values_opnd) - - asm.mov(C_ARGS[0], EC) - asm.mov(C_ARGS[1], num) - asm.mov(C_ARGS[2], :rax) - asm.call(C.rb_vm_opt_newarray_min) - - ctx.stack_pop(num) - stack_ret = ctx.stack_push(Type::Unknown) - asm.mov(stack_ret, C_RET) - - KeepCompiling - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def opt_newarray_max(jit, ctx, asm) - num = jit.operand(0) - - # Save the PC and SP because we may allocate - jit_prepare_routine_call(jit, ctx, asm) - - offset_magnitude = C.VALUE.size * num - values_opnd = ctx.sp_opnd(-offset_magnitude) - asm.lea(:rax, values_opnd) - - asm.mov(C_ARGS[0], EC) - asm.mov(C_ARGS[1], num) - asm.mov(C_ARGS[2], :rax) - asm.call(C.rb_vm_opt_newarray_max) - - ctx.stack_pop(num) - stack_ret = ctx.stack_push(Type::Unknown) - asm.mov(stack_ret, C_RET) - - KeepCompiling - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def opt_newarray_hash(jit, ctx, asm) - num = jit.operand(0) - - # Save the PC and SP because we may allocate - jit_prepare_routine_call(jit, ctx, asm) - - offset_magnitude = C.VALUE.size * num - values_opnd = ctx.sp_opnd(-offset_magnitude) - asm.lea(:rax, values_opnd) - - asm.mov(C_ARGS[0], EC) - asm.mov(C_ARGS[1], num) - asm.mov(C_ARGS[2], :rax) - asm.call(C.rb_vm_opt_newarray_hash) - - ctx.stack_pop(num) - stack_ret = ctx.stack_push(Type::Unknown) - asm.mov(stack_ret, C_RET) - - KeepCompiling - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def invokesuper(jit, ctx, asm) - cd = C.rb_call_data.new(jit.operand(0)) - block = jit.operand(1) - - # Defer compilation so we can specialize on class of receiver - unless jit.at_current_insn? - defer_compilation(jit, ctx, asm) - return EndBlock - end - - me = C.rb_vm_frame_method_entry(jit.cfp) - if me.nil? - return CantCompile - end - - # FIXME: We should track and invalidate this block when this cme is invalidated - current_defined_class = me.defined_class - mid = me.def.original_id - - if me.to_i != C.rb_callable_method_entry(current_defined_class, me.called_id).to_i - # Though we likely could generate this call, as we are only concerned - # with the method entry remaining valid, assume_method_lookup_stable - # below requires that the method lookup matches as well - return CantCompile - end - - # vm_search_normal_superclass - rbasic_klass = C.to_ruby(C.RBasic.new(C.to_value(current_defined_class)).klass) - if C::BUILTIN_TYPE(current_defined_class) == C::RUBY_T_ICLASS && C::BUILTIN_TYPE(rbasic_klass) == C::RUBY_T_MODULE && \ - C::FL_TEST_RAW(rbasic_klass, C::RMODULE_IS_REFINEMENT) - return CantCompile - end - comptime_superclass = C.rb_class_get_superclass(C.RCLASS_ORIGIN(current_defined_class)) - - ci = cd.ci - argc = C.vm_ci_argc(ci) - - ci_flags = C.vm_ci_flag(ci) - - # Don't JIT calls that aren't simple - # Note, not using VM_CALL_ARGS_SIMPLE because sometimes we pass a block. - - if ci_flags & C::VM_CALL_KWARG != 0 - asm.incr_counter(:send_keywords) - return CantCompile - end - if ci_flags & C::VM_CALL_KW_SPLAT != 0 - asm.incr_counter(:send_kw_splat) - return CantCompile - end - if ci_flags & C::VM_CALL_ARGS_BLOCKARG != 0 - asm.incr_counter(:send_block_arg) - return CantCompile - end - - # Ensure we haven't rebound this method onto an incompatible class. - # In the interpreter we try to avoid making this check by performing some - # cheaper calculations first, but since we specialize on the method entry - # and so only have to do this once at compile time this is fine to always - # check and side exit. - comptime_recv = jit.peek_at_stack(argc) - unless C.obj_is_kind_of(comptime_recv, current_defined_class) - return CantCompile - end - - # Do method lookup - cme = C.rb_callable_method_entry(comptime_superclass, mid) - - if cme.nil? - return CantCompile - end - - # Check that we'll be able to write this method dispatch before generating checks - cme_def_type = cme.def.type - if cme_def_type != C::VM_METHOD_TYPE_ISEQ && cme_def_type != C::VM_METHOD_TYPE_CFUNC - # others unimplemented - return CantCompile - end - - asm.comment('guard known me') - lep_opnd = :rax - jit_get_lep(jit, asm, reg: lep_opnd) - ep_me_opnd = [lep_opnd, C.VALUE.size * C::VM_ENV_DATA_INDEX_ME_CREF] - - asm.mov(:rcx, me.to_i) - asm.cmp(ep_me_opnd, :rcx) - asm.jne(counted_exit(side_exit(jit, ctx), :invokesuper_me_changed)) - - if block == C::VM_BLOCK_HANDLER_NONE - # Guard no block passed - # rb_vm_frame_block_handler(GET_EC()->cfp) == VM_BLOCK_HANDLER_NONE - # note, we assume VM_ASSERT(VM_ENV_LOCAL_P(ep)) - # - # TODO: this could properly forward the current block handler, but - # would require changes to gen_send_* - asm.comment('guard no block given') - ep_specval_opnd = [lep_opnd, C.VALUE.size * C::VM_ENV_DATA_INDEX_SPECVAL] - asm.cmp(ep_specval_opnd, C::VM_BLOCK_HANDLER_NONE) - asm.jne(counted_exit(side_exit(jit, ctx), :invokesuper_block)) - end - - # We need to assume that both our current method entry and the super - # method entry we invoke remain stable - Invariants.assume_method_lookup_stable(jit, me) - Invariants.assume_method_lookup_stable(jit, cme) - - # Method calls may corrupt types - ctx.clear_local_types - - calling = build_calling(ci:, block_handler: block) - case cme_def_type - in C::VM_METHOD_TYPE_ISEQ - iseq = def_iseq_ptr(cme.def) - frame_type = C::VM_FRAME_MAGIC_METHOD | C::VM_ENV_FLAG_LOCAL - jit_call_iseq(jit, ctx, asm, cme, calling, iseq, frame_type:) - in C::VM_METHOD_TYPE_CFUNC - jit_call_cfunc(jit, ctx, asm, cme, calling) - end - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def invokeblock(jit, ctx, asm) - unless jit.at_current_insn? - defer_compilation(jit, ctx, asm) - return EndBlock - end - - # Get call info - cd = C.rb_call_data.new(jit.operand(0)) - calling = build_calling(ci: cd.ci, block_handler: :captured) - - # Get block_handler - cfp = jit.cfp - lep = C.rb_vm_ep_local_ep(cfp.ep) - comptime_handler = lep[C::VM_ENV_DATA_INDEX_SPECVAL] - - # Handle each block_handler type - if comptime_handler == C::VM_BLOCK_HANDLER_NONE # no block given - asm.incr_counter(:invokeblock_none) - CantCompile - elsif comptime_handler & 0x3 == 0x1 # VM_BH_ISEQ_BLOCK_P - asm.comment('get local EP') - ep_reg = :rax - jit_get_lep(jit, asm, reg: ep_reg) - asm.mov(:rax, [ep_reg, C.VALUE.size * C::VM_ENV_DATA_INDEX_SPECVAL]) # block_handler_opnd - - asm.comment('guard block_handler type') - side_exit = side_exit(jit, ctx) - asm.mov(:rcx, :rax) - asm.and(:rcx, 0x3) # block_handler is a tagged pointer - asm.cmp(:rcx, 0x1) # VM_BH_ISEQ_BLOCK_P - tag_changed_exit = counted_exit(side_exit, :invokeblock_tag_changed) - jit_chain_guard(:jne, jit, ctx, asm, tag_changed_exit) - - comptime_captured = C.rb_captured_block.new(comptime_handler & ~0x3) - comptime_iseq = comptime_captured.code.iseq - - asm.comment('guard known ISEQ') - asm.and(:rax, ~0x3) # captured - asm.mov(:rax, [:rax, C.VALUE.size * 2]) # captured->iseq - asm.mov(:rcx, comptime_iseq.to_i) - asm.cmp(:rax, :rcx) - block_changed_exit = counted_exit(side_exit, :invokeblock_iseq_block_changed) - jit_chain_guard(:jne, jit, ctx, asm, block_changed_exit) - - jit_call_iseq(jit, ctx, asm, nil, calling, comptime_iseq, frame_type: C::VM_FRAME_MAGIC_BLOCK) - elsif comptime_handler & 0x3 == 0x3 # VM_BH_IFUNC_P - # We aren't handling CALLER_SETUP_ARG and CALLER_REMOVE_EMPTY_KW_SPLAT yet. - if calling.flags & C::VM_CALL_ARGS_SPLAT != 0 - asm.incr_counter(:invokeblock_ifunc_args_splat) - return CantCompile - end - if calling.flags & C::VM_CALL_KW_SPLAT != 0 - asm.incr_counter(:invokeblock_ifunc_kw_splat) - return CantCompile - end - - asm.comment('get local EP') - jit_get_lep(jit, asm, reg: :rax) - asm.mov(:rcx, [:rax, C.VALUE.size * C::VM_ENV_DATA_INDEX_SPECVAL]) # block_handler_opnd - - asm.comment('guard block_handler type'); - side_exit = side_exit(jit, ctx) - asm.mov(:rax, :rcx) # block_handler_opnd - asm.and(:rax, 0x3) # tag_opnd: block_handler is a tagged pointer - asm.cmp(:rax, 0x3) # VM_BH_IFUNC_P - tag_changed_exit = counted_exit(side_exit, :invokeblock_tag_changed) - jit_chain_guard(:jne, jit, ctx, asm, tag_changed_exit) - - # The cfunc may not be leaf - jit_prepare_routine_call(jit, ctx, asm) # clobbers :rax - - asm.comment('call ifunc') - asm.and(:rcx, ~0x3) # captured_opnd - asm.lea(:rax, ctx.sp_opnd(-calling.argc * C.VALUE.size)) # argv - asm.mov(C_ARGS[0], EC) - asm.mov(C_ARGS[1], :rcx) # captured_opnd - asm.mov(C_ARGS[2], calling.argc) - asm.mov(C_ARGS[3], :rax) # argv - asm.call(C.rb_vm_yield_with_cfunc) - - ctx.stack_pop(calling.argc) - stack_ret = ctx.stack_push(Type::Unknown) - asm.mov(stack_ret, C_RET) - - # cfunc calls may corrupt types - ctx.clear_local_types - - # Share the successor with other chains - jump_to_next_insn(jit, ctx, asm) - EndBlock - elsif symbol?(comptime_handler) - asm.incr_counter(:invokeblock_symbol) - CantCompile - else # Proc - asm.incr_counter(:invokeblock_proc) - CantCompile - end - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def leave(jit, ctx, asm) - assert_equal(ctx.stack_size, 1) - - jit_check_ints(jit, ctx, asm) - - asm.comment('pop stack frame') - asm.lea(:rax, [CFP, C.rb_control_frame_t.size]) - asm.mov(CFP, :rax) - asm.mov([EC, C.rb_execution_context_t.offsetof(:cfp)], :rax) - - # Return a value (for compile_leave_exit) - ret_opnd = ctx.stack_pop - asm.mov(:rax, ret_opnd) - - # Set caller's SP and push a value to its stack (for JIT) - asm.mov(SP, [CFP, C.rb_control_frame_t.offsetof(:sp)]) # Note: SP is in the position after popping a receiver and arguments - asm.mov([SP], :rax) - - # Jump to cfp->jit_return - asm.jmp([CFP, -C.rb_control_frame_t.size + C.rb_control_frame_t.offsetof(:jit_return)]) - - EndBlock - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def throw(jit, ctx, asm) - throw_state = jit.operand(0) - asm.mov(:rcx, ctx.stack_pop(1)) # throwobj - - # THROW_DATA_NEW allocates. Save SP for GC and PC for allocation tracing as - # well as handling the catch table. However, not using jit_prepare_routine_call - # since we don't need a patch point for this implementation. - jit_save_pc(jit, asm) # clobbers rax - jit_save_sp(ctx, asm) - - # rb_vm_throw verifies it's a valid throw, sets ec->tag->state, and returns throw - # data, which is throwobj or a vm_throw_data wrapping it. When ec->tag->state is - # set, JIT code callers will handle the throw with vm_exec_handle_exception. - asm.mov(C_ARGS[0], EC) - asm.mov(C_ARGS[1], CFP) - asm.mov(C_ARGS[2], throw_state) - # asm.mov(C_ARGS[3], :rcx) # same reg - asm.call(C.rb_vm_throw) - - asm.comment('exit from throw') - asm.pop(SP) - asm.pop(EC) - asm.pop(CFP) - - # return C_RET as C_RET - asm.ret - EndBlock - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def jump(jit, ctx, asm) - # Check for interrupts, but only on backward branches that may create loops - jump_offset = jit.operand(0, signed: true) - if jump_offset < 0 - jit_check_ints(jit, ctx, asm) - end - - pc = jit.pc + C.VALUE.size * (jit.insn.len + jump_offset) - jit_direct_jump(jit.iseq, pc, ctx, asm) - EndBlock - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def branchif(jit, ctx, asm) - # Check for interrupts, but only on backward branches that may create loops - jump_offset = jit.operand(0, signed: true) - if jump_offset < 0 - jit_check_ints(jit, ctx, asm) - end - - # Get the branch target instruction offsets - next_pc = jit.pc + C.VALUE.size * jit.insn.len - jump_pc = jit.pc + C.VALUE.size * (jit.insn.len + jump_offset) - - val_type = ctx.get_opnd_type(StackOpnd[0]) - val_opnd = ctx.stack_pop(1) - - if (result = val_type.known_truthy) != nil - target_pc = result ? jump_pc : next_pc - jit_direct_jump(jit.iseq, target_pc, ctx, asm) - else - # This `test` sets ZF only for Qnil and Qfalse, which let jz jump. - asm.test(val_opnd, ~Qnil) - - # Set stubs - branch_stub = BranchStub.new( - iseq: jit.iseq, - shape: Default, - target0: BranchTarget.new(ctx:, pc: jump_pc), # branch target - target1: BranchTarget.new(ctx:, pc: next_pc), # fallthrough - ) - branch_stub.target0.address = Assembler.new.then do |ocb_asm| - @exit_compiler.compile_branch_stub(ctx, ocb_asm, branch_stub, true) - @ocb.write(ocb_asm) - end - branch_stub.target1.address = Assembler.new.then do |ocb_asm| - @exit_compiler.compile_branch_stub(ctx, ocb_asm, branch_stub, false) - @ocb.write(ocb_asm) - end - - # Jump to target0 on jnz - branch_stub.compile = compile_branchif(branch_stub) - branch_stub.compile.call(asm) - end - - EndBlock - end - - def compile_branchif(branch_stub) # Proc escapes arguments in memory - proc do |branch_asm| - branch_asm.comment("branchif #{branch_stub.shape}") - branch_asm.stub(branch_stub) do - case branch_stub.shape - in Default - branch_asm.jnz(branch_stub.target0.address) - branch_asm.jmp(branch_stub.target1.address) - in Next0 - branch_asm.jz(branch_stub.target1.address) - in Next1 - branch_asm.jnz(branch_stub.target0.address) - end - end - end - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def branchunless(jit, ctx, asm) - # Check for interrupts, but only on backward branches that may create loops - jump_offset = jit.operand(0, signed: true) - if jump_offset < 0 - jit_check_ints(jit, ctx, asm) - end - - # Get the branch target instruction offsets - next_pc = jit.pc + C.VALUE.size * jit.insn.len - jump_pc = jit.pc + C.VALUE.size * (jit.insn.len + jump_offset) - - val_type = ctx.get_opnd_type(StackOpnd[0]) - val_opnd = ctx.stack_pop(1) - - if (result = val_type.known_truthy) != nil - target_pc = result ? next_pc : jump_pc - jit_direct_jump(jit.iseq, target_pc, ctx, asm) - else - # This `test` sets ZF only for Qnil and Qfalse, which let jz jump. - asm.test(val_opnd, ~Qnil) - - # Set stubs - branch_stub = BranchStub.new( - iseq: jit.iseq, - shape: Default, - target0: BranchTarget.new(ctx:, pc: jump_pc), # branch target - target1: BranchTarget.new(ctx:, pc: next_pc), # fallthrough - ) - branch_stub.target0.address = Assembler.new.then do |ocb_asm| - @exit_compiler.compile_branch_stub(ctx, ocb_asm, branch_stub, true) - @ocb.write(ocb_asm) - end - branch_stub.target1.address = Assembler.new.then do |ocb_asm| - @exit_compiler.compile_branch_stub(ctx, ocb_asm, branch_stub, false) - @ocb.write(ocb_asm) - end - - # Jump to target0 on jz - branch_stub.compile = compile_branchunless(branch_stub) - branch_stub.compile.call(asm) - end - - EndBlock - end - - def compile_branchunless(branch_stub) # Proc escapes arguments in memory - proc do |branch_asm| - branch_asm.comment("branchunless #{branch_stub.shape}") - branch_asm.stub(branch_stub) do - case branch_stub.shape - in Default - branch_asm.jz(branch_stub.target0.address) - branch_asm.jmp(branch_stub.target1.address) - in Next0 - branch_asm.jnz(branch_stub.target1.address) - in Next1 - branch_asm.jz(branch_stub.target0.address) - end - end - end - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def branchnil(jit, ctx, asm) - # Check for interrupts, but only on backward branches that may create loops - jump_offset = jit.operand(0, signed: true) - if jump_offset < 0 - jit_check_ints(jit, ctx, asm) - end - - # Get the branch target instruction offsets - next_pc = jit.pc + C.VALUE.size * jit.insn.len - jump_pc = jit.pc + C.VALUE.size * (jit.insn.len + jump_offset) - - val_type = ctx.get_opnd_type(StackOpnd[0]) - val_opnd = ctx.stack_pop(1) - - if (result = val_type.known_nil) != nil - target_pc = result ? jump_pc : next_pc - jit_direct_jump(jit.iseq, target_pc, ctx, asm) - else - asm.cmp(val_opnd, Qnil) - - # Set stubs - branch_stub = BranchStub.new( - iseq: jit.iseq, - shape: Default, - target0: BranchTarget.new(ctx:, pc: jump_pc), # branch target - target1: BranchTarget.new(ctx:, pc: next_pc), # fallthrough - ) - branch_stub.target0.address = Assembler.new.then do |ocb_asm| - @exit_compiler.compile_branch_stub(ctx, ocb_asm, branch_stub, true) - @ocb.write(ocb_asm) - end - branch_stub.target1.address = Assembler.new.then do |ocb_asm| - @exit_compiler.compile_branch_stub(ctx, ocb_asm, branch_stub, false) - @ocb.write(ocb_asm) - end - - # Jump to target0 on je - branch_stub.compile = compile_branchnil(branch_stub) - branch_stub.compile.call(asm) - end - - EndBlock - end - - def compile_branchnil(branch_stub) # Proc escapes arguments in memory - proc do |branch_asm| - branch_asm.comment("branchnil #{branch_stub.shape}") - branch_asm.stub(branch_stub) do - case branch_stub.shape - in Default - branch_asm.je(branch_stub.target0.address) - branch_asm.jmp(branch_stub.target1.address) - in Next0 - branch_asm.jne(branch_stub.target1.address) - in Next1 - branch_asm.je(branch_stub.target0.address) - end - end - end - end - - # once - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def opt_case_dispatch(jit, ctx, asm) - # Normally this instruction would lookup the key in a hash and jump to an - # offset based on that. - # Instead we can take the fallback case and continue with the next - # instruction. - # We'd hope that our jitted code will be sufficiently fast without the - # hash lookup, at least for small hashes, but it's worth revisiting this - # assumption in the future. - unless jit.at_current_insn? - defer_compilation(jit, ctx, asm) - return EndBlock - end - starting_context = ctx.dup - - case_hash = jit.operand(0, ruby: true) - else_offset = jit.operand(1) - - # Try to reorder case/else branches so that ones that are actually used come first. - # Supporting only Fixnum for now so that the implementation can be an equality check. - key_opnd = ctx.stack_pop(1) - comptime_key = jit.peek_at_stack(0) - - # Check that all cases are fixnums to avoid having to register BOP assumptions on - # all the types that case hashes support. This spends compile time to save memory. - if fixnum?(comptime_key) && comptime_key <= 2**32 && C.rb_hash_keys(case_hash).all? { |key| fixnum?(key) } - unless Invariants.assume_bop_not_redefined(jit, C::INTEGER_REDEFINED_OP_FLAG, C::BOP_EQQ) - return CantCompile - end - - # Check if the key is the same value - asm.cmp(key_opnd, to_value(comptime_key)) - side_exit = side_exit(jit, starting_context) - jit_chain_guard(:jne, jit, starting_context, asm, side_exit) - - # Get the offset for the compile-time key - offset = C.rb_hash_stlike_lookup(case_hash, comptime_key) - # NOTE: If we hit the else branch with various values, it could negatively impact the performance. - jump_offset = offset || else_offset - - # Jump to the offset of case or else - target_pc = jit.pc + (jit.insn.len + jump_offset) * C.VALUE.size - jit_direct_jump(jit.iseq, target_pc, ctx, asm) - EndBlock - else - KeepCompiling # continue with === branches - end - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def opt_plus(jit, ctx, asm) - unless jit.at_current_insn? - defer_compilation(jit, ctx, asm) - return EndBlock - end - - comptime_recv = jit.peek_at_stack(1) - comptime_obj = jit.peek_at_stack(0) - - if fixnum?(comptime_recv) && fixnum?(comptime_obj) - unless Invariants.assume_bop_not_redefined(jit, C::INTEGER_REDEFINED_OP_FLAG, C::BOP_PLUS) - return CantCompile - end - - # Check that both operands are fixnums - guard_two_fixnums(jit, ctx, asm) - - obj_opnd = ctx.stack_pop - recv_opnd = ctx.stack_pop - - asm.mov(:rax, recv_opnd) - asm.sub(:rax, 1) # untag - asm.mov(:rcx, obj_opnd) - asm.add(:rax, :rcx) - asm.jo(side_exit(jit, ctx)) - - dst_opnd = ctx.stack_push(Type::Fixnum) - asm.mov(dst_opnd, :rax) - - KeepCompiling - else - opt_send_without_block(jit, ctx, asm) - end - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def opt_minus(jit, ctx, asm) - unless jit.at_current_insn? - defer_compilation(jit, ctx, asm) - return EndBlock - end - - comptime_recv = jit.peek_at_stack(1) - comptime_obj = jit.peek_at_stack(0) - - if fixnum?(comptime_recv) && fixnum?(comptime_obj) - unless Invariants.assume_bop_not_redefined(jit, C::INTEGER_REDEFINED_OP_FLAG, C::BOP_MINUS) - return CantCompile - end - - # Check that both operands are fixnums - guard_two_fixnums(jit, ctx, asm) - - obj_opnd = ctx.stack_pop - recv_opnd = ctx.stack_pop - - asm.mov(:rax, recv_opnd) - asm.mov(:rcx, obj_opnd) - asm.sub(:rax, :rcx) - asm.jo(side_exit(jit, ctx)) - asm.add(:rax, 1) # re-tag - - dst_opnd = ctx.stack_push(Type::Fixnum) - asm.mov(dst_opnd, :rax) - - KeepCompiling - else - opt_send_without_block(jit, ctx, asm) - end - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def opt_mult(jit, ctx, asm) - opt_send_without_block(jit, ctx, asm) - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def opt_div(jit, ctx, asm) - opt_send_without_block(jit, ctx, asm) - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def opt_mod(jit, ctx, asm) - unless jit.at_current_insn? - defer_compilation(jit, ctx, asm) - return EndBlock - end - - if two_fixnums_on_stack?(jit) - unless Invariants.assume_bop_not_redefined(jit, C::INTEGER_REDEFINED_OP_FLAG, C::BOP_MOD) - return CantCompile - end - - # Check that both operands are fixnums - guard_two_fixnums(jit, ctx, asm) - - # Get the operands and destination from the stack - arg1 = ctx.stack_pop(1) - arg0 = ctx.stack_pop(1) - - # Check for arg0 % 0 - asm.cmp(arg1, 0) - asm.je(side_exit(jit, ctx)) - - # Call rb_fix_mod_fix(VALUE recv, VALUE obj) - asm.mov(C_ARGS[0], arg0) - asm.mov(C_ARGS[1], arg1) - asm.call(C.rb_fix_mod_fix) - - # Push the return value onto the stack - stack_ret = ctx.stack_push(Type::Fixnum) - asm.mov(stack_ret, C_RET) - - KeepCompiling - else - opt_send_without_block(jit, ctx, asm) - end - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def opt_eq(jit, ctx, asm) - unless jit.at_current_insn? - defer_compilation(jit, ctx, asm) - return EndBlock - end - - if jit_equality_specialized(jit, ctx, asm, true) - jump_to_next_insn(jit, ctx, asm) - EndBlock - else - opt_send_without_block(jit, ctx, asm) - end - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def opt_neq(jit, ctx, asm) - # opt_neq is passed two rb_call_data as arguments: - # first for ==, second for != - neq_cd = C.rb_call_data.new(jit.operand(1)) - opt_send_without_block(jit, ctx, asm, cd: neq_cd) - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def opt_lt(jit, ctx, asm) - jit_fixnum_cmp(jit, ctx, asm, opcode: :cmovl, bop: C::BOP_LT) - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def opt_le(jit, ctx, asm) - jit_fixnum_cmp(jit, ctx, asm, opcode: :cmovle, bop: C::BOP_LE) - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def opt_gt(jit, ctx, asm) - jit_fixnum_cmp(jit, ctx, asm, opcode: :cmovg, bop: C::BOP_GT) - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def opt_ge(jit, ctx, asm) - jit_fixnum_cmp(jit, ctx, asm, opcode: :cmovge, bop: C::BOP_GE) - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def opt_ltlt(jit, ctx, asm) - opt_send_without_block(jit, ctx, asm) - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def opt_and(jit, ctx, asm) - unless jit.at_current_insn? - defer_compilation(jit, ctx, asm) - return EndBlock - end - - if two_fixnums_on_stack?(jit) - unless Invariants.assume_bop_not_redefined(jit, C::INTEGER_REDEFINED_OP_FLAG, C::BOP_AND) - return CantCompile - end - - # Check that both operands are fixnums - guard_two_fixnums(jit, ctx, asm) - - # Get the operands and destination from the stack - arg1 = ctx.stack_pop(1) - arg0 = ctx.stack_pop(1) - - asm.comment('bitwise and') - asm.mov(:rax, arg0) - asm.and(:rax, arg1) - - # Push the return value onto the stack - dst = ctx.stack_push(Type::Fixnum) - asm.mov(dst, :rax) - - KeepCompiling - else - opt_send_without_block(jit, ctx, asm) - end - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def opt_or(jit, ctx, asm) - unless jit.at_current_insn? - defer_compilation(jit, ctx, asm) - return EndBlock - end - - if two_fixnums_on_stack?(jit) - unless Invariants.assume_bop_not_redefined(jit, C::INTEGER_REDEFINED_OP_FLAG, C::BOP_OR) - return CantCompile - end - - # Check that both operands are fixnums - guard_two_fixnums(jit, ctx, asm) - - # Get the operands and destination from the stack - asm.comment('bitwise or') - arg1 = ctx.stack_pop(1) - arg0 = ctx.stack_pop(1) - - # Do the bitwise or arg0 | arg1 - asm.mov(:rax, arg0) - asm.or(:rax, arg1) - - # Push the return value onto the stack - dst = ctx.stack_push(Type::Fixnum) - asm.mov(dst, :rax) - - KeepCompiling - else - opt_send_without_block(jit, ctx, asm) - end - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def opt_aref(jit, ctx, asm) - cd = C.rb_call_data.new(jit.operand(0)) - argc = C.vm_ci_argc(cd.ci) - - if argc != 1 - asm.incr_counter(:optaref_argc_not_one) - return CantCompile - end - - unless jit.at_current_insn? - defer_compilation(jit, ctx, asm) - return EndBlock - end - - comptime_recv = jit.peek_at_stack(1) - comptime_obj = jit.peek_at_stack(0) - - side_exit = side_exit(jit, ctx) - - if C.rb_class_of(comptime_recv) == Array && fixnum?(comptime_obj) - unless Invariants.assume_bop_not_redefined(jit, C::ARRAY_REDEFINED_OP_FLAG, C::BOP_AREF) - return CantCompile - end - - idx_opnd = ctx.stack_opnd(0) - recv_opnd = ctx.stack_opnd(1) - - not_array_exit = counted_exit(side_exit, :optaref_recv_not_array) - jit_guard_known_klass(jit, ctx, asm, C.rb_class_of(comptime_recv), recv_opnd, StackOpnd[1], comptime_recv, not_array_exit) - - # Bail if idx is not a FIXNUM - asm.mov(:rax, idx_opnd) - asm.test(:rax, C::RUBY_FIXNUM_FLAG) - asm.jz(counted_exit(side_exit, :optaref_arg_not_fixnum)) - - # Call VALUE rb_ary_entry_internal(VALUE ary, long offset). - # It never raises or allocates, so we don't need to write to cfp->pc. - asm.sar(:rax, 1) # Convert fixnum to int - asm.mov(C_ARGS[0], recv_opnd) - asm.mov(C_ARGS[1], :rax) - asm.call(C.rb_ary_entry_internal) - - # Pop the argument and the receiver - ctx.stack_pop(2) - - # Push the return value onto the stack - stack_ret = ctx.stack_push(Type::Unknown) - asm.mov(stack_ret, C_RET) - - # Let guard chains share the same successor - jump_to_next_insn(jit, ctx, asm) - EndBlock - elsif C.rb_class_of(comptime_recv) == Hash - unless Invariants.assume_bop_not_redefined(jit, C::HASH_REDEFINED_OP_FLAG, C::BOP_AREF) - return CantCompile - end - - recv_opnd = ctx.stack_opnd(1) - - # Guard that the receiver is a Hash - not_hash_exit = counted_exit(side_exit, :optaref_recv_not_hash) - jit_guard_known_klass(jit, ctx, asm, C.rb_class_of(comptime_recv), recv_opnd, StackOpnd[1], comptime_recv, not_hash_exit) - - # Prepare to call rb_hash_aref(). It might call #hash on the key. - jit_prepare_routine_call(jit, ctx, asm) - - asm.comment('call rb_hash_aref') - key_opnd = ctx.stack_opnd(0) - recv_opnd = ctx.stack_opnd(1) - asm.mov(:rdi, recv_opnd) - asm.mov(:rsi, key_opnd) - asm.call(C.rb_hash_aref) - - # Pop the key and the receiver - ctx.stack_pop(2) - - stack_ret = ctx.stack_push(Type::Unknown) - asm.mov(stack_ret, C_RET) - - # Let guard chains share the same successor - jump_to_next_insn(jit, ctx, asm) - EndBlock - else - opt_send_without_block(jit, ctx, asm) - end - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def opt_aset(jit, ctx, asm) - # Defer compilation so we can specialize on a runtime `self` - unless jit.at_current_insn? - defer_compilation(jit, ctx, asm) - return EndBlock - end - - comptime_recv = jit.peek_at_stack(2) - comptime_key = jit.peek_at_stack(1) - - # Get the operands from the stack - recv = ctx.stack_opnd(2) - key = ctx.stack_opnd(1) - _val = ctx.stack_opnd(0) - - if C.rb_class_of(comptime_recv) == Array && fixnum?(comptime_key) - side_exit = side_exit(jit, ctx) - - # Guard receiver is an Array - jit_guard_known_klass(jit, ctx, asm, C.rb_class_of(comptime_recv), recv, StackOpnd[2], comptime_recv, side_exit) - - # Guard key is a fixnum - jit_guard_known_klass(jit, ctx, asm, C.rb_class_of(comptime_key), key, StackOpnd[1], comptime_key, side_exit) - - # We might allocate or raise - jit_prepare_routine_call(jit, ctx, asm) - - asm.comment('call rb_ary_store') - recv = ctx.stack_opnd(2) - key = ctx.stack_opnd(1) - val = ctx.stack_opnd(0) - asm.mov(:rax, key) - asm.sar(:rax, 1) # FIX2LONG(key) - asm.mov(C_ARGS[0], recv) - asm.mov(C_ARGS[1], :rax) - asm.mov(C_ARGS[2], val) - asm.call(C.rb_ary_store) - - # rb_ary_store returns void - # stored value should still be on stack - val = ctx.stack_opnd(0) - - # Push the return value onto the stack - ctx.stack_pop(3) - stack_ret = ctx.stack_push(Type::Unknown) - asm.mov(:rax, val) - asm.mov(stack_ret, :rax) - - jump_to_next_insn(jit, ctx, asm) - EndBlock - elsif C.rb_class_of(comptime_recv) == Hash - side_exit = side_exit(jit, ctx) - - # Guard receiver is a Hash - jit_guard_known_klass(jit, ctx, asm, C.rb_class_of(comptime_recv), recv, StackOpnd[2], comptime_recv, side_exit) - - # We might allocate or raise - jit_prepare_routine_call(jit, ctx, asm) - - # Call rb_hash_aset - recv = ctx.stack_opnd(2) - key = ctx.stack_opnd(1) - val = ctx.stack_opnd(0) - asm.mov(C_ARGS[0], recv) - asm.mov(C_ARGS[1], key) - asm.mov(C_ARGS[2], val) - asm.call(C.rb_hash_aset) - - # Push the return value onto the stack - ctx.stack_pop(3) - stack_ret = ctx.stack_push(Type::Unknown) - asm.mov(stack_ret, C_RET) - - jump_to_next_insn(jit, ctx, asm) - EndBlock - else - opt_send_without_block(jit, ctx, asm) - end - end - - # opt_aset_with - # opt_aref_with - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def opt_length(jit, ctx, asm) - opt_send_without_block(jit, ctx, asm) - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def opt_size(jit, ctx, asm) - opt_send_without_block(jit, ctx, asm) - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def opt_empty_p(jit, ctx, asm) - opt_send_without_block(jit, ctx, asm) - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def opt_succ(jit, ctx, asm) - opt_send_without_block(jit, ctx, asm) - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def opt_not(jit, ctx, asm) - opt_send_without_block(jit, ctx, asm) - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def opt_regexpmatch2(jit, ctx, asm) - opt_send_without_block(jit, ctx, asm) - end - - # invokebuiltin - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def opt_invokebuiltin_delegate(jit, ctx, asm) - bf = C.rb_builtin_function.new(jit.operand(0)) - bf_argc = bf.argc - start_index = jit.operand(1) - - # ec, self, and arguments - if bf_argc + 2 > C_ARGS.size - return CantCompile - end - - # If the calls don't allocate, do they need up to date PC, SP? - jit_prepare_routine_call(jit, ctx, asm) - - # Call the builtin func (ec, recv, arg1, arg2, ...) - asm.comment('call builtin func') - asm.mov(C_ARGS[0], EC) - asm.mov(C_ARGS[1], [CFP, C.rb_control_frame_t.offsetof(:self)]) - - # Copy arguments from locals - if bf_argc > 0 - # Load environment pointer EP from CFP - asm.mov(:rax, [CFP, C.rb_control_frame_t.offsetof(:ep)]) - - bf_argc.times do |i| - table_size = jit.iseq.body.local_table_size - offs = -table_size - C::VM_ENV_DATA_SIZE + 1 + start_index + i - asm.mov(C_ARGS[2 + i], [:rax, offs * C.VALUE.size]) - end - end - asm.call(bf.func_ptr) - - # Push the return value - stack_ret = ctx.stack_push(Type::Unknown) - asm.mov(stack_ret, C_RET) - - KeepCompiling - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def opt_invokebuiltin_delegate_leave(jit, ctx, asm) - opt_invokebuiltin_delegate(jit, ctx, asm) - # opt_invokebuiltin_delegate is always followed by leave insn - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def putobject_INT2FIX_0_(jit, ctx, asm) - putobject(jit, ctx, asm, val: C.to_value(0)) - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def putobject_INT2FIX_1_(jit, ctx, asm) - putobject(jit, ctx, asm, val: C.to_value(1)) - end - - # - # C func - # - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def jit_rb_true(jit, ctx, asm, argc, _known_recv_class) - return false if argc != 0 - asm.comment('nil? == true') - ctx.stack_pop(1) - stack_ret = ctx.stack_push(Type::True) - asm.mov(stack_ret, Qtrue) - true - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def jit_rb_false(jit, ctx, asm, argc, _known_recv_class) - return false if argc != 0 - asm.comment('nil? == false') - ctx.stack_pop(1) - stack_ret = ctx.stack_push(Type::False) - asm.mov(stack_ret, Qfalse) - true - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def jit_rb_kernel_is_a(jit, ctx, asm, argc, known_recv_class) - if argc != 1 - return false - end - - # If this is a super call we might not know the class - if known_recv_class.nil? - return false - end - - # Important note: The output code will simply `return true/false`. - # Correctness follows from: - # - `known_recv_class` implies there is a guard scheduled before here - # for a particular `CLASS_OF(lhs)`. - # - We guard that rhs is identical to the compile-time sample - # - In general, for any two Class instances A, B, `A < B` does not change at runtime. - # Class#superclass is stable. - - sample_rhs = jit.peek_at_stack(0) - sample_lhs = jit.peek_at_stack(1) - - # We are not allowing module here because the module hierarchy can change at runtime. - if C.RB_TYPE_P(sample_rhs, C::RUBY_T_CLASS) - return false - end - sample_is_a = C.obj_is_kind_of(sample_lhs, sample_rhs) - - side_exit = side_exit(jit, ctx) - asm.comment('Kernel#is_a?') - asm.mov(:rax, to_value(sample_rhs)) - asm.cmp(ctx.stack_opnd(0), :rax) - asm.jne(counted_exit(side_exit, :send_is_a_class_mismatch)) - - ctx.stack_pop(2) - - if sample_is_a - stack_ret = ctx.stack_push(Type::True) - asm.mov(stack_ret, Qtrue) - else - stack_ret = ctx.stack_push(Type::False) - asm.mov(stack_ret, Qfalse) - end - return true - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def jit_rb_kernel_instance_of(jit, ctx, asm, argc, known_recv_class) - if argc != 1 - return false - end - - # If this is a super call we might not know the class - if known_recv_class.nil? - return false - end - - # Important note: The output code will simply `return true/false`. - # Correctness follows from: - # - `known_recv_class` implies there is a guard scheduled before here - # for a particular `CLASS_OF(lhs)`. - # - We guard that rhs is identical to the compile-time sample - # - For a particular `CLASS_OF(lhs)`, `rb_obj_class(lhs)` does not change. - # (because for any singleton class `s`, `s.superclass.equal?(s.attached_object.class)`) - - sample_rhs = jit.peek_at_stack(0) - sample_lhs = jit.peek_at_stack(1) - - # Filters out cases where the C implementation raises - unless C.RB_TYPE_P(sample_rhs, C::RUBY_T_CLASS) || C.RB_TYPE_P(sample_rhs, C::RUBY_T_MODULE) - return false - end - - # We need to grab the class here to deal with singleton classes. - # Instance of grabs the "real class" of the object rather than the - # singleton class. - sample_lhs_real_class = C.rb_obj_class(sample_lhs) - - sample_instance_of = (sample_lhs_real_class == sample_rhs) - - side_exit = side_exit(jit, ctx) - asm.comment('Kernel#instance_of?') - asm.mov(:rax, to_value(sample_rhs)) - asm.cmp(ctx.stack_opnd(0), :rax) - asm.jne(counted_exit(side_exit, :send_instance_of_class_mismatch)) - - ctx.stack_pop(2) - - if sample_instance_of - stack_ret = ctx.stack_push(Type::True) - asm.mov(stack_ret, Qtrue) - else - stack_ret = ctx.stack_push(Type::False) - asm.mov(stack_ret, Qfalse) - end - return true; - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def jit_rb_obj_not(jit, ctx, asm, argc, _known_recv_class) - return false if argc != 0 - recv_type = ctx.get_opnd_type(StackOpnd[0]) - - case recv_type.known_truthy - in false - asm.comment('rb_obj_not(nil_or_false)') - ctx.stack_pop(1) - out_opnd = ctx.stack_push(Type::True) - asm.mov(out_opnd, Qtrue) - in true - # Note: recv_type != Type::Nil && recv_type != Type::False. - asm.comment('rb_obj_not(truthy)') - ctx.stack_pop(1) - out_opnd = ctx.stack_push(Type::False) - asm.mov(out_opnd, Qfalse) - in nil - asm.comment('rb_obj_not') - - recv = ctx.stack_pop - # This `test` sets ZF only for Qnil and Qfalse, which let cmovz set. - asm.test(recv, ~Qnil) - asm.mov(:rax, Qfalse) - asm.mov(:rcx, Qtrue) - asm.cmovz(:rax, :rcx) - - stack_ret = ctx.stack_push(Type::UnknownImm) - asm.mov(stack_ret, :rax) - end - true - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def jit_rb_obj_equal(jit, ctx, asm, argc, _known_recv_class) - return false if argc != 1 - asm.comment('equal?') - obj1 = ctx.stack_pop(1) - obj2 = ctx.stack_pop(1) - - asm.mov(:rax, obj1) - asm.mov(:rcx, obj2) - asm.cmp(:rax, :rcx) - asm.mov(:rax, Qfalse) - asm.mov(:rcx, Qtrue) - asm.cmove(:rax, :rcx) - - stack_ret = ctx.stack_push(Type::UnknownImm) - asm.mov(stack_ret, :rax) - true - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def jit_rb_obj_not_equal(jit, ctx, asm, argc, _known_recv_class) - return false if argc != 1 - jit_equality_specialized(jit, ctx, asm, false) - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def jit_rb_mod_eqq(jit, ctx, asm, argc, _known_recv_class) - return false if argc != 1 - - asm.comment('Module#===') - # By being here, we know that the receiver is a T_MODULE or a T_CLASS, because Module#=== can - # only live on these objects. With that, we can call rb_obj_is_kind_of() without - # jit_prepare_routine_call() or a control frame push because it can't raise, allocate, or call - # Ruby methods with these inputs. - # Note the difference in approach from Kernel#is_a? because we don't get a free guard for the - # right hand side. - lhs = ctx.stack_opnd(1) # the module - rhs = ctx.stack_opnd(0) - asm.mov(C_ARGS[0], rhs); - asm.mov(C_ARGS[1], lhs); - asm.call(C.rb_obj_is_kind_of) - - # Return the result - ctx.stack_pop(2) - stack_ret = ctx.stack_push(Type::UnknownImm) - asm.mov(stack_ret, C_RET) - - return true - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def jit_rb_int_equal(jit, ctx, asm, argc, _known_recv_class) - return false if argc != 1 - return false unless two_fixnums_on_stack?(jit) - - guard_two_fixnums(jit, ctx, asm) - - # Compare the arguments - asm.comment('rb_int_equal') - arg1 = ctx.stack_pop(1) - arg0 = ctx.stack_pop(1) - asm.mov(:rax, arg1) - asm.cmp(arg0, :rax) - asm.mov(:rax, Qfalse) - asm.mov(:rcx, Qtrue) - asm.cmove(:rax, :rcx) - - stack_ret = ctx.stack_push(Type::UnknownImm) - asm.mov(stack_ret, :rax) - true - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def jit_rb_int_mul(jit, ctx, asm, argc, _known_recv_class) - return false if argc != 1 - return false unless two_fixnums_on_stack?(jit) - - guard_two_fixnums(jit, ctx, asm) - - asm.comment('rb_int_mul') - y_opnd = ctx.stack_pop - x_opnd = ctx.stack_pop - asm.mov(C_ARGS[0], x_opnd) - asm.mov(C_ARGS[1], y_opnd) - asm.call(C.rb_fix_mul_fix) - - ret_opnd = ctx.stack_push(Type::Unknown) - asm.mov(ret_opnd, C_RET) - true - end - - def jit_rb_int_div(jit, ctx, asm, argc, _known_recv_class) - return false if argc != 1 - return false unless two_fixnums_on_stack?(jit) - - guard_two_fixnums(jit, ctx, asm) - - asm.comment('rb_int_div') - y_opnd = ctx.stack_pop - x_opnd = ctx.stack_pop - asm.mov(:rax, y_opnd) - asm.cmp(:rax, C.to_value(0)) - asm.je(side_exit(jit, ctx)) - - asm.mov(C_ARGS[0], x_opnd) - asm.mov(C_ARGS[1], :rax) - asm.call(C.rb_fix_div_fix) - - ret_opnd = ctx.stack_push(Type::Unknown) - asm.mov(ret_opnd, C_RET) - true - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def jit_rb_int_aref(jit, ctx, asm, argc, _known_recv_class) - return false if argc != 1 - return false unless two_fixnums_on_stack?(jit) - - guard_two_fixnums(jit, ctx, asm) - - asm.comment('rb_int_aref') - y_opnd = ctx.stack_pop - x_opnd = ctx.stack_pop - - asm.mov(C_ARGS[0], x_opnd) - asm.mov(C_ARGS[1], y_opnd) - asm.call(C.rb_fix_aref) - - ret_opnd = ctx.stack_push(Type::UnknownImm) - asm.mov(ret_opnd, C_RET) - true - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def jit_rb_str_empty_p(jit, ctx, asm, argc, known_recv_class) - recv_opnd = ctx.stack_pop(1) - out_opnd = ctx.stack_push(Type::UnknownImm) - - asm.comment('get string length') - asm.mov(:rax, recv_opnd) - str_len_opnd = [:rax, C.RString.offsetof(:len)] - - asm.cmp(str_len_opnd, 0) - asm.mov(:rax, Qfalse) - asm.mov(:rcx, Qtrue) - asm.cmove(:rax, :rcx) - asm.mov(out_opnd, :rax) - - return true - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def jit_rb_str_to_s(jit, ctx, asm, argc, known_recv_class) - return false if argc != 0 - if known_recv_class == String - asm.comment('to_s on plain string') - # The method returns the receiver, which is already on the stack. - # No stack movement. - return true - end - false - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def jit_rb_str_bytesize(jit, ctx, asm, argc, known_recv_class) - asm.comment('String#bytesize') - - recv = ctx.stack_pop(1) - asm.mov(C_ARGS[0], recv) - asm.call(C.rb_str_bytesize) - - out_opnd = ctx.stack_push(Type::Fixnum) - asm.mov(out_opnd, C_RET) - - true - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def jit_rb_str_concat(jit, ctx, asm, argc, known_recv_class) - # The << operator can accept integer codepoints for characters - # as the argument. We only specially optimise string arguments. - # If the peeked-at compile time argument is something other than - # a string, assume it won't be a string later either. - comptime_arg = jit.peek_at_stack(0) - unless C.RB_TYPE_P(comptime_arg, C::RUBY_T_STRING) - return false - end - - # Guard that the concat argument is a string - asm.mov(:rax, ctx.stack_opnd(0)) - guard_object_is_string(jit, ctx, asm, :rax, :rcx, StackOpnd[0]) - - # Guard buffers from GC since rb_str_buf_append may allocate. During the VM lock on GC, - # other Ractors may trigger global invalidation, so we need ctx.clear_local_types. - # PC is used on errors like Encoding::CompatibilityError raised by rb_str_buf_append. - jit_prepare_routine_call(jit, ctx, asm) - - concat_arg = ctx.stack_pop(1) - recv = ctx.stack_pop(1) - - # Test if string encodings differ. If different, use rb_str_append. If the same, - # use rb_yjit_str_simple_append, which calls rb_str_cat. - asm.comment('<< on strings') - - # Take receiver's object flags XOR arg's flags. If any - # string-encoding flags are different between the two, - # the encodings don't match. - recv_reg = :rax - asm.mov(recv_reg, recv) - concat_arg_reg = :rcx - asm.mov(concat_arg_reg, concat_arg) - asm.mov(recv_reg, [recv_reg, C.RBasic.offsetof(:flags)]) - asm.mov(concat_arg_reg, [concat_arg_reg, C.RBasic.offsetof(:flags)]) - asm.xor(recv_reg, concat_arg_reg) - asm.test(recv_reg, C::RUBY_ENCODING_MASK) - - # Push once, use the resulting operand in both branches below. - stack_ret = ctx.stack_push(Type::TString) - - enc_mismatch = asm.new_label('enc_mismatch') - asm.jnz(enc_mismatch) - - # If encodings match, call the simple append function and jump to return - asm.mov(C_ARGS[0], recv) - asm.mov(C_ARGS[1], concat_arg) - asm.call(C.rjit_str_simple_append) - ret_label = asm.new_label('func_return') - asm.mov(stack_ret, C_RET) - asm.jmp(ret_label) - - # If encodings are different, use a slower encoding-aware concatenate - asm.write_label(enc_mismatch) - asm.mov(C_ARGS[0], recv) - asm.mov(C_ARGS[1], concat_arg) - asm.call(C.rb_str_buf_append) - asm.mov(stack_ret, C_RET) - # Drop through to return - - asm.write_label(ret_label) - - true - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def jit_rb_str_uplus(jit, ctx, asm, argc, _known_recv_class) - if argc != 0 - return false - end - - # We allocate when we dup the string - jit_prepare_routine_call(jit, ctx, asm) - - asm.comment('Unary plus on string') - asm.mov(:rax, ctx.stack_pop(1)) # recv_opnd - asm.mov(:rcx, [:rax, C.RBasic.offsetof(:flags)]) # flags_opnd - asm.test(:rcx, C::RUBY_FL_FREEZE) - - ret_label = asm.new_label('stack_ret') - - # String#+@ can only exist on T_STRING - stack_ret = ctx.stack_push(Type::TString) - - # If the string isn't frozen, we just return it. - asm.mov(stack_ret, :rax) # recv_opnd - asm.jz(ret_label) - - # Str is frozen - duplicate it - asm.mov(C_ARGS[0], :rax) # recv_opnd - asm.call(C.rb_str_dup) - asm.mov(stack_ret, C_RET) - - asm.write_label(ret_label) - - true - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def jit_rb_str_getbyte(jit, ctx, asm, argc, _known_recv_class) - return false if argc != 1 - asm.comment('rb_str_getbyte') - - index_opnd = ctx.stack_pop - str_opnd = ctx.stack_pop - asm.mov(C_ARGS[0], str_opnd) - asm.mov(C_ARGS[1], index_opnd) - asm.call(C.rb_str_getbyte) - - ret_opnd = ctx.stack_push(Type::Fixnum) - asm.mov(ret_opnd, C_RET) - true - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def jit_rb_ary_empty_p(jit, ctx, asm, argc, _known_recv_class) - array_reg = :rax - asm.mov(array_reg, ctx.stack_pop(1)) - jit_array_len(asm, array_reg, :rcx) - - asm.test(:rcx, :rcx) - asm.mov(:rax, Qfalse) - asm.mov(:rcx, Qtrue) - asm.cmovz(:rax, :rcx) - - out_opnd = ctx.stack_push(Type::UnknownImm) - asm.mov(out_opnd, :rax) - - return true - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def jit_rb_ary_push(jit, ctx, asm, argc, _known_recv_class) - return false if argc != 1 - asm.comment('rb_ary_push') - - jit_prepare_routine_call(jit, ctx, asm) - - item_opnd = ctx.stack_pop - ary_opnd = ctx.stack_pop - asm.mov(C_ARGS[0], ary_opnd) - asm.mov(C_ARGS[1], item_opnd) - asm.call(C.rb_ary_push) - - ret_opnd = ctx.stack_push(Type::TArray) - asm.mov(ret_opnd, C_RET) - true - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def jit_obj_respond_to(jit, ctx, asm, argc, known_recv_class) - # respond_to(:sym) or respond_to(:sym, true) - if argc != 1 && argc != 2 - return false - end - - if known_recv_class.nil? - return false - end - - recv_class = known_recv_class - - # Get the method_id from compile time. We will later add a guard against it. - mid_sym = jit.peek_at_stack(argc - 1) - unless static_symbol?(mid_sym) - return false - end - mid = C.rb_sym2id(mid_sym) - - # This represents the value of the "include_all" argument and whether it's known - allow_priv = if argc == 1 - # Default is false - false - else - # Get value from type information (may or may not be known) - ctx.get_opnd_type(StackOpnd[0]).known_truthy - end - - target_cme = C.rb_callable_method_entry_or_negative(recv_class, mid) - - # Should never be null, as in that case we will be returned a "negative CME" - assert_equal(false, target_cme.nil?) - - cme_def_type = C.UNDEFINED_METHOD_ENTRY_P(target_cme) ? C::VM_METHOD_TYPE_UNDEF : target_cme.def.type - - if cme_def_type == C::VM_METHOD_TYPE_REFINED - return false - end - - visibility = if cme_def_type == C::VM_METHOD_TYPE_UNDEF - C::METHOD_VISI_UNDEF - else - C.METHOD_ENTRY_VISI(target_cme) - end - - result = - case [visibility, allow_priv] - in C::METHOD_VISI_UNDEF, _ then Qfalse # No method => false - in C::METHOD_VISI_PUBLIC, _ then Qtrue # Public method => true regardless of include_all - in _, true then Qtrue # include_all => always true - else return false # not public and include_all not known, can't compile - end - - if result != Qtrue - # Only if respond_to_missing? hasn't been overridden - # In the future, we might want to jit the call to respond_to_missing? - unless Invariants.assume_method_basic_definition(jit, recv_class, C.idRespond_to_missing) - return false - end - end - - # Invalidate this block if method lookup changes for the method being queried. This works - # both for the case where a method does or does not exist, as for the latter we asked for a - # "negative CME" earlier. - Invariants.assume_method_lookup_stable(jit, target_cme) - - # Generate a side exit - side_exit = side_exit(jit, ctx) - - if argc == 2 - # pop include_all argument (we only use its type info) - ctx.stack_pop(1) - end - - sym_opnd = ctx.stack_pop(1) - _recv_opnd = ctx.stack_pop(1) - - # This is necessary because we have no guarantee that sym_opnd is a constant - asm.comment('guard known mid') - asm.mov(:rax, to_value(mid_sym)) - asm.cmp(sym_opnd, :rax) - asm.jne(side_exit) - - putobject(jit, ctx, asm, val: result) - - true - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def jit_rb_f_block_given_p(jit, ctx, asm, argc, _known_recv_class) - asm.comment('block_given?') - - # Same as rb_vm_frame_block_handler - jit_get_lep(jit, asm, reg: :rax) - asm.mov(:rax, [:rax, C.VALUE.size * C::VM_ENV_DATA_INDEX_SPECVAL]) # block_handler - - ctx.stack_pop(1) - out_opnd = ctx.stack_push(Type::UnknownImm) - - # Return `block_handler != VM_BLOCK_HANDLER_NONE` - asm.cmp(:rax, C::VM_BLOCK_HANDLER_NONE) - asm.mov(:rax, Qfalse) - asm.mov(:rcx, Qtrue) - asm.cmovne(:rax, :rcx) # block_given - asm.mov(out_opnd, :rax) - - true - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def jit_thread_s_current(jit, ctx, asm, argc, _known_recv_class) - return false if argc != 0 - asm.comment('Thread.current') - ctx.stack_pop(1) - - # ec->thread_ptr - asm.mov(:rax, [EC, C.rb_execution_context_t.offsetof(:thread_ptr)]) - - # thread->self - asm.mov(:rax, [:rax, C.rb_thread_struct.offsetof(:self)]) - - stack_ret = ctx.stack_push(Type::UnknownHeap) - asm.mov(stack_ret, :rax) - true - end - - # - # Helpers - # - - def register_cfunc_codegen_funcs - # Specialization for C methods. See register_cfunc_method for details. - register_cfunc_method(BasicObject, :!, :jit_rb_obj_not) - - register_cfunc_method(NilClass, :nil?, :jit_rb_true) - register_cfunc_method(Kernel, :nil?, :jit_rb_false) - register_cfunc_method(Kernel, :is_a?, :jit_rb_kernel_is_a) - register_cfunc_method(Kernel, :kind_of?, :jit_rb_kernel_is_a) - register_cfunc_method(Kernel, :instance_of?, :jit_rb_kernel_instance_of) - - register_cfunc_method(BasicObject, :==, :jit_rb_obj_equal) - register_cfunc_method(BasicObject, :equal?, :jit_rb_obj_equal) - register_cfunc_method(BasicObject, :!=, :jit_rb_obj_not_equal) - register_cfunc_method(Kernel, :eql?, :jit_rb_obj_equal) - register_cfunc_method(Module, :==, :jit_rb_obj_equal) - register_cfunc_method(Module, :===, :jit_rb_mod_eqq) - register_cfunc_method(Symbol, :==, :jit_rb_obj_equal) - register_cfunc_method(Symbol, :===, :jit_rb_obj_equal) - register_cfunc_method(Integer, :==, :jit_rb_int_equal) - register_cfunc_method(Integer, :===, :jit_rb_int_equal) - - # rb_str_to_s() methods in string.c - register_cfunc_method(String, :empty?, :jit_rb_str_empty_p) - register_cfunc_method(String, :to_s, :jit_rb_str_to_s) - register_cfunc_method(String, :to_str, :jit_rb_str_to_s) - register_cfunc_method(String, :bytesize, :jit_rb_str_bytesize) - register_cfunc_method(String, :<<, :jit_rb_str_concat) - register_cfunc_method(String, :+@, :jit_rb_str_uplus) - - # rb_ary_empty_p() method in array.c - register_cfunc_method(Array, :empty?, :jit_rb_ary_empty_p) - - register_cfunc_method(Kernel, :respond_to?, :jit_obj_respond_to) - register_cfunc_method(Kernel, :block_given?, :jit_rb_f_block_given_p) - - # Thread.current - register_cfunc_method(C.rb_singleton_class(Thread), :current, :jit_thread_s_current) - - #--- - register_cfunc_method(Array, :<<, :jit_rb_ary_push) - register_cfunc_method(Integer, :*, :jit_rb_int_mul) - register_cfunc_method(Integer, :/, :jit_rb_int_div) - register_cfunc_method(Integer, :[], :jit_rb_int_aref) - register_cfunc_method(String, :getbyte, :jit_rb_str_getbyte) - end - - def register_cfunc_method(klass, mid_sym, func) - mid = C.rb_intern(mid_sym.to_s) - me = C.rb_method_entry_at(klass, mid) - - assert_equal(false, me.nil?) - - # Only cfuncs are supported - method_serial = me.def.method_serial - - @cfunc_codegen_table[method_serial] = method(func) - end - - def lookup_cfunc_codegen(cme_def) - @cfunc_codegen_table[cme_def.method_serial] - end - - def stack_swap(_jit, ctx, asm, offset0, offset1) - stack0_mem = ctx.stack_opnd(offset0) - stack1_mem = ctx.stack_opnd(offset1) - - mapping0 = ctx.get_opnd_mapping(StackOpnd[offset0]) - mapping1 = ctx.get_opnd_mapping(StackOpnd[offset1]) - - asm.mov(:rax, stack0_mem) - asm.mov(:rcx, stack1_mem) - asm.mov(stack0_mem, :rcx) - asm.mov(stack1_mem, :rax) - - ctx.set_opnd_mapping(StackOpnd[offset0], mapping1) - ctx.set_opnd_mapping(StackOpnd[offset1], mapping0) - end - - def jit_getlocal_generic(jit, ctx, asm, idx:, level:) - # Load environment pointer EP (level 0) from CFP - ep_reg = :rax - jit_get_ep(asm, level, reg: ep_reg) - - # Load the local from the block - # val = *(vm_get_ep(GET_EP(), level) - idx); - asm.mov(:rax, [ep_reg, -idx * C.VALUE.size]) - - # Write the local at SP - stack_top = if level == 0 - local_idx = ep_offset_to_local_idx(jit.iseq, idx) - ctx.stack_push_local(local_idx) - else - ctx.stack_push(Type::Unknown) - end - - asm.mov(stack_top, :rax) - KeepCompiling - end - - def jit_setlocal_generic(jit, ctx, asm, idx:, level:) - value_type = ctx.get_opnd_type(StackOpnd[0]) - - # Load environment pointer EP at level - ep_reg = :rax - jit_get_ep(asm, level, reg: ep_reg) - - # Write barriers may be required when VM_ENV_FLAG_WB_REQUIRED is set, however write barriers - # only affect heap objects being written. If we know an immediate value is being written we - # can skip this check. - unless value_type.imm? - # flags & VM_ENV_FLAG_WB_REQUIRED - flags_opnd = [ep_reg, C.VALUE.size * C::VM_ENV_DATA_INDEX_FLAGS] - asm.test(flags_opnd, C::VM_ENV_FLAG_WB_REQUIRED) - - # if (flags & VM_ENV_FLAG_WB_REQUIRED) != 0 - asm.jnz(side_exit(jit, ctx)) - end - - if level == 0 - local_idx = ep_offset_to_local_idx(jit.iseq, idx) - ctx.set_local_type(local_idx, value_type) - end - - # Pop the value to write from the stack - stack_top = ctx.stack_pop(1) - - # Write the value at the environment pointer - asm.mov(:rcx, stack_top) - asm.mov([ep_reg, -(C.VALUE.size * idx)], :rcx) - - KeepCompiling - end - - # Compute the index of a local variable from its slot index - def ep_offset_to_local_idx(iseq, ep_offset) - # Layout illustration - # This is an array of VALUE - # | VM_ENV_DATA_SIZE | - # v v - # low addr <+-------+-------+-------+-------+------------------+ - # |local 0|local 1| ... |local n| .... | - # +-------+-------+-------+-------+------------------+ - # ^ ^ ^ ^ - # +-------+---local_table_size----+ cfp->ep--+ - # | | - # +------------------ep_offset---------------+ - # - # See usages of local_var_name() from iseq.c for similar calculation. - - # Equivalent of iseq->body->local_table_size - local_table_size = iseq.body.local_table_size - op = ep_offset - C::VM_ENV_DATA_SIZE - local_idx = local_table_size - op - 1 - assert_equal(true, local_idx >= 0 && local_idx < local_table_size) - local_idx - end - - # Compute the index of a local variable from its slot index - def slot_to_local_idx(iseq, slot_idx) - # Layout illustration - # This is an array of VALUE - # | VM_ENV_DATA_SIZE | - # v v - # low addr <+-------+-------+-------+-------+------------------+ - # |local 0|local 1| ... |local n| .... | - # +-------+-------+-------+-------+------------------+ - # ^ ^ ^ ^ - # +-------+---local_table_size----+ cfp->ep--+ - # | | - # +------------------slot_idx----------------+ - # - # See usages of local_var_name() from iseq.c for similar calculation. - - local_table_size = iseq.body.local_table_size - op = slot_idx - C::VM_ENV_DATA_SIZE - local_table_size - op - 1 - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def guard_object_is_heap(jit, ctx, asm, object, object_opnd, counter = nil) - object_type = ctx.get_opnd_type(object_opnd) - if object_type.heap? - return - end - - side_exit = side_exit(jit, ctx) - side_exit = counted_exit(side_exit, counter) if counter - - asm.comment('guard object is heap') - # Test that the object is not an immediate - asm.test(object, C::RUBY_IMMEDIATE_MASK) - asm.jnz(side_exit) - - # Test that the object is not false - asm.cmp(object, Qfalse) - asm.je(side_exit) - - if object_type.diff(Type::UnknownHeap) != TypeDiff::Incompatible - ctx.upgrade_opnd_type(object_opnd, Type::UnknownHeap) - end - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def guard_object_is_array(jit, ctx, asm, object_reg, flags_reg, object_opnd, counter = nil) - object_type = ctx.get_opnd_type(object_opnd) - if object_type.array? - return - end - - guard_object_is_heap(jit, ctx, asm, object_reg, object_opnd, counter) - - side_exit = side_exit(jit, ctx) - side_exit = counted_exit(side_exit, counter) if counter - - asm.comment('guard object is array') - # Pull out the type mask - asm.mov(flags_reg, [object_reg, C.RBasic.offsetof(:flags)]) - asm.and(flags_reg, C::RUBY_T_MASK) - - # Compare the result with T_ARRAY - asm.cmp(flags_reg, C::RUBY_T_ARRAY) - asm.jne(side_exit) - - if object_type.diff(Type::TArray) != TypeDiff::Incompatible - ctx.upgrade_opnd_type(object_opnd, Type::TArray) - end - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def guard_object_is_string(jit, ctx, asm, object_reg, flags_reg, object_opnd, counter = nil) - object_type = ctx.get_opnd_type(object_opnd) - if object_type.string? - return - end - - guard_object_is_heap(jit, ctx, asm, object_reg, object_opnd, counter) - - side_exit = side_exit(jit, ctx) - side_exit = counted_exit(side_exit, counter) if counter - - asm.comment('guard object is string') - # Pull out the type mask - asm.mov(flags_reg, [object_reg, C.RBasic.offsetof(:flags)]) - asm.and(flags_reg, C::RUBY_T_MASK) - - # Compare the result with T_STRING - asm.cmp(flags_reg, C::RUBY_T_STRING) - asm.jne(side_exit) - - if object_type.diff(Type::TString) != TypeDiff::Incompatible - ctx.upgrade_opnd_type(object_opnd, Type::TString) - end - end - - # clobbers object_reg - def guard_object_is_not_ruby2_keyword_hash(asm, object_reg, flags_reg, side_exit) - asm.comment('guard object is not ruby2 keyword hash') - - not_ruby2_keyword = asm.new_label('not_ruby2_keyword') - asm.test(object_reg, C::RUBY_IMMEDIATE_MASK) - asm.jnz(not_ruby2_keyword) - - asm.cmp(object_reg, Qfalse) - asm.je(not_ruby2_keyword) - - asm.mov(flags_reg, [object_reg, C.RBasic.offsetof(:flags)]) - type_reg = object_reg - asm.mov(type_reg, flags_reg) - asm.and(type_reg, C::RUBY_T_MASK) - - asm.cmp(type_reg, C::RUBY_T_HASH) - asm.jne(not_ruby2_keyword) - - asm.test(flags_reg, C::RHASH_PASS_AS_KEYWORDS) - asm.jnz(side_exit) - - asm.write_label(not_ruby2_keyword) - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def jit_chain_guard(opcode, jit, ctx, asm, side_exit, limit: 20) - opcode => :je | :jne | :jnz | :jz - - if ctx.chain_depth < limit - deeper = ctx.dup - deeper.chain_depth += 1 - - branch_stub = BranchStub.new( - iseq: jit.iseq, - shape: Default, - target0: BranchTarget.new(ctx: deeper, pc: jit.pc), - ) - branch_stub.target0.address = Assembler.new.then do |ocb_asm| - @exit_compiler.compile_branch_stub(deeper, ocb_asm, branch_stub, true) - @ocb.write(ocb_asm) - end - branch_stub.compile = compile_jit_chain_guard(branch_stub, opcode:) - branch_stub.compile.call(asm) - else - asm.public_send(opcode, side_exit) - end - end - - def compile_jit_chain_guard(branch_stub, opcode:) # Proc escapes arguments in memory - proc do |branch_asm| - # Not using `asm.comment` here since it's usually put before cmp/test before this. - branch_asm.stub(branch_stub) do - case branch_stub.shape - in Default - branch_asm.public_send(opcode, branch_stub.target0.address) - end - end - end - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def jit_guard_known_klass(jit, ctx, asm, known_klass, obj_opnd, insn_opnd, comptime_obj, side_exit, limit: 10) - # Only memory operand is supported for now - assert_equal(true, obj_opnd.is_a?(Array)) - - known_klass = C.to_value(known_klass) - val_type = ctx.get_opnd_type(insn_opnd) - if val_type.known_class == known_klass - # We already know from type information that this is a match - return - end - - # Touching this as Ruby could crash for FrozenCore - if known_klass == C.rb_cNilClass - assert(!val_type.heap?) - assert(val_type.unknown?) - - asm.comment('guard object is nil') - asm.cmp(obj_opnd, Qnil) - jit_chain_guard(:jne, jit, ctx, asm, side_exit, limit:) - - ctx.upgrade_opnd_type(insn_opnd, Type::Nil) - elsif known_klass == C.rb_cTrueClass - assert(!val_type.heap?) - assert(val_type.unknown?) - - asm.comment('guard object is true') - asm.cmp(obj_opnd, Qtrue) - jit_chain_guard(:jne, jit, ctx, asm, side_exit, limit:) - - ctx.upgrade_opnd_type(insn_opnd, Type::True) - elsif known_klass == C.rb_cFalseClass - assert(!val_type.heap?) - assert(val_type.unknown?) - - asm.comment('guard object is false') - asm.cmp(obj_opnd, Qfalse) - jit_chain_guard(:jne, jit, ctx, asm, side_exit, limit:) - - ctx.upgrade_opnd_type(insn_opnd, Type::False) - elsif known_klass == C.rb_cInteger && fixnum?(comptime_obj) - # We will guard fixnum and bignum as though they were separate classes - # BIGNUM can be handled by the general else case below - assert(val_type.unknown?) - - asm.comment('guard object is fixnum') - asm.test(obj_opnd, C::RUBY_FIXNUM_FLAG) - jit_chain_guard(:jz, jit, ctx, asm, side_exit, limit:) - - ctx.upgrade_opnd_type(insn_opnd, Type::Fixnum) - elsif known_klass == C.rb_cSymbol && static_symbol?(comptime_obj) - assert(!val_type.heap?) - # We will guard STATIC vs DYNAMIC as though they were separate classes - # DYNAMIC symbols can be handled by the general else case below - if val_type != Type::ImmSymbol || !val_type.imm? - assert(val_type.unknown?) - - asm.comment('guard object is static symbol') - assert_equal(8, C::RUBY_SPECIAL_SHIFT) - asm.cmp(BytePtr[*obj_opnd], C::RUBY_SYMBOL_FLAG) - jit_chain_guard(:jne, jit, ctx, asm, side_exit, limit:) - - ctx.upgrade_opnd_type(insn_opnd, Type::ImmSymbol) - end - elsif known_klass == C.rb_cFloat && flonum?(comptime_obj) - assert(!val_type.heap?) - if val_type != Type::Flonum || !val_type.imm? - assert(val_type.unknown?) - - # We will guard flonum vs heap float as though they were separate classes - asm.comment('guard object is flonum') - asm.mov(:rax, obj_opnd) - asm.and(:rax, C::RUBY_FLONUM_MASK) - asm.cmp(:rax, C::RUBY_FLONUM_FLAG) - jit_chain_guard(:jne, jit, ctx, asm, side_exit, limit:) - - ctx.upgrade_opnd_type(insn_opnd, Type::Flonum) - end - elsif C.RCLASS_SINGLETON_P(known_klass) && comptime_obj == C.rb_class_attached_object(known_klass) - # Singleton classes are attached to one specific object, so we can - # avoid one memory access (and potentially the is_heap check) by - # looking for the expected object directly. - # Note that in case the sample instance has a singleton class that - # doesn't attach to the sample instance, it means the sample instance - # has an empty singleton class that hasn't been materialized yet. In - # this case, comparing against the sample instance doesn't guarantee - # that its singleton class is empty, so we can't avoid the memory - # access. As an example, `Object.new.singleton_class` is an object in - # this situation. - asm.comment('guard known object with singleton class') - asm.mov(:rax, to_value(comptime_obj)) - asm.cmp(obj_opnd, :rax) - jit_chain_guard(:jne, jit, ctx, asm, side_exit, limit:) - elsif val_type == Type::CString && known_klass == C.rb_cString - # guard elided because the context says we've already checked - assert_equal(C.to_value(C.rb_class_of(comptime_obj)), C.rb_cString) - else - assert(!val_type.imm?) - - # Load memory to a register - asm.mov(:rax, obj_opnd) - obj_opnd = :rax - - # Check that the receiver is a heap object - # Note: if we get here, the class doesn't have immediate instances. - unless val_type.heap? - asm.comment('guard not immediate') - asm.test(obj_opnd, C::RUBY_IMMEDIATE_MASK) - jit_chain_guard(:jnz, jit, ctx, asm, side_exit, limit:) - asm.cmp(obj_opnd, Qfalse) - jit_chain_guard(:je, jit, ctx, asm, side_exit, limit:) - end - - # Bail if receiver class is different from known_klass - klass_opnd = [obj_opnd, C.RBasic.offsetof(:klass)] - asm.comment("guard known class #{known_klass}") - asm.mov(:rcx, known_klass) - asm.cmp(klass_opnd, :rcx) - jit_chain_guard(:jne, jit, ctx, asm, side_exit, limit:) - - if known_klass == C.rb_cString - # Upgrading to Type::CString here is incorrect. - # The guard we put only checks RBASIC_CLASS(obj), - # which adding a singleton class can change. We - # additionally need to know the string is frozen - # to claim Type::CString. - ctx.upgrade_opnd_type(insn_opnd, Type::TString) - elsif known_klass == C.rb_cArray - ctx.upgrade_opnd_type(insn_opnd, Type::TArray) - end - end - end - - # @param jit [RubyVM::RJIT::JITState] - def two_fixnums_on_stack?(jit) - comptime_recv = jit.peek_at_stack(1) - comptime_arg = jit.peek_at_stack(0) - return fixnum?(comptime_recv) && fixnum?(comptime_arg) - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def guard_two_fixnums(jit, ctx, asm) - # Get stack operands without popping them - arg1 = ctx.stack_opnd(0) - arg0 = ctx.stack_opnd(1) - - # Get the stack operand types - arg1_type = ctx.get_opnd_type(StackOpnd[0]) - arg0_type = ctx.get_opnd_type(StackOpnd[1]) - - if arg0_type.heap? || arg1_type.heap? - asm.comment('arg is heap object') - asm.jmp(side_exit(jit, ctx)) - return - end - - if arg0_type != Type::Fixnum && arg0_type.specific? - asm.comment('arg0 not fixnum') - asm.jmp(side_exit(jit, ctx)) - return - end - - if arg1_type != Type::Fixnum && arg1_type.specific? - asm.comment('arg1 not fixnum') - asm.jmp(side_exit(jit, ctx)) - return - end - - assert(!arg0_type.heap?) - assert(!arg1_type.heap?) - assert(arg0_type == Type::Fixnum || arg0_type.unknown?) - assert(arg1_type == Type::Fixnum || arg1_type.unknown?) - - # If not fixnums at run-time, fall back - if arg0_type != Type::Fixnum - asm.comment('guard arg0 fixnum') - asm.test(arg0, C::RUBY_FIXNUM_FLAG) - jit_chain_guard(:jz, jit, ctx, asm, side_exit(jit, ctx)) - end - if arg1_type != Type::Fixnum - asm.comment('guard arg1 fixnum') - asm.test(arg1, C::RUBY_FIXNUM_FLAG) - jit_chain_guard(:jz, jit, ctx, asm, side_exit(jit, ctx)) - end - - # Set stack types in context - ctx.upgrade_opnd_type(StackOpnd[0], Type::Fixnum) - ctx.upgrade_opnd_type(StackOpnd[1], Type::Fixnum) - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def jit_fixnum_cmp(jit, ctx, asm, opcode:, bop:) - opcode => :cmovl | :cmovle | :cmovg | :cmovge - - unless jit.at_current_insn? - defer_compilation(jit, ctx, asm) - return EndBlock - end - - comptime_recv = jit.peek_at_stack(1) - comptime_obj = jit.peek_at_stack(0) - - if fixnum?(comptime_recv) && fixnum?(comptime_obj) - unless Invariants.assume_bop_not_redefined(jit, C::INTEGER_REDEFINED_OP_FLAG, bop) - return CantCompile - end - - # Check that both operands are fixnums - guard_two_fixnums(jit, ctx, asm) - - obj_opnd = ctx.stack_pop - recv_opnd = ctx.stack_pop - - asm.mov(:rax, obj_opnd) - asm.cmp(recv_opnd, :rax) - asm.mov(:rax, Qfalse) - asm.mov(:rcx, Qtrue) - asm.public_send(opcode, :rax, :rcx) - - dst_opnd = ctx.stack_push(Type::UnknownImm) - asm.mov(dst_opnd, :rax) - - KeepCompiling - else - opt_send_without_block(jit, ctx, asm) - end - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def jit_equality_specialized(jit, ctx, asm, gen_eq) - # Create a side-exit to fall back to the interpreter - side_exit = side_exit(jit, ctx) - - a_opnd = ctx.stack_opnd(1) - b_opnd = ctx.stack_opnd(0) - - comptime_a = jit.peek_at_stack(1) - comptime_b = jit.peek_at_stack(0) - - if two_fixnums_on_stack?(jit) - unless Invariants.assume_bop_not_redefined(jit, C::INTEGER_REDEFINED_OP_FLAG, C::BOP_EQ) - return false - end - - guard_two_fixnums(jit, ctx, asm) - - asm.comment('check fixnum equality') - asm.mov(:rax, a_opnd) - asm.mov(:rcx, b_opnd) - asm.cmp(:rax, :rcx) - asm.mov(:rax, gen_eq ? Qfalse : Qtrue) - asm.mov(:rcx, gen_eq ? Qtrue : Qfalse) - asm.cmove(:rax, :rcx) - - # Push the output on the stack - ctx.stack_pop(2) - dst = ctx.stack_push(Type::UnknownImm) - asm.mov(dst, :rax) - - true - elsif C.rb_class_of(comptime_a) == String && C.rb_class_of(comptime_b) == String - unless Invariants.assume_bop_not_redefined(jit, C::STRING_REDEFINED_OP_FLAG, C::BOP_EQ) - # if overridden, emit the generic version - return false - end - - # Guard that a is a String - jit_guard_known_klass(jit, ctx, asm, C.rb_class_of(comptime_a), a_opnd, StackOpnd[1], comptime_a, side_exit) - - equal_label = asm.new_label(:equal) - ret_label = asm.new_label(:ret) - - # If they are equal by identity, return true - asm.mov(:rax, a_opnd) - asm.mov(:rcx, b_opnd) - asm.cmp(:rax, :rcx) - asm.je(equal_label) - - # Otherwise guard that b is a T_STRING (from type info) or String (from runtime guard) - btype = ctx.get_opnd_type(StackOpnd[0]) - unless btype.string? - # Note: any T_STRING is valid here, but we check for a ::String for simplicity - # To pass a mutable static variable (rb_cString) requires an unsafe block - jit_guard_known_klass(jit, ctx, asm, C.rb_class_of(comptime_b), b_opnd, StackOpnd[0], comptime_b, side_exit) - end - - asm.comment('call rb_str_eql_internal') - asm.mov(C_ARGS[0], a_opnd) - asm.mov(C_ARGS[1], b_opnd) - asm.call(gen_eq ? C.rb_str_eql_internal : C.rjit_str_neq_internal) - - # Push the output on the stack - ctx.stack_pop(2) - dst = ctx.stack_push(Type::UnknownImm) - asm.mov(dst, C_RET) - asm.jmp(ret_label) - - asm.write_label(equal_label) - asm.mov(dst, gen_eq ? Qtrue : Qfalse) - - asm.write_label(ret_label) - - true - else - false - end - end - - # NOTE: This clobbers :rax - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def jit_prepare_routine_call(jit, ctx, asm) - jit.record_boundary_patch_point = true - jit_save_pc(jit, asm) - jit_save_sp(ctx, asm) - - # In case the routine calls Ruby methods, it can set local variables - # through Kernel#binding and other means. - ctx.clear_local_types - end - - # NOTE: This clobbers :rax - # @param jit [RubyVM::RJIT::JITState] - # @param asm [RubyVM::RJIT::Assembler] - def jit_save_pc(jit, asm, comment: 'save PC to CFP') - next_pc = jit.pc + jit.insn.len * C.VALUE.size # Use the next one for backtrace and side exits - asm.comment(comment) - asm.mov(:rax, next_pc) - asm.mov([CFP, C.rb_control_frame_t.offsetof(:pc)], :rax) - end - - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def jit_save_sp(ctx, asm) - if ctx.sp_offset != 0 - asm.comment('save SP to CFP') - asm.lea(SP, ctx.sp_opnd) - asm.mov([CFP, C.rb_control_frame_t.offsetof(:sp)], SP) - ctx.sp_offset = 0 - end - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def jump_to_next_insn(jit, ctx, asm) - reset_depth = ctx.dup - reset_depth.chain_depth = 0 - - next_pc = jit.pc + jit.insn.len * C.VALUE.size - - # We are at the end of the current instruction. Record the boundary. - if jit.record_boundary_patch_point - exit_pos = Assembler.new.then do |ocb_asm| - @exit_compiler.compile_side_exit(next_pc, ctx, ocb_asm) - @ocb.write(ocb_asm) - end - Invariants.record_global_inval_patch(asm, exit_pos) - jit.record_boundary_patch_point = false - end - - jit_direct_jump(jit.iseq, next_pc, reset_depth, asm, comment: 'jump_to_next_insn') - end - - # rb_vm_check_ints - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def jit_check_ints(jit, ctx, asm) - asm.comment('RUBY_VM_CHECK_INTS(ec)') - asm.mov(:eax, DwordPtr[EC, C.rb_execution_context_t.offsetof(:interrupt_flag)]) - asm.test(:eax, :eax) - asm.jnz(side_exit(jit, ctx)) - end - - # See get_lvar_level in compile.c - def get_lvar_level(iseq) - level = 0 - while iseq.to_i != iseq.body.local_iseq.to_i - level += 1 - iseq = iseq.body.parent_iseq - end - return level - end - - # GET_LEP - # @param jit [RubyVM::RJIT::JITState] - # @param asm [RubyVM::RJIT::Assembler] - def jit_get_lep(jit, asm, reg:) - level = get_lvar_level(jit.iseq) - jit_get_ep(asm, level, reg:) - end - - # vm_get_ep - # @param asm [RubyVM::RJIT::Assembler] - def jit_get_ep(asm, level, reg:) - asm.mov(reg, [CFP, C.rb_control_frame_t.offsetof(:ep)]) - level.times do - # GET_PREV_EP: ep[VM_ENV_DATA_INDEX_SPECVAL] & ~0x03 - asm.mov(reg, [reg, C.VALUE.size * C::VM_ENV_DATA_INDEX_SPECVAL]) - asm.and(reg, ~0x03) - end - end - - # vm_getivar - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def jit_getivar(jit, ctx, asm, comptime_obj, ivar_id, obj_opnd, obj_yarv_opnd) - side_exit = side_exit(jit, ctx) - starting_ctx = ctx.dup # copy for jit_chain_guard - - # Guard not special const - if C::SPECIAL_CONST_P(comptime_obj) - asm.incr_counter(:getivar_special_const) - return CantCompile - end - - case C::BUILTIN_TYPE(comptime_obj) - when C::T_OBJECT - # This is the only supported case for now (ROBJECT_IVPTR) - else - # General case. Call rb_ivar_get(). - # VALUE rb_ivar_get(VALUE obj, ID id) - asm.comment('call rb_ivar_get()') - asm.mov(C_ARGS[0], obj_opnd ? obj_opnd : [CFP, C.rb_control_frame_t.offsetof(:self)]) - asm.mov(C_ARGS[1], ivar_id) - - # The function could raise exceptions. - jit_prepare_routine_call(jit, ctx, asm) # clobbers obj_opnd and :rax - - asm.call(C.rb_ivar_get) - - if obj_opnd # attr_reader - ctx.stack_pop - end - - # Push the ivar on the stack - out_opnd = ctx.stack_push(Type::Unknown) - asm.mov(out_opnd, C_RET) - - # Jump to next instruction. This allows guard chains to share the same successor. - jump_to_next_insn(jit, ctx, asm) - return EndBlock - end - - asm.mov(:rax, obj_opnd ? obj_opnd : [CFP, C.rb_control_frame_t.offsetof(:self)]) - guard_object_is_heap(jit, ctx, asm, :rax, obj_yarv_opnd, :getivar_not_heap) - - shape_id = C.rb_shape_get_shape_id(comptime_obj) - if shape_id == C::OBJ_TOO_COMPLEX_SHAPE_ID - asm.incr_counter(:getivar_too_complex) - return CantCompile - end - - asm.comment('guard shape') - asm.cmp(DwordPtr[:rax, C.rb_shape_id_offset], shape_id) - jit_chain_guard(:jne, jit, starting_ctx, asm, counted_exit(side_exit, :getivar_megamorphic)) - - if obj_opnd - ctx.stack_pop # pop receiver for attr_reader - end - - index = C.rb_shape_get_iv_index(shape_id, ivar_id) - # If there is no IVAR index, then the ivar was undefined - # when we entered the compiler. That means we can just return - # nil for this shape + iv name - if index.nil? - stack_opnd = ctx.stack_push(Type::Nil) - val_opnd = Qnil - else - asm.comment('ROBJECT_IVPTR') - if C::FL_TEST_RAW(comptime_obj, C::ROBJECT_EMBED) - # Access embedded array - asm.mov(:rax, [:rax, C.RObject.offsetof(:as, :ary) + (index * C.VALUE.size)]) - else - # Pull out an ivar table on heap - asm.mov(:rax, [:rax, C.RObject.offsetof(:as, :heap, :ivptr)]) - # Read the table - asm.mov(:rax, [:rax, index * C.VALUE.size]) - end - stack_opnd = ctx.stack_push(Type::Unknown) - val_opnd = :rax - end - asm.mov(stack_opnd, val_opnd) - - # Let guard chains share the same successor - jump_to_next_insn(jit, ctx, asm) - EndBlock - end - - def jit_write_iv(asm, comptime_receiver, recv_reg, temp_reg, ivar_index, set_value, needs_extension) - # Compile time self is embedded and the ivar index lands within the object - embed_test_result = C::FL_TEST_RAW(comptime_receiver, C::ROBJECT_EMBED) && !needs_extension - - if embed_test_result - # Find the IV offset - offs = C.RObject.offsetof(:as, :ary) + ivar_index * C.VALUE.size - - # Write the IV - asm.comment('write IV') - asm.mov(temp_reg, set_value) - asm.mov([recv_reg, offs], temp_reg) - else - # Compile time value is *not* embedded. - - # Get a pointer to the extended table - asm.mov(recv_reg, [recv_reg, C.RObject.offsetof(:as, :heap, :ivptr)]) - - # Write the ivar in to the extended table - asm.comment("write IV"); - asm.mov(temp_reg, set_value) - asm.mov([recv_reg, C.VALUE.size * ivar_index], temp_reg) - end - end - - # vm_caller_setup_arg_block: Handle VM_CALL_ARGS_BLOCKARG cases. - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def guard_block_arg(jit, ctx, asm, calling) - if calling.flags & C::VM_CALL_ARGS_BLOCKARG != 0 - block_arg_type = ctx.get_opnd_type(StackOpnd[0]) - case block_arg_type - in Type::Nil - calling.block_handler = C::VM_BLOCK_HANDLER_NONE - in Type::BlockParamProxy - calling.block_handler = C.rb_block_param_proxy - else - asm.incr_counter(:send_block_arg) - return CantCompile - end - end - end - - # vm_search_method - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def jit_search_method(jit, ctx, asm, mid, calling) - assert_equal(true, jit.at_current_insn?) - - # Generate a side exit - side_exit = side_exit(jit, ctx) - - # kw_splat is not supported yet - if calling.flags & C::VM_CALL_KW_SPLAT != 0 - asm.incr_counter(:send_kw_splat) - return CantCompile - end - - # Get a compile-time receiver and its class - recv_idx = calling.argc + (calling.flags & C::VM_CALL_ARGS_BLOCKARG != 0 ? 1 : 0) # blockarg is not popped yet - recv_idx += calling.send_shift - comptime_recv = jit.peek_at_stack(recv_idx) - comptime_recv_klass = C.rb_class_of(comptime_recv) - - # Guard the receiver class (part of vm_search_method_fastpath) - recv_opnd = ctx.stack_opnd(recv_idx) - megamorphic_exit = counted_exit(side_exit, :send_klass_megamorphic) - jit_guard_known_klass(jit, ctx, asm, comptime_recv_klass, recv_opnd, StackOpnd[recv_idx], comptime_recv, megamorphic_exit) - - # Do method lookup (vm_cc_cme(cc) != NULL) - cme = C.rb_callable_method_entry(comptime_recv_klass, mid) - if cme.nil? - asm.incr_counter(:send_missing_cme) - return CantCompile # We don't support vm_call_method_name - end - - # Invalidate on redefinition (part of vm_search_method_fastpath) - Invariants.assume_method_lookup_stable(jit, cme) - - return cme, comptime_recv_klass - end - - # vm_call_general - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def jit_call_general(jit, ctx, asm, mid, calling, cme, known_recv_class) - jit_call_method(jit, ctx, asm, mid, calling, cme, known_recv_class) - end - - # vm_call_method - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - # @param send_shift [Integer] The number of shifts needed for VM_CALL_OPT_SEND - def jit_call_method(jit, ctx, asm, mid, calling, cme, known_recv_class) - # The main check of vm_call_method before vm_call_method_each_type - case C::METHOD_ENTRY_VISI(cme) - in C::METHOD_VISI_PUBLIC - # You can always call public methods - in C::METHOD_VISI_PRIVATE - # Allow only callsites without a receiver - if calling.flags & C::VM_CALL_FCALL == 0 - asm.incr_counter(:send_private) - return CantCompile - end - in C::METHOD_VISI_PROTECTED - # If the method call is an FCALL, it is always valid - if calling.flags & C::VM_CALL_FCALL == 0 - # otherwise we need an ancestry check to ensure the receiver is valid to be called as protected - jit_protected_callee_ancestry_guard(asm, cme, side_exit(jit, ctx)) - end - end - - # Get a compile-time receiver - recv_idx = calling.argc + (calling.flags & C::VM_CALL_ARGS_BLOCKARG != 0 ? 1 : 0) # blockarg is not popped yet - recv_idx += calling.send_shift - comptime_recv = jit.peek_at_stack(recv_idx) - recv_opnd = ctx.stack_opnd(recv_idx) - - jit_call_method_each_type(jit, ctx, asm, calling, cme, comptime_recv, recv_opnd, known_recv_class) - end - - # Generate ancestry guard for protected callee. - # Calls to protected callees only go through when self.is_a?(klass_that_defines_the_callee). - def jit_protected_callee_ancestry_guard(asm, cme, side_exit) - # See vm_call_method(). - def_class = cme.defined_class - # Note: PC isn't written to current control frame as rb_is_kind_of() shouldn't raise. - # VALUE rb_obj_is_kind_of(VALUE obj, VALUE klass); - - asm.mov(C_ARGS[0], [CFP, C.rb_control_frame_t.offsetof(:self)]) - asm.mov(C_ARGS[1], to_value(def_class)) - asm.call(C.rb_obj_is_kind_of) - asm.test(C_RET, C_RET) - asm.jz(counted_exit(side_exit, :send_protected_check_failed)) - end - - # vm_call_method_each_type - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def jit_call_method_each_type(jit, ctx, asm, calling, cme, comptime_recv, recv_opnd, known_recv_class) - case cme.def.type - in C::VM_METHOD_TYPE_ISEQ - iseq = def_iseq_ptr(cme.def) - jit_call_iseq(jit, ctx, asm, cme, calling, iseq) - in C::VM_METHOD_TYPE_NOTIMPLEMENTED - asm.incr_counter(:send_notimplemented) - return CantCompile - in C::VM_METHOD_TYPE_CFUNC - jit_call_cfunc(jit, ctx, asm, cme, calling, known_recv_class:) - in C::VM_METHOD_TYPE_ATTRSET - jit_call_attrset(jit, ctx, asm, cme, calling, comptime_recv, recv_opnd) - in C::VM_METHOD_TYPE_IVAR - jit_call_ivar(jit, ctx, asm, cme, calling, comptime_recv, recv_opnd) - in C::VM_METHOD_TYPE_MISSING - asm.incr_counter(:send_missing) - return CantCompile - in C::VM_METHOD_TYPE_BMETHOD - jit_call_bmethod(jit, ctx, asm, calling, cme, comptime_recv, recv_opnd, known_recv_class) - in C::VM_METHOD_TYPE_ALIAS - jit_call_alias(jit, ctx, asm, calling, cme, comptime_recv, recv_opnd, known_recv_class) - in C::VM_METHOD_TYPE_OPTIMIZED - jit_call_optimized(jit, ctx, asm, cme, calling, known_recv_class) - in C::VM_METHOD_TYPE_UNDEF - asm.incr_counter(:send_undef) - return CantCompile - in C::VM_METHOD_TYPE_ZSUPER - asm.incr_counter(:send_zsuper) - return CantCompile - in C::VM_METHOD_TYPE_REFINED - asm.incr_counter(:send_refined) - return CantCompile - end - end - - # vm_call_iseq_setup - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def jit_call_iseq(jit, ctx, asm, cme, calling, iseq, frame_type: nil, prev_ep: nil) - argc = calling.argc - flags = calling.flags - send_shift = calling.send_shift - - # When you have keyword arguments, there is an extra object that gets - # placed on the stack the represents a bitmap of the keywords that were not - # specified at the call site. We need to keep track of the fact that this - # value is present on the stack in order to properly set up the callee's - # stack pointer. - doing_kw_call = iseq.body.param.flags.has_kw - supplying_kws = flags & C::VM_CALL_KWARG != 0 - - if flags & C::VM_CALL_TAILCALL != 0 - # We can't handle tailcalls - asm.incr_counter(:send_tailcall) - return CantCompile - end - - # No support for callees with these parameters yet as they require allocation - # or complex handling. - if iseq.body.param.flags.has_post - asm.incr_counter(:send_iseq_has_opt) - return CantCompile - end - if iseq.body.param.flags.has_kwrest - asm.incr_counter(:send_iseq_has_kwrest) - return CantCompile - end - - # In order to handle backwards compatibility between ruby 3 and 2 - # ruby2_keywords was introduced. It is called only on methods - # with splat and changes they way they handle them. - # We are just going to not compile these. - # https://www.rubydoc.info/stdlib/core/Proc:ruby2_keywords - if iseq.body.param.flags.ruby2_keywords && flags & C::VM_CALL_ARGS_SPLAT != 0 - asm.incr_counter(:send_iseq_ruby2_keywords) - return CantCompile - end - - iseq_has_rest = iseq.body.param.flags.has_rest - if iseq_has_rest && calling.block_handler == :captured - asm.incr_counter(:send_iseq_has_rest_and_captured) - return CantCompile - end - - if iseq_has_rest && iseq.body.param.flags.has_kw && supplying_kws - asm.incr_counter(:send_iseq_has_rest_and_kw_supplied) - return CantCompile - end - - # If we have keyword arguments being passed to a callee that only takes - # positionals, then we need to allocate a hash. For now we're going to - # call that too complex and bail. - if supplying_kws && !iseq.body.param.flags.has_kw - asm.incr_counter(:send_iseq_has_no_kw) - return CantCompile - end - - # If we have a method accepting no kwargs (**nil), exit if we have passed - # it any kwargs. - if supplying_kws && iseq.body.param.flags.accepts_no_kwarg - asm.incr_counter(:send_iseq_accepts_no_kwarg) - return CantCompile - end - - # For computing number of locals to set up for the callee - num_params = iseq.body.param.size - - # Block parameter handling. This mirrors setup_parameters_complex(). - if iseq.body.param.flags.has_block - if iseq.body.local_iseq.to_i == iseq.to_i - num_params -= 1 - else - # In this case (param.flags.has_block && local_iseq != iseq), - # the block argument is setup as a local variable and requires - # materialization (allocation). Bail. - asm.incr_counter(:send_iseq_materialized_block) - return CantCompile - end - end - - if flags & C::VM_CALL_ARGS_SPLAT != 0 && flags & C::VM_CALL_ZSUPER != 0 - # zsuper methods are super calls without any arguments. - # They are also marked as splat, but don't actually have an array - # they pull arguments from, instead we need to change to call - # a different method with the current stack. - asm.incr_counter(:send_iseq_zsuper) - return CantCompile - end - - start_pc_offset = 0 - required_num = iseq.body.param.lead_num - - # This struct represents the metadata about the caller-specified - # keyword arguments. - kw_arg = calling.kwarg - kw_arg_num = if kw_arg.nil? - 0 - else - kw_arg.keyword_len - end - - # Arity handling and optional parameter setup - opts_filled = argc - required_num - kw_arg_num - opt_num = iseq.body.param.opt_num - opts_missing = opt_num - opts_filled - - if doing_kw_call && flags & C::VM_CALL_ARGS_SPLAT != 0 - asm.incr_counter(:send_iseq_splat_with_kw) - return CantCompile - end - - if flags & C::VM_CALL_KW_SPLAT != 0 - asm.incr_counter(:send_iseq_kw_splat) - return CantCompile - end - - if iseq_has_rest && opt_num != 0 - asm.incr_counter(:send_iseq_has_rest_and_optional) - return CantCompile - end - - if opts_filled < 0 && flags & C::VM_CALL_ARGS_SPLAT == 0 - # Too few arguments and no splat to make up for it - asm.incr_counter(:send_iseq_arity_error) - return CantCompile - end - - if opts_filled > opt_num && !iseq_has_rest - # Too many arguments and no place to put them (i.e. rest arg) - asm.incr_counter(:send_iseq_arity_error) - return CantCompile - end - - block_arg = flags & C::VM_CALL_ARGS_BLOCKARG != 0 - - # Guard block_arg_type - if guard_block_arg(jit, ctx, asm, calling) == CantCompile - return CantCompile - end - - # If we have unfilled optional arguments and keyword arguments then we - # would need to adjust the arguments location to account for that. - # For now we aren't handling this case. - if doing_kw_call && opts_missing > 0 - asm.incr_counter(:send_iseq_missing_optional_kw) - return CantCompile - end - - # We will handle splat case later - if opt_num > 0 && flags & C::VM_CALL_ARGS_SPLAT == 0 - num_params -= opts_missing - start_pc_offset = iseq.body.param.opt_table[opts_filled] - end - - if doing_kw_call - # Here we're calling a method with keyword arguments and specifying - # keyword arguments at this call site. - - # This struct represents the metadata about the callee-specified - # keyword parameters. - keyword = iseq.body.param.keyword - keyword_num = keyword.num - keyword_required_num = keyword.required_num - - required_kwargs_filled = 0 - - if keyword_num > 30 - # We have so many keywords that (1 << num) encoded as a FIXNUM - # (which shifts it left one more) no longer fits inside a 32-bit - # immediate. - asm.incr_counter(:send_iseq_too_many_kwargs) - return CantCompile - end - - # Check that the kwargs being passed are valid - if supplying_kws - # This is the list of keyword arguments that the callee specified - # in its initial declaration. - # SAFETY: see compile.c for sizing of this slice. - callee_kwargs = keyword_num.times.map { |i| keyword.table[i] } - - # Here we're going to build up a list of the IDs that correspond to - # the caller-specified keyword arguments. If they're not in the - # same order as the order specified in the callee declaration, then - # we're going to need to generate some code to swap values around - # on the stack. - caller_kwargs = [] - kw_arg.keyword_len.times do |kwarg_idx| - sym = C.to_ruby(kw_arg[:keywords][kwarg_idx]) - caller_kwargs << C.rb_sym2id(sym) - end - - # First, we're going to be sure that the names of every - # caller-specified keyword argument correspond to a name in the - # list of callee-specified keyword parameters. - caller_kwargs.each do |caller_kwarg| - search_result = callee_kwargs.map.with_index.find { |kwarg, _| kwarg == caller_kwarg } - - case search_result - in nil - # If the keyword was never found, then we know we have a - # mismatch in the names of the keyword arguments, so we need to - # bail. - asm.incr_counter(:send_iseq_kwargs_mismatch) - return CantCompile - in _, callee_idx if callee_idx < keyword_required_num - # Keep a count to ensure all required kwargs are specified - required_kwargs_filled += 1 - else - end - end - end - assert_equal(true, required_kwargs_filled <= keyword_required_num) - if required_kwargs_filled != keyword_required_num - asm.incr_counter(:send_iseq_kwargs_mismatch) - return CantCompile - end - end - - # Check if we need the arg0 splat handling of vm_callee_setup_block_arg - arg_setup_block = (calling.block_handler == :captured) # arg_setup_type: arg_setup_block (invokeblock) - block_arg0_splat = arg_setup_block && argc == 1 && - (iseq.body.param.flags.has_lead || opt_num > 1) && - !iseq.body.param.flags.ambiguous_param0 - if block_arg0_splat - # If block_arg0_splat, we still need side exits after splat, but - # doing push_splat_args here disallows it. So bail out. - if flags & C::VM_CALL_ARGS_SPLAT != 0 && !iseq_has_rest - asm.incr_counter(:invokeblock_iseq_arg0_args_splat) - return CantCompile - end - # The block_arg0_splat implementation is for the rb_simple_iseq_p case, - # but doing_kw_call means it's not a simple ISEQ. - if doing_kw_call - asm.incr_counter(:invokeblock_iseq_arg0_has_kw) - return CantCompile - end - # The block_arg0_splat implementation cannot deal with optional parameters. - # This is a setup_parameters_complex() situation and interacts with the - # starting position of the callee. - if opt_num > 1 - asm.incr_counter(:invokeblock_iseq_arg0_optional) - return CantCompile - end - end - if flags & C::VM_CALL_ARGS_SPLAT != 0 && !iseq_has_rest - array = jit.peek_at_stack(block_arg ? 1 : 0) - splat_array_length = if array.nil? - 0 - else - array.length - end - - if opt_num == 0 && required_num != splat_array_length + argc - 1 - asm.incr_counter(:send_iseq_splat_arity_error) - return CantCompile - end - end - - # Don't compile forwardable iseqs - if iseq.body.param.flags.forwardable - return CantCompile - end - - # We will not have CantCompile from here. - - if block_arg - ctx.stack_pop(1) - end - - if calling.block_handler == C::VM_BLOCK_HANDLER_NONE && iseq.body.builtin_attrs & C::BUILTIN_ATTR_LEAF != 0 - if jit_leaf_builtin_func(jit, ctx, asm, flags, iseq) - return KeepCompiling - end - end - - # Number of locals that are not parameters - num_locals = iseq.body.local_table_size - num_params - - # Stack overflow check - # Note that vm_push_frame checks it against a decremented cfp, hence the multiply by 2. - # #define CHECK_VM_STACK_OVERFLOW0(cfp, sp, margin) - asm.comment('stack overflow check') - locals_offs = C.VALUE.size * (num_locals + iseq.body.stack_max) + 2 * C.rb_control_frame_t.size - asm.lea(:rax, ctx.sp_opnd(locals_offs)) - asm.cmp(CFP, :rax) - asm.jbe(counted_exit(side_exit(jit, ctx), :send_stackoverflow)) - - # push_splat_args does stack manipulation so we can no longer side exit - if splat_array_length - remaining_opt = (opt_num + required_num) - (splat_array_length + (argc - 1)) - - if opt_num > 0 - # We are going to jump to the correct offset based on how many optional - # params are remaining. - offset = opt_num - remaining_opt - start_pc_offset = iseq.body.param.opt_table[offset] - end - # We are going to assume that the splat fills - # all the remaining arguments. In the generated code - # we test if this is true and if not side exit. - argc = argc - 1 + splat_array_length + remaining_opt - push_splat_args(splat_array_length, jit, ctx, asm) - - remaining_opt.times do - # We need to push nil for the optional arguments - stack_ret = ctx.stack_push(Type::Unknown) - asm.mov(stack_ret, Qnil) - end - end - - # This is a .send call and we need to adjust the stack - if flags & C::VM_CALL_OPT_SEND != 0 - handle_opt_send_shift_stack(asm, argc, ctx, send_shift:) - end - - if iseq_has_rest - # We are going to allocate so setting pc and sp. - jit_save_pc(jit, asm) # clobbers rax - jit_save_sp(ctx, asm) - - if flags & C::VM_CALL_ARGS_SPLAT != 0 - non_rest_arg_count = argc - 1 - # We start by dupping the array because someone else might have - # a reference to it. - array = ctx.stack_pop(1) - asm.mov(C_ARGS[0], array) - asm.call(C.rb_ary_dup) - array = C_RET - if non_rest_arg_count > required_num - # If we have more arguments than required, we need to prepend - # the items from the stack onto the array. - diff = (non_rest_arg_count - required_num) - - # diff is >0 so no need to worry about null pointer - asm.comment('load pointer to array elements') - offset_magnitude = C.VALUE.size * diff - values_opnd = ctx.sp_opnd(-offset_magnitude) - values_ptr = :rcx - asm.lea(values_ptr, values_opnd) - - asm.comment('prepend stack values to rest array') - asm.mov(C_ARGS[0], diff) - asm.mov(C_ARGS[1], values_ptr) - asm.mov(C_ARGS[2], array) - asm.call(C.rb_ary_unshift_m) - ctx.stack_pop(diff) - - stack_ret = ctx.stack_push(Type::TArray) - asm.mov(stack_ret, C_RET) - # We now should have the required arguments - # and an array of all the rest arguments - argc = required_num + 1 - elsif non_rest_arg_count < required_num - # If we have fewer arguments than required, we need to take some - # from the array and move them to the stack. - diff = (required_num - non_rest_arg_count) - # This moves the arguments onto the stack. But it doesn't modify the array. - move_rest_args_to_stack(array, diff, jit, ctx, asm) - - # We will now slice the array to give us a new array of the correct size - asm.mov(C_ARGS[0], array) - asm.mov(C_ARGS[1], diff) - asm.call(C.rjit_rb_ary_subseq_length) - stack_ret = ctx.stack_push(Type::TArray) - asm.mov(stack_ret, C_RET) - - # We now should have the required arguments - # and an array of all the rest arguments - argc = required_num + 1 - else - # The arguments are equal so we can just push to the stack - assert_equal(non_rest_arg_count, required_num) - stack_ret = ctx.stack_push(Type::TArray) - asm.mov(stack_ret, array) - end - else - assert_equal(true, argc >= required_num) - n = (argc - required_num) - argc = required_num + 1 - # If n is 0, then elts is never going to be read, so we can just pass null - if n == 0 - values_ptr = 0 - else - asm.comment('load pointer to array elements') - offset_magnitude = C.VALUE.size * n - values_opnd = ctx.sp_opnd(-offset_magnitude) - values_ptr = :rcx - asm.lea(values_ptr, values_opnd) - end - - asm.mov(C_ARGS[0], EC) - asm.mov(C_ARGS[1], n) - asm.mov(C_ARGS[2], values_ptr) - asm.call(C.rb_ec_ary_new_from_values) - - ctx.stack_pop(n) - stack_ret = ctx.stack_push(Type::TArray) - asm.mov(stack_ret, C_RET) - end - end - - if doing_kw_call - # Here we're calling a method with keyword arguments and specifying - # keyword arguments at this call site. - - # Number of positional arguments the callee expects before the first - # keyword argument - args_before_kw = required_num + opt_num - - # This struct represents the metadata about the caller-specified - # keyword arguments. - ci_kwarg = calling.kwarg - caller_keyword_len = if ci_kwarg.nil? - 0 - else - ci_kwarg.keyword_len - end - - # This struct represents the metadata about the callee-specified - # keyword parameters. - keyword = iseq.body.param.keyword - - asm.comment('keyword args') - - # This is the list of keyword arguments that the callee specified - # in its initial declaration. - callee_kwargs = keyword.table - total_kwargs = keyword.num - - # Here we're going to build up a list of the IDs that correspond to - # the caller-specified keyword arguments. If they're not in the - # same order as the order specified in the callee declaration, then - # we're going to need to generate some code to swap values around - # on the stack. - caller_kwargs = [] - - caller_keyword_len.times do |kwarg_idx| - sym = C.to_ruby(ci_kwarg[:keywords][kwarg_idx]) - caller_kwargs << C.rb_sym2id(sym) - end - kwarg_idx = caller_keyword_len - - unspecified_bits = 0 - - keyword_required_num = keyword.required_num - (keyword_required_num...total_kwargs).each do |callee_idx| - already_passed = false - callee_kwarg = callee_kwargs[callee_idx] - - caller_keyword_len.times do |caller_idx| - if caller_kwargs[caller_idx] == callee_kwarg - already_passed = true - break - end - end - - unless already_passed - # Reserve space on the stack for each default value we'll be - # filling in (which is done in the next loop). Also increments - # argc so that the callee's SP is recorded correctly. - argc += 1 - default_arg = ctx.stack_push(Type::Unknown) - - # callee_idx - keyword->required_num is used in a couple of places below. - req_num = keyword.required_num - extra_args = callee_idx - req_num - - # VALUE default_value = keyword->default_values[callee_idx - keyword->required_num]; - default_value = keyword.default_values[extra_args] - - if default_value == Qundef - # Qundef means that this value is not constant and must be - # recalculated at runtime, so we record it in unspecified_bits - # (Qnil is then used as a placeholder instead of Qundef). - unspecified_bits |= 0x01 << extra_args - default_value = Qnil - end - - asm.mov(:rax, default_value) - asm.mov(default_arg, :rax) - - caller_kwargs[kwarg_idx] = callee_kwarg - kwarg_idx += 1 - end - end - - assert_equal(kwarg_idx, total_kwargs) - - # Next, we're going to loop through every keyword that was - # specified by the caller and make sure that it's in the correct - # place. If it's not we're going to swap it around with another one. - total_kwargs.times do |kwarg_idx| - callee_kwarg = callee_kwargs[kwarg_idx] - - # If the argument is already in the right order, then we don't - # need to generate any code since the expected value is already - # in the right place on the stack. - if callee_kwarg == caller_kwargs[kwarg_idx] - next - end - - # In this case the argument is not in the right place, so we - # need to find its position where it _should_ be and swap with - # that location. - ((kwarg_idx + 1)...total_kwargs).each do |swap_idx| - if callee_kwarg == caller_kwargs[swap_idx] - # First we're going to generate the code that is going - # to perform the actual swapping at runtime. - offset0 = argc - 1 - swap_idx - args_before_kw - offset1 = argc - 1 - kwarg_idx - args_before_kw - stack_swap(jit, ctx, asm, offset0, offset1) - - # Next we're going to do some bookkeeping on our end so - # that we know the order that the arguments are - # actually in now. - caller_kwargs[kwarg_idx], caller_kwargs[swap_idx] = - caller_kwargs[swap_idx], caller_kwargs[kwarg_idx] - - break - end - end - end - - # Keyword arguments cause a special extra local variable to be - # pushed onto the stack that represents the parameters that weren't - # explicitly given a value and have a non-constant default. - asm.mov(ctx.stack_opnd(-1), C.to_value(unspecified_bits)) - end - - # Same as vm_callee_setup_block_arg_arg0_check and vm_callee_setup_block_arg_arg0_splat - # on vm_callee_setup_block_arg for arg_setup_block. This is done after CALLER_SETUP_ARG - # and CALLER_REMOVE_EMPTY_KW_SPLAT, so this implementation is put here. This may need - # side exits, so you still need to allow side exits here if block_arg0_splat is true. - # Note that you can't have side exits after this arg0 splat. - if block_arg0_splat - asm.incr_counter(:send_iseq_block_arg0_splat) - return CantCompile - end - - # Create a context for the callee - callee_ctx = Context.new - - # Set the argument types in the callee's context - argc.times do |arg_idx| - stack_offs = argc - arg_idx - 1 - arg_type = ctx.get_opnd_type(StackOpnd[stack_offs]) - callee_ctx.set_local_type(arg_idx, arg_type) - end - - recv_type = if calling.block_handler == :captured - Type::Unknown # we don't track the type information of captured->self for now - else - ctx.get_opnd_type(StackOpnd[argc]) - end - callee_ctx.upgrade_opnd_type(SelfOpnd, recv_type) - - # Setup the new frame - frame_type ||= C::VM_FRAME_MAGIC_METHOD | C::VM_ENV_FLAG_LOCAL - jit_push_frame( - jit, ctx, asm, cme, flags, argc, frame_type, calling.block_handler, - iseq: iseq, - local_size: num_locals, - stack_max: iseq.body.stack_max, - prev_ep:, - doing_kw_call:, - ) - - # Directly jump to the entry point of the callee - pc = (iseq.body.iseq_encoded + start_pc_offset).to_i - jit_direct_jump(iseq, pc, callee_ctx, asm) - - EndBlock - end - - def jit_leaf_builtin_func(jit, ctx, asm, flags, iseq) - builtin_func = builtin_function(iseq) - if builtin_func.nil? - return false - end - - # this is a .send call not currently supported for builtins - if flags & C::VM_CALL_OPT_SEND != 0 - return false - end - - builtin_argc = builtin_func.argc - if builtin_argc + 1 >= C_ARGS.size - return false - end - - asm.comment('inlined leaf builtin') - - # The callee may allocate, e.g. Integer#abs on a Bignum. - # Save SP for GC, save PC for allocation tracing, and prepare - # for global invalidation after GC's VM lock contention. - jit_prepare_routine_call(jit, ctx, asm) - - # Call the builtin func (ec, recv, arg1, arg2, ...) - asm.mov(C_ARGS[0], EC) - - # Copy self and arguments - (0..builtin_argc).each do |i| - stack_opnd = ctx.stack_opnd(builtin_argc - i) - asm.mov(C_ARGS[i + 1], stack_opnd) - end - ctx.stack_pop(builtin_argc + 1) - asm.call(builtin_func.func_ptr) - - # Push the return value - stack_ret = ctx.stack_push(Type::Unknown) - asm.mov(stack_ret, C_RET) - return true - end - - # vm_call_cfunc - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def jit_call_cfunc(jit, ctx, asm, cme, calling, known_recv_class: nil) - argc = calling.argc - flags = calling.flags - - cfunc = cme.def.body.cfunc - cfunc_argc = cfunc.argc - - # If the function expects a Ruby array of arguments - if cfunc_argc < 0 && cfunc_argc != -1 - asm.incr_counter(:send_cfunc_ruby_array_varg) - return CantCompile - end - - # We aren't handling a vararg cfuncs with splat currently. - if flags & C::VM_CALL_ARGS_SPLAT != 0 && cfunc_argc == -1 - asm.incr_counter(:send_args_splat_cfunc_var_args) - return CantCompile - end - - if flags & C::VM_CALL_ARGS_SPLAT != 0 && flags & C::VM_CALL_ZSUPER != 0 - # zsuper methods are super calls without any arguments. - # They are also marked as splat, but don't actually have an array - # they pull arguments from, instead we need to change to call - # a different method with the current stack. - asm.incr_counter(:send_args_splat_cfunc_zuper) - return CantCompile; - end - - # In order to handle backwards compatibility between ruby 3 and 2 - # ruby2_keywords was introduced. It is called only on methods - # with splat and changes they way they handle them. - # We are just going to not compile these. - # https://docs.ruby-lang.org/en/3.2/Module.html#method-i-ruby2_keywords - if jit.iseq.body.param.flags.ruby2_keywords && flags & C::VM_CALL_ARGS_SPLAT != 0 - asm.incr_counter(:send_args_splat_cfunc_ruby2_keywords) - return CantCompile; - end - - kw_arg = calling.kwarg - kw_arg_num = if kw_arg.nil? - 0 - else - kw_arg.keyword_len - end - - if kw_arg_num != 0 && flags & C::VM_CALL_ARGS_SPLAT != 0 - asm.incr_counter(:send_cfunc_splat_with_kw) - return CantCompile - end - - if c_method_tracing_currently_enabled? - # Don't JIT if tracing c_call or c_return - asm.incr_counter(:send_cfunc_tracing) - return CantCompile - end - - # Delegate to codegen for C methods if we have it. - if kw_arg.nil? && flags & C::VM_CALL_OPT_SEND == 0 && flags & C::VM_CALL_ARGS_SPLAT == 0 && (cfunc_argc == -1 || argc == cfunc_argc) - known_cfunc_codegen = lookup_cfunc_codegen(cme.def) - if known_cfunc_codegen&.call(jit, ctx, asm, argc, known_recv_class) - # cfunc codegen generated code. Terminate the block so - # there isn't multiple calls in the same block. - jump_to_next_insn(jit, ctx, asm) - return EndBlock - end - end - - # Check for interrupts - jit_check_ints(jit, ctx, asm) - - # Stack overflow check - # #define CHECK_VM_STACK_OVERFLOW0(cfp, sp, margin) - # REG_CFP <= REG_SP + 4 * SIZEOF_VALUE + sizeof(rb_control_frame_t) - asm.comment('stack overflow check') - asm.lea(:rax, ctx.sp_opnd(C.VALUE.size * 4 + 2 * C.rb_control_frame_t.size)) - asm.cmp(CFP, :rax) - asm.jbe(counted_exit(side_exit(jit, ctx), :send_stackoverflow)) - - # Number of args which will be passed through to the callee - # This is adjusted by the kwargs being combined into a hash. - passed_argc = if kw_arg.nil? - argc - else - argc - kw_arg_num + 1 - end - - # If the argument count doesn't match - if cfunc_argc >= 0 && cfunc_argc != passed_argc && flags & C::VM_CALL_ARGS_SPLAT == 0 - asm.incr_counter(:send_cfunc_argc_mismatch) - return CantCompile - end - - # Don't JIT functions that need C stack arguments for now - if cfunc_argc >= 0 && passed_argc + 1 > C_ARGS.size - asm.incr_counter(:send_cfunc_toomany_args) - return CantCompile - end - - block_arg = flags & C::VM_CALL_ARGS_BLOCKARG != 0 - - # Guard block_arg_type - if guard_block_arg(jit, ctx, asm, calling) == CantCompile - return CantCompile - end - - if block_arg - ctx.stack_pop(1) - end - - # push_splat_args does stack manipulation so we can no longer side exit - if flags & C::VM_CALL_ARGS_SPLAT != 0 - assert_equal(true, cfunc_argc >= 0) - required_args = cfunc_argc - (argc - 1) - # + 1 because we pass self - if required_args + 1 >= C_ARGS.size - asm.incr_counter(:send_cfunc_toomany_args) - return CantCompile - end - - # We are going to assume that the splat fills - # all the remaining arguments. So the number of args - # should just equal the number of args the cfunc takes. - # In the generated code we test if this is true - # and if not side exit. - argc = cfunc_argc - passed_argc = argc - push_splat_args(required_args, jit, ctx, asm) - end - - # This is a .send call and we need to adjust the stack - if flags & C::VM_CALL_OPT_SEND != 0 - handle_opt_send_shift_stack(asm, argc, ctx, send_shift: calling.send_shift) - end - - # Points to the receiver operand on the stack - - # Store incremented PC into current control frame in case callee raises. - jit_save_pc(jit, asm) - - # Increment the stack pointer by 3 (in the callee) - # sp += 3 - - frame_type = C::VM_FRAME_MAGIC_CFUNC | C::VM_FRAME_FLAG_CFRAME | C::VM_ENV_FLAG_LOCAL - if kw_arg - frame_type |= C::VM_FRAME_FLAG_CFRAME_KW - end - - jit_push_frame(jit, ctx, asm, cme, flags, argc, frame_type, calling.block_handler) - - if kw_arg - # Build a hash from all kwargs passed - asm.comment('build_kwhash') - imemo_ci = calling.ci_addr - # we assume all callinfos with kwargs are on the GC heap - assert_equal(true, C.imemo_type_p(imemo_ci, C.imemo_callinfo)) - asm.mov(C_ARGS[0], imemo_ci) - asm.lea(C_ARGS[1], ctx.sp_opnd(0)) - asm.call(C.rjit_build_kwhash) - - # Replace the stack location at the start of kwargs with the new hash - stack_opnd = ctx.stack_opnd(argc - passed_argc) - asm.mov(stack_opnd, C_RET) - end - - # Copy SP because REG_SP will get overwritten - sp = :rax - asm.lea(sp, ctx.sp_opnd(0)) - - # Pop the C function arguments from the stack (in the caller) - ctx.stack_pop(argc + 1) - - # Write interpreter SP into CFP. - # Needed in case the callee yields to the block. - jit_save_sp(ctx, asm) - - # Non-variadic method - case cfunc_argc - in (0..) # Non-variadic method - # Copy the arguments from the stack to the C argument registers - # self is the 0th argument and is at index argc from the stack top - (0..passed_argc).each do |i| - asm.mov(C_ARGS[i], [sp, -(argc + 1 - i) * C.VALUE.size]) - end - in -1 # Variadic method: rb_f_puts(int argc, VALUE *argv, VALUE recv) - # The method gets a pointer to the first argument - # rb_f_puts(int argc, VALUE *argv, VALUE recv) - asm.mov(C_ARGS[0], passed_argc) - asm.lea(C_ARGS[1], [sp, -argc * C.VALUE.size]) # argv - asm.mov(C_ARGS[2], [sp, -(argc + 1) * C.VALUE.size]) # recv - end - - # Call the C function - # VALUE ret = (cfunc->func)(recv, argv[0], argv[1]); - # cfunc comes from compile-time cme->def, which we assume to be stable. - # Invalidation logic is in yjit_method_lookup_change() - asm.comment('call C function') - asm.mov(:rax, cfunc.func) - asm.call(:rax) # TODO: use rel32 if close enough - - # Record code position for TracePoint patching. See full_cfunc_return(). - Invariants.record_global_inval_patch(asm, full_cfunc_return) - - # Push the return value on the Ruby stack - stack_ret = ctx.stack_push(Type::Unknown) - asm.mov(stack_ret, C_RET) - - # Pop the stack frame (ec->cfp++) - # Instead of recalculating, we can reuse the previous CFP, which is stored in a callee-saved - # register - asm.mov([EC, C.rb_execution_context_t.offsetof(:cfp)], CFP) - - # cfunc calls may corrupt types - ctx.clear_local_types - - # Note: the return block of jit_call_iseq has ctx->sp_offset == 1 - # which allows for sharing the same successor. - - # Jump (fall through) to the call continuation block - # We do this to end the current block after the call - assert_equal(1, ctx.sp_offset) - jump_to_next_insn(jit, ctx, asm) - EndBlock - end - - # vm_call_attrset - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def jit_call_attrset(jit, ctx, asm, cme, calling, comptime_recv, recv_opnd) - argc = calling.argc - flags = calling.flags - send_shift = calling.send_shift - - if flags & C::VM_CALL_ARGS_SPLAT != 0 - asm.incr_counter(:send_attrset_splat) - return CantCompile - end - if flags & C::VM_CALL_KWARG != 0 - asm.incr_counter(:send_attrset_kwarg) - return CantCompile - elsif argc != 1 || !C.RB_TYPE_P(comptime_recv, C::RUBY_T_OBJECT) - asm.incr_counter(:send_attrset_method) - return CantCompile - elsif c_method_tracing_currently_enabled? - # Can't generate code for firing c_call and c_return events - # See :attr-tracing: - asm.incr_counter(:send_c_tracingg) - return CantCompile - elsif flags & C::VM_CALL_ARGS_BLOCKARG != 0 - asm.incr_counter(:send_block_arg) - return CantCompile - end - - ivar_name = cme.def.body.attr.id - - # This is a .send call and we need to adjust the stack - if flags & C::VM_CALL_OPT_SEND != 0 - handle_opt_send_shift_stack(asm, argc, ctx, send_shift:) - end - - # Save the PC and SP because the callee may allocate - # Note that this modifies REG_SP, which is why we do it first - jit_prepare_routine_call(jit, ctx, asm) - - # Get the operands from the stack - val_opnd = ctx.stack_pop(1) - recv_opnd = ctx.stack_pop(1) - - # Call rb_vm_set_ivar_id with the receiver, the ivar name, and the value - asm.mov(C_ARGS[0], recv_opnd) - asm.mov(C_ARGS[1], ivar_name) - asm.mov(C_ARGS[2], val_opnd) - asm.call(C.rb_vm_set_ivar_id) - - out_opnd = ctx.stack_push(Type::Unknown) - asm.mov(out_opnd, C_RET) - - KeepCompiling - end - - # vm_call_ivar (+ part of vm_call_method_each_type) - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def jit_call_ivar(jit, ctx, asm, cme, calling, comptime_recv, recv_opnd) - argc = calling.argc - flags = calling.flags - - if flags & C::VM_CALL_ARGS_SPLAT != 0 - asm.incr_counter(:send_ivar_splat) - return CantCompile - end - - if argc != 0 - asm.incr_counter(:send_arity) - return CantCompile - end - - # We don't support handle_opt_send_shift_stack for this yet. - if flags & C::VM_CALL_OPT_SEND != 0 - asm.incr_counter(:send_ivar_opt_send) - return CantCompile - end - - ivar_id = cme.def.body.attr.id - - # Not handling block_handler - if flags & C::VM_CALL_ARGS_BLOCKARG != 0 - asm.incr_counter(:send_block_arg) - return CantCompile - end - - jit_getivar(jit, ctx, asm, comptime_recv, ivar_id, recv_opnd, StackOpnd[0]) - end - - # vm_call_bmethod - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def jit_call_bmethod(jit, ctx, asm, calling, cme, comptime_recv, recv_opnd, known_recv_class) - proc_addr = cme.def.body.bmethod.proc - - proc_t = C.rb_yjit_get_proc_ptr(proc_addr) - proc_block = proc_t.block - - if proc_block.type != C.block_type_iseq - asm.incr_counter(:send_bmethod_not_iseq) - return CantCompile - end - - capture = proc_block.as.captured - iseq = capture.code.iseq - - # TODO: implement this - # Optimize for single ractor mode and avoid runtime check for - # "defined with an un-shareable Proc in a different Ractor" - # if !assume_single_ractor_mode(jit, ocb) - # return CantCompile; - # end - - # Passing a block to a block needs logic different from passing - # a block to a method and sometimes requires allocation. Bail for now. - if calling.block_handler != C::VM_BLOCK_HANDLER_NONE - asm.incr_counter(:send_bmethod_blockarg) - return CantCompile - end - - jit_call_iseq( - jit, ctx, asm, cme, calling, iseq, - frame_type: C::VM_FRAME_MAGIC_BLOCK | C::VM_FRAME_FLAG_BMETHOD | C::VM_FRAME_FLAG_LAMBDA, - prev_ep: capture.ep, - ) - end - - # vm_call_alias - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def jit_call_alias(jit, ctx, asm, calling, cme, comptime_recv, recv_opnd, known_recv_class) - cme = C.rb_aliased_callable_method_entry(cme) - jit_call_method_each_type(jit, ctx, asm, calling, cme, comptime_recv, recv_opnd, known_recv_class) - end - - # vm_call_optimized - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def jit_call_optimized(jit, ctx, asm, cme, calling, known_recv_class) - if calling.flags & C::VM_CALL_ARGS_BLOCKARG != 0 - # Not working yet - asm.incr_counter(:send_block_arg) - return CantCompile - end - - case cme.def.body.optimized.type - in C::OPTIMIZED_METHOD_TYPE_SEND - jit_call_opt_send(jit, ctx, asm, cme, calling, known_recv_class) - in C::OPTIMIZED_METHOD_TYPE_CALL - jit_call_opt_call(jit, ctx, asm, cme, calling.flags, calling.argc, calling.block_handler, known_recv_class, send_shift: calling.send_shift) - in C::OPTIMIZED_METHOD_TYPE_BLOCK_CALL - asm.incr_counter(:send_optimized_block_call) - return CantCompile - in C::OPTIMIZED_METHOD_TYPE_STRUCT_AREF - jit_call_opt_struct_aref(jit, ctx, asm, cme, calling.flags, calling.argc, calling.block_handler, known_recv_class, send_shift: calling.send_shift) - in C::OPTIMIZED_METHOD_TYPE_STRUCT_ASET - asm.incr_counter(:send_optimized_struct_aset) - return CantCompile - end - end - - # vm_call_opt_send - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def jit_call_opt_send(jit, ctx, asm, cme, calling, known_recv_class) - if jit_caller_setup_arg(jit, ctx, asm, calling.flags) == CantCompile - return CantCompile - end - - if calling.argc == 0 - asm.incr_counter(:send_optimized_send_no_args) - return CantCompile - end - - calling.argc -= 1 - # We aren't handling `send(:send, ...)` yet. This might work, but not tested yet. - if calling.send_shift > 0 - asm.incr_counter(:send_optimized_send_send) - return CantCompile - end - # Lazily handle stack shift in handle_opt_send_shift_stack - calling.send_shift += 1 - - jit_call_symbol(jit, ctx, asm, cme, calling, known_recv_class, C::VM_CALL_FCALL) - end - - # vm_call_opt_call - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def jit_call_opt_call(jit, ctx, asm, cme, flags, argc, block_handler, known_recv_class, send_shift:) - if block_handler != C::VM_BLOCK_HANDLER_NONE - asm.incr_counter(:send_optimized_call_block) - return CantCompile - end - - if flags & C::VM_CALL_KWARG != 0 - asm.incr_counter(:send_optimized_call_kwarg) - return CantCompile - end - - if flags & C::VM_CALL_ARGS_SPLAT != 0 - asm.incr_counter(:send_optimized_call_splat) - return CantCompile - end - - # TODO: implement this - # Optimize for single ractor mode and avoid runtime check for - # "defined with an un-shareable Proc in a different Ractor" - # if !assume_single_ractor_mode(jit, ocb) - # return CantCompile - # end - - # If this is a .send call we need to adjust the stack - if flags & C::VM_CALL_OPT_SEND != 0 - handle_opt_send_shift_stack(asm, argc, ctx, send_shift:) - end - - # About to reset the SP, need to load this here - recv_idx = argc # blockarg is not supported. send_shift is already handled. - asm.mov(:rcx, ctx.stack_opnd(recv_idx)) # recv - - # Save the PC and SP because the callee can make Ruby calls - jit_prepare_routine_call(jit, ctx, asm) # NOTE: clobbers rax - - asm.lea(:rax, ctx.sp_opnd(0)) # sp - - kw_splat = flags & C::VM_CALL_KW_SPLAT - - asm.mov(C_ARGS[0], :rcx) - asm.mov(C_ARGS[1], EC) - asm.mov(C_ARGS[2], argc) - asm.lea(C_ARGS[3], [:rax, -argc * C.VALUE.size]) # stack_argument_pointer. NOTE: C_ARGS[3] is rcx - asm.mov(C_ARGS[4], kw_splat) - asm.mov(C_ARGS[5], C::VM_BLOCK_HANDLER_NONE) - asm.call(C.rjit_optimized_call) - - ctx.stack_pop(argc + 1) - - stack_ret = ctx.stack_push(Type::Unknown) - asm.mov(stack_ret, C_RET) - return KeepCompiling - end - - # vm_call_opt_struct_aref - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def jit_call_opt_struct_aref(jit, ctx, asm, cme, flags, argc, block_handler, known_recv_class, send_shift:) - if argc != 0 - asm.incr_counter(:send_optimized_struct_aref_error) - return CantCompile - end - - if c_method_tracing_currently_enabled? - # Don't JIT if tracing c_call or c_return - asm.incr_counter(:send_cfunc_tracing) - return CantCompile - end - - off = cme.def.body.optimized.index - - recv_idx = argc # blockarg is not supported - recv_idx += send_shift - comptime_recv = jit.peek_at_stack(recv_idx) - - # This is a .send call and we need to adjust the stack - if flags & C::VM_CALL_OPT_SEND != 0 - handle_opt_send_shift_stack(asm, argc, ctx, send_shift:) - end - - # All structs from the same Struct class should have the same - # length. So if our comptime_recv is embedded all runtime - # structs of the same class should be as well, and the same is - # true of the converse. - embedded = C::FL_TEST_RAW(comptime_recv, C::RSTRUCT_EMBED_LEN_MASK) - - asm.comment('struct aref') - asm.mov(:rax, ctx.stack_pop(1)) # recv - - if embedded - asm.mov(:rax, [:rax, C.RStruct.offsetof(:as, :ary) + (C.VALUE.size * off)]) - else - asm.mov(:rax, [:rax, C.RStruct.offsetof(:as, :heap, :ptr)]) - asm.mov(:rax, [:rax, C.VALUE.size * off]) - end - - ret = ctx.stack_push(Type::Unknown) - asm.mov(ret, :rax) - - jump_to_next_insn(jit, ctx, asm) - EndBlock - end - - # vm_call_opt_send (lazy part) - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def handle_opt_send_shift_stack(asm, argc, ctx, send_shift:) - # We don't support `send(:send, ...)` for now. - assert_equal(1, send_shift) - - asm.comment('shift stack') - (0...argc).reverse_each do |i| - opnd = ctx.stack_opnd(i) - opnd2 = ctx.stack_opnd(i + 1) - asm.mov(:rax, opnd) - asm.mov(opnd2, :rax) - end - - ctx.shift_stack(argc) - end - - # vm_call_symbol - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def jit_call_symbol(jit, ctx, asm, cme, calling, known_recv_class, flags) - flags |= C::VM_CALL_OPT_SEND | (calling.kw_splat ? C::VM_CALL_KW_SPLAT : 0) - - comptime_symbol = jit.peek_at_stack(calling.argc) - if comptime_symbol.class != String && !static_symbol?(comptime_symbol) - asm.incr_counter(:send_optimized_send_not_sym_or_str) - return CantCompile - end - - mid = C.get_symbol_id(comptime_symbol) - if mid == 0 - asm.incr_counter(:send_optimized_send_null_mid) - return CantCompile - end - - asm.comment("Guard #{comptime_symbol.inspect} is on stack") - class_changed_exit = counted_exit(side_exit(jit, ctx), :send_optimized_send_mid_class_changed) - jit_guard_known_klass( - jit, ctx, asm, C.rb_class_of(comptime_symbol), ctx.stack_opnd(calling.argc), - StackOpnd[calling.argc], comptime_symbol, class_changed_exit, - ) - asm.mov(C_ARGS[0], ctx.stack_opnd(calling.argc)) - asm.call(C.rb_get_symbol_id) - asm.cmp(C_RET, mid) - id_changed_exit = counted_exit(side_exit(jit, ctx), :send_optimized_send_mid_id_changed) - jit_chain_guard(:jne, jit, ctx, asm, id_changed_exit) - - # rb_callable_method_entry_with_refinements - calling.flags = flags - cme, _ = jit_search_method(jit, ctx, asm, mid, calling) - if cme == CantCompile - return CantCompile - end - - if flags & C::VM_CALL_FCALL != 0 - return jit_call_method(jit, ctx, asm, mid, calling, cme, known_recv_class) - end - - raise NotImplementedError # unreachable for now - end - - # vm_push_frame - # - # Frame structure: - # | args | locals | cme/cref | block_handler/prev EP | frame type (EP here) | stack bottom (SP here) - # - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def jit_push_frame(jit, ctx, asm, cme, flags, argc, frame_type, block_handler, iseq: nil, local_size: 0, stack_max: 0, prev_ep: nil, doing_kw_call: nil) - # Save caller SP and PC before pushing a callee frame for backtrace and side exits - asm.comment('save SP to caller CFP') - recv_idx = argc # blockarg is already popped - recv_idx += (block_handler == :captured) ? 0 : 1 # receiver is not on stack when captured->self is used - if iseq - # Skip setting this to SP register. This cfp->sp will be copied to SP on leave insn. - asm.lea(:rax, ctx.sp_opnd(C.VALUE.size * -recv_idx)) # Pop receiver and arguments to prepare for side exits - asm.mov([CFP, C.rb_control_frame_t.offsetof(:sp)], :rax) - else - asm.lea(SP, ctx.sp_opnd(C.VALUE.size * -recv_idx)) - asm.mov([CFP, C.rb_control_frame_t.offsetof(:sp)], SP) - ctx.sp_offset = recv_idx - end - jit_save_pc(jit, asm, comment: 'save PC to caller CFP') - - sp_offset = ctx.sp_offset + 3 + local_size + (doing_kw_call ? 1 : 0) # callee_sp - local_size.times do |i| - asm.comment('set local variables') if i == 0 - local_index = sp_offset + i - local_size - 3 - asm.mov([SP, C.VALUE.size * local_index], Qnil) - end - - asm.comment('set up EP with managing data') - ep_offset = sp_offset - 1 - # ep[-2]: cref_or_me - asm.mov(:rax, cme.to_i) - asm.mov([SP, C.VALUE.size * (ep_offset - 2)], :rax) - # ep[-1]: block handler or prev env ptr (specval) - if prev_ep - asm.mov(:rax, prev_ep.to_i | 1) # tagged prev ep - asm.mov([SP, C.VALUE.size * (ep_offset - 1)], :rax) - elsif block_handler == :captured - # Set captured->ep, saving captured in :rcx for captured->self - ep_reg = :rcx - jit_get_lep(jit, asm, reg: ep_reg) - asm.mov(:rcx, [ep_reg, C.VALUE.size * C::VM_ENV_DATA_INDEX_SPECVAL]) # block_handler - asm.and(:rcx, ~0x3) # captured - asm.mov(:rax, [:rcx, C.VALUE.size]) # captured->ep - asm.or(:rax, 0x1) # GC_GUARDED_PTR - asm.mov([SP, C.VALUE.size * (ep_offset - 1)], :rax) - elsif block_handler == C::VM_BLOCK_HANDLER_NONE - asm.mov([SP, C.VALUE.size * (ep_offset - 1)], C::VM_BLOCK_HANDLER_NONE) - elsif block_handler == C.rb_block_param_proxy - # vm_caller_setup_arg_block: block_code == rb_block_param_proxy - jit_get_lep(jit, asm, reg: :rax) # VM_CF_BLOCK_HANDLER: VM_CF_LEP - asm.mov(:rax, [:rax, C.VALUE.size * C::VM_ENV_DATA_INDEX_SPECVAL]) # VM_CF_BLOCK_HANDLER: VM_ENV_BLOCK_HANDLER - asm.mov([CFP, C.rb_control_frame_t.offsetof(:block_code)], :rax) # reg_cfp->block_code = handler - asm.mov([SP, C.VALUE.size * (ep_offset - 1)], :rax) # return handler; - else # assume blockiseq - asm.mov(:rax, block_handler) - asm.mov([CFP, C.rb_control_frame_t.offsetof(:block_code)], :rax) - asm.lea(:rax, [CFP, C.rb_control_frame_t.offsetof(:self)]) # VM_CFP_TO_CAPTURED_BLOCK - asm.or(:rax, 1) # VM_BH_FROM_ISEQ_BLOCK - asm.mov([SP, C.VALUE.size * (ep_offset - 1)], :rax) - end - # ep[-0]: ENV_FLAGS - asm.mov([SP, C.VALUE.size * (ep_offset - 0)], frame_type) - - asm.comment('set up new frame') - cfp_offset = -C.rb_control_frame_t.size # callee CFP - # For ISEQ, JIT code will set it as needed. However, C func needs 0 there for svar frame detection. - if iseq.nil? - asm.mov([CFP, cfp_offset + C.rb_control_frame_t.offsetof(:pc)], 0) - end - asm.mov(:rax, iseq.to_i) - asm.mov([CFP, cfp_offset + C.rb_control_frame_t.offsetof(:iseq)], :rax) - if block_handler == :captured - asm.mov(:rax, [:rcx]) # captured->self - else - self_index = ctx.sp_offset - (1 + argc) # blockarg has been popped - asm.mov(:rax, [SP, C.VALUE.size * self_index]) - end - asm.mov([CFP, cfp_offset + C.rb_control_frame_t.offsetof(:self)], :rax) - asm.lea(:rax, [SP, C.VALUE.size * ep_offset]) - asm.mov([CFP, cfp_offset + C.rb_control_frame_t.offsetof(:ep)], :rax) - asm.mov([CFP, cfp_offset + C.rb_control_frame_t.offsetof(:block_code)], 0) - # Update SP register only for ISEQ calls. SP-relative operations should be done above this. - sp_reg = iseq ? SP : :rax - asm.lea(sp_reg, [SP, C.VALUE.size * sp_offset]) - asm.mov([CFP, cfp_offset + C.rb_control_frame_t.offsetof(:sp)], sp_reg) - - # cfp->jit_return is used only for ISEQs - if iseq - # The callee might change locals through Kernel#binding and other means. - ctx.clear_local_types - - # Stub cfp->jit_return - return_ctx = ctx.dup - return_ctx.stack_pop(argc + ((block_handler == :captured) ? 0 : 1)) # Pop args and receiver. blockarg has been popped - return_ctx.stack_push(Type::Unknown) # push callee's return value - return_ctx.sp_offset = 1 # SP is in the position after popping a receiver and arguments - return_ctx.chain_depth = 0 - branch_stub = BranchStub.new( - iseq: jit.iseq, - shape: Default, - target0: BranchTarget.new(ctx: return_ctx, pc: jit.pc + jit.insn.len * C.VALUE.size), - ) - branch_stub.target0.address = Assembler.new.then do |ocb_asm| - @exit_compiler.compile_branch_stub(return_ctx, ocb_asm, branch_stub, true) - @ocb.write(ocb_asm) - end - branch_stub.compile = compile_jit_return(branch_stub, cfp_offset:) - branch_stub.compile.call(asm) - end - - asm.comment('switch to callee CFP') - # Update CFP register only for ISEQ calls - cfp_reg = iseq ? CFP : :rax - asm.lea(cfp_reg, [CFP, cfp_offset]) - asm.mov([EC, C.rb_execution_context_t.offsetof(:cfp)], cfp_reg) - end - - def compile_jit_return(branch_stub, cfp_offset:) # Proc escapes arguments in memory - proc do |branch_asm| - branch_asm.comment('set jit_return to callee CFP') - branch_asm.stub(branch_stub) do - case branch_stub.shape - in Default - branch_asm.mov(:rax, branch_stub.target0.address) - branch_asm.mov([CFP, cfp_offset + C.rb_control_frame_t.offsetof(:jit_return)], :rax) - end - end - end - end - - # CALLER_SETUP_ARG: Return CantCompile if not supported - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def jit_caller_setup_arg(jit, ctx, asm, flags) - if flags & C::VM_CALL_ARGS_SPLAT != 0 && flags & C::VM_CALL_KW_SPLAT != 0 - asm.incr_counter(:send_args_splat_kw_splat) - return CantCompile - elsif flags & C::VM_CALL_ARGS_SPLAT != 0 - # splat is not supported in this path - asm.incr_counter(:send_args_splat) - return CantCompile - elsif flags & C::VM_CALL_KW_SPLAT != 0 - asm.incr_counter(:send_args_kw_splat) - return CantCompile - elsif flags & C::VM_CALL_KWARG != 0 - asm.incr_counter(:send_kwarg) - return CantCompile - end - end - - # Pushes arguments from an array to the stack. Differs from push splat because - # the array can have items left over. - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def move_rest_args_to_stack(array, num_args, jit, ctx, asm) - side_exit = side_exit(jit, ctx) - - asm.comment('move_rest_args_to_stack') - - # array is :rax - array_len_opnd = :rcx - jit_array_len(asm, array, array_len_opnd) - - asm.comment('Side exit if length is less than required') - asm.cmp(array_len_opnd, num_args) - asm.jl(counted_exit(side_exit, :send_iseq_has_rest_and_splat_not_equal)) - - asm.comment('Push arguments from array') - - # Load the address of the embedded array - # (struct RArray *)(obj)->as.ary - array_reg = array - - # Conditionally load the address of the heap array - # (struct RArray *)(obj)->as.heap.ptr - flags_opnd = [array_reg, C.RBasic.offsetof(:flags)] - asm.test(flags_opnd, C::RARRAY_EMBED_FLAG) - heap_ptr_opnd = [array_reg, C.RArray.offsetof(:as, :heap, :ptr)] - # Load the address of the embedded array - # (struct RArray *)(obj)->as.ary - ary_opnd = :rdx # NOTE: array :rax is used after move_rest_args_to_stack too - asm.lea(:rcx, [array_reg, C.RArray.offsetof(:as, :ary)]) - asm.mov(ary_opnd, heap_ptr_opnd) - asm.cmovnz(ary_opnd, :rcx) - - num_args.times do |i| - top = ctx.stack_push(Type::Unknown) - asm.mov(:rcx, [ary_opnd, i * C.VALUE.size]) - asm.mov(top, :rcx) - end - end - - # vm_caller_setup_arg_splat (+ CALLER_SETUP_ARG): - # Pushes arguments from an array to the stack that are passed with a splat (i.e. *args). - # It optimistically compiles to a static size that is the exact number of arguments needed for the function. - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def push_splat_args(required_args, jit, ctx, asm) - side_exit = side_exit(jit, ctx) - - asm.comment('push_splat_args') - - array_opnd = ctx.stack_opnd(0) - array_stack_opnd = StackOpnd[0] - array_reg = :rax - asm.mov(array_reg, array_opnd) - - guard_object_is_array(jit, ctx, asm, array_reg, :rcx, array_stack_opnd, :send_args_splat_not_array) - - array_len_opnd = :rcx - jit_array_len(asm, array_reg, array_len_opnd) - - asm.comment('Side exit if length is not equal to remaining args') - asm.cmp(array_len_opnd, required_args) - asm.jne(counted_exit(side_exit, :send_args_splat_length_not_equal)) - - asm.comment('Check last argument is not ruby2keyword hash') - - ary_opnd = :rcx - jit_array_ptr(asm, array_reg, ary_opnd) # clobbers array_reg - - last_array_value = :rax - asm.mov(last_array_value, [ary_opnd, (required_args - 1) * C.VALUE.size]) - - ruby2_exit = counted_exit(side_exit, :send_args_splat_ruby2_hash); - guard_object_is_not_ruby2_keyword_hash(asm, last_array_value, :rcx, ruby2_exit) # clobbers :rax - - asm.comment('Push arguments from array') - array_opnd = ctx.stack_pop(1) - - if required_args > 0 - # Load the address of the embedded array - # (struct RArray *)(obj)->as.ary - array_reg = :rax - asm.mov(array_reg, array_opnd) - - # Conditionally load the address of the heap array - # (struct RArray *)(obj)->as.heap.ptr - flags_opnd = [array_reg, C.RBasic.offsetof(:flags)] - asm.test(flags_opnd, C::RARRAY_EMBED_FLAG) - heap_ptr_opnd = [array_reg, C.RArray.offsetof(:as, :heap, :ptr)] - # Load the address of the embedded array - # (struct RArray *)(obj)->as.ary - asm.lea(:rcx, [array_reg, C.RArray.offsetof(:as, :ary)]) - asm.mov(:rax, heap_ptr_opnd) - asm.cmovnz(:rax, :rcx) - ary_opnd = :rax - - (0...required_args).each do |i| - top = ctx.stack_push(Type::Unknown) - asm.mov(:rcx, [ary_opnd, i * C.VALUE.size]) - asm.mov(top, :rcx) - end - - asm.comment('end push_each') - end - end - - # Generate RARRAY_LEN. For array_opnd, use Opnd::Reg to reduce memory access, - # and use Opnd::Mem to save registers. - def jit_array_len(asm, array_reg, len_reg) - asm.comment('get array length for embedded or heap') - - # Pull out the embed flag to check if it's an embedded array. - asm.mov(len_reg, [array_reg, C.RBasic.offsetof(:flags)]) - - # Get the length of the array - asm.and(len_reg, C::RARRAY_EMBED_LEN_MASK) - asm.sar(len_reg, C::RARRAY_EMBED_LEN_SHIFT) - - # Conditionally move the length of the heap array - asm.test([array_reg, C.RBasic.offsetof(:flags)], C::RARRAY_EMBED_FLAG) - - # Select the array length value - asm.cmovz(len_reg, [array_reg, C.RArray.offsetof(:as, :heap, :len)]) - end - - # Generate RARRAY_CONST_PTR (part of RARRAY_AREF) - def jit_array_ptr(asm, array_reg, ary_opnd) # clobbers array_reg - asm.comment('get array pointer for embedded or heap') - - flags_opnd = [array_reg, C.RBasic.offsetof(:flags)] - asm.test(flags_opnd, C::RARRAY_EMBED_FLAG) - # Load the address of the embedded array - # (struct RArray *)(obj)->as.ary - asm.mov(ary_opnd, [array_reg, C.RArray.offsetof(:as, :heap, :ptr)]) - asm.lea(array_reg, [array_reg, C.RArray.offsetof(:as, :ary)]) # clobbers array_reg - asm.cmovnz(ary_opnd, array_reg) - end - - def assert(cond) - assert_equal(cond, true) - end - - def assert_equal(left, right) - if left != right - raise "'#{left.inspect}' was not '#{right.inspect}'" - end - end - - def fixnum?(obj) - (C.to_value(obj) & C::RUBY_FIXNUM_FLAG) == C::RUBY_FIXNUM_FLAG - end - - def flonum?(obj) - (C.to_value(obj) & C::RUBY_FLONUM_MASK) == C::RUBY_FLONUM_FLAG - end - - def symbol?(obj) - static_symbol?(obj) || dynamic_symbol?(obj) - end - - def static_symbol?(obj) - (C.to_value(obj) & 0xff) == C::RUBY_SYMBOL_FLAG - end - - def dynamic_symbol?(obj) - return false if C::SPECIAL_CONST_P(obj) - C.RB_TYPE_P(obj, C::RUBY_T_SYMBOL) - end - - def shape_too_complex?(obj) - C.rb_shape_get_shape_id(obj) == C::OBJ_TOO_COMPLEX_SHAPE_ID - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - # @param asm [RubyVM::RJIT::Assembler] - def defer_compilation(jit, ctx, asm) - # Make a stub to compile the current insn - if ctx.chain_depth != 0 - raise "double defer!" - end - ctx.chain_depth += 1 - jit_direct_jump(jit.iseq, jit.pc, ctx, asm, comment: 'defer_compilation') - end - - def jit_direct_jump(iseq, pc, ctx, asm, comment: 'jit_direct_jump') - branch_stub = BranchStub.new( - iseq:, - shape: Default, - target0: BranchTarget.new(ctx:, pc:), - ) - branch_stub.target0.address = Assembler.new.then do |ocb_asm| - @exit_compiler.compile_branch_stub(ctx, ocb_asm, branch_stub, true) - @ocb.write(ocb_asm) - end - branch_stub.compile = compile_jit_direct_jump(branch_stub, comment:) - branch_stub.compile.call(asm) - end - - def compile_jit_direct_jump(branch_stub, comment:) # Proc escapes arguments in memory - proc do |branch_asm| - branch_asm.comment(comment) - branch_asm.stub(branch_stub) do - case branch_stub.shape - in Default - branch_asm.jmp(branch_stub.target0.address) - in Next0 - # Just write the block without a jump - end - end - end - end - - # @param jit [RubyVM::RJIT::JITState] - # @param ctx [RubyVM::RJIT::Context] - def side_exit(jit, ctx) - # We use the latest ctx.sp_offset to generate a side exit to tolerate sp_offset changes by jit_save_sp. - # However, we want to simulate an old stack_size when we take a side exit. We do that by adjusting the - # sp_offset because gen_outlined_exit uses ctx.sp_offset to move SP. - ctx = ctx.with_stack_size(jit.stack_size_for_pc) - - jit.side_exit_for_pc[ctx.sp_offset] ||= Assembler.new.then do |asm| - @exit_compiler.compile_side_exit(jit.pc, ctx, asm) - @ocb.write(asm) - end - end - - def counted_exit(side_exit, name) - asm = Assembler.new - asm.incr_counter(name) - asm.jmp(side_exit) - @ocb.write(asm) - end - - def def_iseq_ptr(cme_def) - C.rb_iseq_check(cme_def.body.iseq.iseqptr) - end - - def to_value(obj) - GC_REFS << obj - C.to_value(obj) - end - - def full_cfunc_return - @full_cfunc_return ||= Assembler.new.then do |asm| - @exit_compiler.compile_full_cfunc_return(asm) - @ocb.write(asm) - end - end - - def c_method_tracing_currently_enabled? - C.rb_rjit_global_events & (C::RUBY_EVENT_C_CALL | C::RUBY_EVENT_C_RETURN) != 0 - end - - # Return a builtin function if a given iseq consists of only that builtin function - def builtin_function(iseq) - opt_invokebuiltin_delegate_leave = INSNS.values.find { |i| i.name == :opt_invokebuiltin_delegate_leave } - leave = INSNS.values.find { |i| i.name == :leave } - if iseq.body.iseq_size == opt_invokebuiltin_delegate_leave.len + leave.len && - C.rb_vm_insn_decode(iseq.body.iseq_encoded[0]) == opt_invokebuiltin_delegate_leave.bin && - C.rb_vm_insn_decode(iseq.body.iseq_encoded[opt_invokebuiltin_delegate_leave.len]) == leave.bin - C.rb_builtin_function.new(iseq.body.iseq_encoded[1]) - end - end - - def build_calling(ci:, block_handler:) - CallingInfo.new( - argc: C.vm_ci_argc(ci), - flags: C.vm_ci_flag(ci), - kwarg: C.vm_ci_kwarg(ci), - ci_addr: ci.to_i, - send_shift: 0, - block_handler:, - ) - end - end -end diff --git a/lib/ruby_vm/rjit/invariants.rb b/lib/ruby_vm/rjit/invariants.rb deleted file mode 100644 index 5b061d1994..0000000000 --- a/lib/ruby_vm/rjit/invariants.rb +++ /dev/null @@ -1,155 +0,0 @@ -require 'set' - -module RubyVM::RJIT - class Invariants - class << self - # Called by RubyVM::RJIT::Compiler to lazily initialize this - # @param cb [CodeBlock] - # @param ocb [CodeBlock] - # @param compiler [RubyVM::RJIT::Compiler] - # @param exit_compiler [RubyVM::RJIT::ExitCompiler] - def initialize(cb, ocb, compiler, exit_compiler) - @cb = cb - @ocb = ocb - @compiler = compiler - @exit_compiler = exit_compiler - @bop_blocks = Set.new # TODO: actually invalidate this - @cme_blocks = Hash.new { |h, k| h[k] = Set.new } - @const_blocks = Hash.new { |h, k| h[k] = Set.new } - @patches = {} - - # freeze # workaround a binding.irb issue. TODO: resurrect this - end - - # @param jit [RubyVM::RJIT::JITState] - # @param klass [Integer] - # @param op [Integer] - def assume_bop_not_redefined(jit, klass, op) - return false unless C.BASIC_OP_UNREDEFINED_P(klass, op) - - ensure_block_entry_exit(jit, cause: 'assume_bop_not_redefined') - @bop_blocks << jit.block - true - end - - # @param jit [RubyVM::RJIT::JITState] - def assume_method_lookup_stable(jit, cme) - ensure_block_entry_exit(jit, cause: 'assume_method_lookup_stable') - @cme_blocks[cme.to_i] << jit.block - end - - # @param jit [RubyVM::RJIT::JITState] - def assume_method_basic_definition(jit, klass, mid) - if C.rb_method_basic_definition_p(klass, mid) - cme = C.rb_callable_method_entry(klass, mid) - assume_method_lookup_stable(jit, cme) - true - else - false - end - end - - def assume_stable_constant_names(jit, idlist) - (0..).each do |i| - break if (id = idlist[i]) == 0 - @const_blocks[id] << jit.block - end - end - - # @param asm [RubyVM::RJIT::Assembler] - def record_global_inval_patch(asm, target) - asm.pos_marker do |address| - if @patches.key?(address) - raise 'multiple patches in the same address' - end - @patches[address] = target - end - end - - def on_cme_invalidate(cme) - @cme_blocks.fetch(cme.to_i, []).each do |block| - @cb.with_write_addr(block.start_addr) do - asm = Assembler.new - asm.comment('on_cme_invalidate') - asm.jmp(block.entry_exit) - @cb.write(asm) - end - # TODO: re-generate branches that refer to this block - end - @cme_blocks.delete(cme.to_i) - end - - def on_constant_ic_update(iseq, ic, insn_idx) - # TODO: check multi ractor as well - if ic.entry.ic_cref - # No need to recompile the slowpath - return - end - - pc = iseq.body.iseq_encoded + insn_idx - insn_name = Compiler.decode_insn(pc.*).name - if insn_name != :opt_getconstant_path && insn_name != :trace_opt_getconstant_path - raise 'insn_idx was not at opt_getconstant_path' - end - if ic.to_i != pc[1] - raise 'insn_idx + 1 was not at the updated IC' - end - @compiler.invalidate_blocks(iseq, pc.to_i) - end - - def on_constant_state_changed(id) - @const_blocks.fetch(id, []).each do |block| - @compiler.invalidate_block(block) - end - end - - def on_tracing_invalidate_all - invalidate_all - end - - def on_update_references - # Give up. In order to support GC.compact, you'd have to update ISEQ - # addresses in BranchStub, etc. Ideally, we'd need to update moved - # pointers in JITed code here, but we just invalidate all for now. - invalidate_all - end - - # @param jit [RubyVM::RJIT::JITState] - # @param block [RubyVM::RJIT::Block] - def ensure_block_entry_exit(jit, cause:) - block = jit.block - if block.entry_exit.nil? - block.entry_exit = Assembler.new.then do |asm| - @exit_compiler.compile_entry_exit(block.pc, block.ctx, asm, cause:) - @ocb.write(asm) - end - end - end - - private - - def invalidate_all - # On-Stack Replacement - @patches.each do |address, target| - # TODO: assert patches don't overlap each other - @cb.with_write_addr(address) do - asm = Assembler.new - asm.comment('on_tracing_invalidate_all') - asm.jmp(target) - @cb.write(asm) - end - end - @patches.clear - - C.rjit_for_each_iseq do |iseq| - # Avoid entering past code - iseq.body.jit_entry = 0 - # Avoid reusing past code - iseq.body.rjit_blocks.clear if iseq.body.rjit_blocks - # Compile this again if not converted to trace_* insns - iseq.body.jit_entry_calls = 0 - end - end - end - end -end diff --git a/lib/ruby_vm/rjit/jit_state.rb b/lib/ruby_vm/rjit/jit_state.rb deleted file mode 100644 index 02a713474e..0000000000 --- a/lib/ruby_vm/rjit/jit_state.rb +++ /dev/null @@ -1,65 +0,0 @@ -module RubyVM::RJIT - class JITState < Struct.new( - :iseq, # @param `RubyVM::RJIT::CPointer::Struct_rb_iseq_t` - :pc, # @param [Integer] The JIT target PC - :cfp, # @param `RubyVM::RJIT::CPointer::Struct_rb_control_frame_t` The JIT source CFP (before RJIT is called) - :block, # @param [RubyVM::RJIT::Block] - :stack_size_for_pc, # @param [Integer] - :side_exit_for_pc, # @param [Hash{ Integer => Integer }] { sp_offset => address } - :record_boundary_patch_point, # @param [TrueClass,FalseClass] - ) - def initialize(side_exit_for_pc: {}, record_boundary_patch_point: false, **) = super - - def insn - Compiler.decode_insn(C.VALUE.new(pc).*) - end - - def operand(index, signed: false, ruby: false) - addr = pc + (index + 1) * Fiddle::SIZEOF_VOIDP - value = Fiddle::Pointer.new(addr)[0, Fiddle::SIZEOF_VOIDP].unpack(signed ? 'q' : 'Q')[0] - if ruby - value = C.to_ruby(value) - end - value - end - - def at_current_insn? - pc == cfp.pc.to_i - end - - def peek_at_local(n) - local_table_size = iseq.body.local_table_size - offset = -C::VM_ENV_DATA_SIZE - local_table_size + n + 1 - value = (cfp.ep + offset).* - C.to_ruby(value) - end - - def peek_at_stack(depth_from_top) - raise 'not at current insn' unless at_current_insn? - offset = -(1 + depth_from_top) - # rb_rjit_branch_stub_hit updates SP, so you don't need to worry about sp_offset - value = (cfp.sp + offset).* - C.to_ruby(value) - end - - def peek_at_self - C.to_ruby(cfp.self) - end - - def peek_at_block_handler(level) - ep = ep_at_level(cfp, level:) - ep[C::VM_ENV_DATA_INDEX_SPECVAL] - end - - private - - def ep_at_level(cfp, level:) - ep = cfp.ep - level.times do - # VM_ENV_PREV_EP - ep = C.VALUE.new(ep[C::VM_ENV_DATA_INDEX_SPECVAL] & ~0x03) - end - ep - end - end -end diff --git a/lib/ruby_vm/rjit/stats.rb b/lib/ruby_vm/rjit/stats.rb deleted file mode 100644 index 7e353c698e..0000000000 --- a/lib/ruby_vm/rjit/stats.rb +++ /dev/null @@ -1,191 +0,0 @@ -# frozen_string_literal: true -module RubyVM::RJIT - # Return a Hash for \RJIT statistics. \--rjit-stats makes more information available. - def self.runtime_stats - stats = {} - - # Insn exits - INSNS.each_value do |insn| - exits = C.rjit_insn_exits[insn.bin] - if exits > 0 - stats[:"exit_#{insn.name}"] = exits - end - end - - # Runtime stats - C.rb_rjit_runtime_counters.members.each do |member| - stats[member] = C.rb_rjit_counters.public_send(member) - end - stats[:vm_insns_count] = C.rb_vm_insns_count - - # Other stats are calculated here - stats[:side_exit_count] = stats.select { |name, _count| name.start_with?('exit_') }.sum(&:last) - if stats[:vm_insns_count] > 0 - retired_in_rjit = stats[:rjit_insns_count] - stats[:side_exit_count] - stats[:total_insns_count] = retired_in_rjit + stats[:vm_insns_count] - stats[:ratio_in_rjit] = 100.0 * retired_in_rjit / stats[:total_insns_count] - else - stats.delete(:vm_insns_count) - end - - stats - end - - # :nodoc: all - class << self - private - - # --yjit-stats at_exit - def print_stats - stats = runtime_stats - $stderr.puts("***RJIT: Printing RJIT statistics on exit***") - - print_counters(stats, prefix: 'send_', prompt: 'method call exit reasons') - print_counters(stats, prefix: 'invokeblock_', prompt: 'invokeblock exit reasons') - print_counters(stats, prefix: 'invokesuper_', prompt: 'invokesuper exit reasons') - print_counters(stats, prefix: 'getblockpp_', prompt: 'getblockparamproxy exit reasons') - print_counters(stats, prefix: 'getivar_', prompt: 'getinstancevariable exit reasons') - print_counters(stats, prefix: 'setivar_', prompt: 'setinstancevariable exit reasons') - print_counters(stats, prefix: 'optaref_', prompt: 'opt_aref exit reasons') - print_counters(stats, prefix: 'optgetconst_', prompt: 'opt_getconstant_path exit reasons') - print_counters(stats, prefix: 'expandarray_', prompt: 'expandarray exit reasons') - - $stderr.puts "compiled_block_count: #{format_number(13, stats[:compiled_block_count])}" - $stderr.puts "side_exit_count: #{format_number(13, stats[:side_exit_count])}" - $stderr.puts "total_insns_count: #{format_number(13, stats[:total_insns_count])}" if stats.key?(:total_insns_count) - $stderr.puts "vm_insns_count: #{format_number(13, stats[:vm_insns_count])}" if stats.key?(:vm_insns_count) - $stderr.puts "rjit_insns_count: #{format_number(13, stats[:rjit_insns_count])}" - $stderr.puts "ratio_in_rjit: #{format('%12.1f', stats[:ratio_in_rjit])}%" if stats.key?(:ratio_in_rjit) - - print_exit_counts(stats) - end - - def print_counters(stats, prefix:, prompt:) - $stderr.puts("#{prompt}: ") - counters = stats.filter { |key, _| key.start_with?(prefix) } - counters.filter! { |_, value| value != 0 } - counters.transform_keys! { |key| key.to_s.delete_prefix(prefix) } - - if counters.empty? - $stderr.puts(" (all relevant counters are zero)") - return - end - - counters = counters.to_a - counters.sort_by! { |(_, counter_value)| counter_value } - longest_name_length = counters.max_by { |(name, _)| name.length }.first.length - total = counters.sum { |(_, counter_value)| counter_value } - - counters.reverse_each do |(name, value)| - percentage = value.fdiv(total) * 100 - $stderr.printf(" %*s %s (%4.1f%%)\n", longest_name_length, name, format_number(10, value), percentage) - end - end - - def print_exit_counts(stats, how_many: 20, padding: 2) - exits = stats.filter_map { |name, count| [name.to_s.delete_prefix('exit_'), count] if name.start_with?('exit_') }.to_h - return if exits.empty? - - top_exits = exits.sort_by { |_name, count| -count }.first(how_many).to_h - total_exits = exits.values.sum - $stderr.puts "Top-#{top_exits.size} most frequent exit ops (#{format("%.1f", 100.0 * top_exits.values.sum / total_exits)}% of exits):" - - name_width = top_exits.map { |name, _count| name.length }.max + padding - count_width = top_exits.map { |_name, count| format_number(10, count).length }.max + padding - top_exits.each do |name, count| - ratio = 100.0 * count / total_exits - $stderr.puts "#{format("%#{name_width}s", name)}: #{format_number(count_width, count)} (#{format('%4.1f', ratio)}%)" - end - end - - # Format large numbers with comma separators for readability - def format_number(pad, number) - integer, decimal = number.to_s.split('.') - d_groups = integer.chars.reverse.each_slice(3) - with_commas = d_groups.map(&:join).join(',').reverse - [with_commas, decimal].compact.join('.').rjust(pad, ' ') - end - - # --yjit-trace-exits at_exit - def dump_trace_exits - filename = "#{Dir.pwd}/rjit_exit_locations.dump" - File.binwrite(filename, Marshal.dump(exit_traces)) - $stderr.puts("RJIT exit locations dumped to:\n#{filename}") - end - - # Convert rb_rjit_raw_samples and rb_rjit_line_samples into a StackProf format. - def exit_traces - results = C.rjit_exit_traces - raw_samples = results[:raw].dup - line_samples = results[:lines].dup - frames = results[:frames].dup - samples_count = 0 - - # Loop through the instructions and set the frame hash with the data. - # We use nonexistent.def for the file name, otherwise insns.def will be displayed - # and that information isn't useful in this context. - RubyVM::INSTRUCTION_NAMES.each_with_index do |name, frame_id| - frame_hash = { samples: 0, total_samples: 0, edges: {}, name: name, file: "nonexistent.def", line: nil, lines: {} } - results[:frames][frame_id] = frame_hash - frames[frame_id] = frame_hash - end - - # Loop through the raw_samples and build the hashes for StackProf. - # The loop is based off an example in the StackProf documentation and therefore - # this functionality can only work with that library. - # - # Raw Samples: - # [ length, frame1, frame2, frameN, ..., instruction, count - # - # Line Samples - # [ length, line_1, line_2, line_n, ..., dummy value, count - i = 0 - while i < raw_samples.length - stack_length = raw_samples[i] + 1 - i += 1 # consume the stack length - - prev_frame_id = nil - stack_length.times do |idx| - idx += i - frame_id = raw_samples[idx] - - if prev_frame_id - prev_frame = frames[prev_frame_id] - prev_frame[:edges][frame_id] ||= 0 - prev_frame[:edges][frame_id] += 1 - end - - frame_info = frames[frame_id] - frame_info[:total_samples] += 1 - - frame_info[:lines][line_samples[idx]] ||= [0, 0] - frame_info[:lines][line_samples[idx]][0] += 1 - - prev_frame_id = frame_id - end - - i += stack_length # consume the stack - - top_frame_id = prev_frame_id - top_frame_line = 1 - - sample_count = raw_samples[i] - - frames[top_frame_id][:samples] += sample_count - frames[top_frame_id][:lines] ||= {} - frames[top_frame_id][:lines][top_frame_line] ||= [0, 0] - frames[top_frame_id][:lines][top_frame_line][1] += sample_count - - samples_count += sample_count - i += 1 - end - - results[:samples] = samples_count - # Set missed_samples and gc_samples to 0 as their values - # don't matter to us in this context. - results[:missed_samples] = 0 - results[:gc_samples] = 0 - results - end - end -end diff --git a/lib/ruby_vm/rjit/type.rb b/lib/ruby_vm/rjit/type.rb deleted file mode 100644 index 119692014b..0000000000 --- a/lib/ruby_vm/rjit/type.rb +++ /dev/null @@ -1,221 +0,0 @@ -module RubyVM::RJIT - # Represent the type of a value (local/stack/self) in RJIT - Type = Data.define(:type) do - # Check if the type is an immediate - def imm? - case self - in Type::UnknownImm then true - in Type::Nil then true - in Type::True then true - in Type::False then true - in Type::Fixnum then true - in Type::Flonum then true - in Type::ImmSymbol then true - else false - end - end - - # Returns true when the type is not specific. - def unknown? - case self - in Type::Unknown | Type::UnknownImm | Type::UnknownHeap then true - else false - end - end - - # Returns true when we know the VALUE is a specific handle type, - # such as a static symbol ([Type::ImmSymbol], i.e. true from RB_STATIC_SYM_P()). - # Opposite of [Self::is_unknown]. - def specific? - !self.unknown? - end - - # Check if the type is a heap object - def heap? - case self - in Type::UnknownHeap then true - in Type::TArray then true - in Type::Hash then true - in Type::HeapSymbol then true - in Type::TString then true - in Type::CString then true - in Type::BlockParamProxy then true - else false - end - end - - # Check if it's a T_ARRAY object - def array? - case self - in Type::TArray then true - else false - end - end - - # Check if it's a T_STRING object (both TString and CString are T_STRING) - def string? - case self - in Type::TString then true - in Type::CString then true - else false - end - end - - # Returns the class if it is known, otherwise nil - def known_class - case self - in Type::Nil then C.rb_cNilClass - in Type::True then C.rb_cTrueClass - in Type::False then C.rb_cFalseClass - in Type::Fixnum then C.rb_cInteger - in Type::Flonum then C.rb_cFloat - in Type::ImmSymbol | Type::HeapSymbol then C.rb_cSymbol - in Type::CString then C.rb_cString - else nil - end - end - - # Returns a boolean representing whether the value is truthy if known, otherwise nil - def known_truthy - case self - in Type::Nil then false - in Type::False then false - in Type::UnknownHeap then false - in Type::Unknown | Type::UnknownImm then nil - else true - end - end - - # Returns a boolean representing whether the value is equal to nil if known, otherwise nil - def known_nil - case [self, self.known_truthy] - in Type::Nil, _ then true - in Type::False, _ then false # Qfalse is not nil - in _, true then false # if truthy, can't be nil - in _, _ then nil # otherwise unknown - end - end - - def diff(dst) - # Perfect match, difference is zero - if self == dst - return TypeDiff::Compatible[0] - end - - # Any type can flow into an unknown type - if dst == Type::Unknown - return TypeDiff::Compatible[1] - end - - # A CString is also a TString. - if self == Type::CString && dst == Type::TString - return TypeDiff::Compatible[1] - end - - # Specific heap type into unknown heap type is imperfect but valid - if self.heap? && dst == Type::UnknownHeap - return TypeDiff::Compatible[1] - end - - # Specific immediate type into unknown immediate type is imperfect but valid - if self.imm? && dst == Type::UnknownImm - return TypeDiff::Compatible[1] - end - - # Incompatible types - return TypeDiff::Incompatible - end - - def upgrade(new_type) - assert(new_type.diff(self) != TypeDiff::Incompatible) - new_type - end - - private - - def assert(cond) - unless cond - raise "'#{cond.inspect}' was not true" - end - end - end - - # This returns an appropriate Type based on a known value - class << Type - def from(val) - if C::SPECIAL_CONST_P(val) - if fixnum?(val) - Type::Fixnum - elsif val.nil? - Type::Nil - elsif val == true - Type::True - elsif val == false - Type::False - elsif static_symbol?(val) - Type::ImmSymbol - elsif flonum?(val) - Type::Flonum - else - raise "Illegal value: #{val.inspect}" - end - else - val_class = C.to_value(C.rb_class_of(val)) - if val_class == C.rb_cString && C.rb_obj_frozen_p(val) - return Type::CString - end - if C.to_value(val) == C.rb_block_param_proxy - return Type::BlockParamProxy - end - case C::BUILTIN_TYPE(val) - in C::RUBY_T_ARRAY - Type::TArray - in C::RUBY_T_HASH - Type::Hash - in C::RUBY_T_STRING - Type::TString - else - Type::UnknownHeap - end - end - end - - private - - def fixnum?(obj) - (C.to_value(obj) & C::RUBY_FIXNUM_FLAG) == C::RUBY_FIXNUM_FLAG - end - - def flonum?(obj) - (C.to_value(obj) & C::RUBY_FLONUM_MASK) == C::RUBY_FLONUM_FLAG - end - - def static_symbol?(obj) - (C.to_value(obj) & 0xff) == C::RUBY_SYMBOL_FLAG - end - end - - # List of types - Type::Unknown = Type[:Unknown] - Type::UnknownImm = Type[:UnknownImm] - Type::UnknownHeap = Type[:UnknownHeap] - Type::Nil = Type[:Nil] - Type::True = Type[:True] - Type::False = Type[:False] - Type::Fixnum = Type[:Fixnum] - Type::Flonum = Type[:Flonum] - Type::Hash = Type[:Hash] - Type::ImmSymbol = Type[:ImmSymbol] - Type::HeapSymbol = Type[:HeapSymbol] - - Type::TString = Type[:TString] # An object with the T_STRING flag set, possibly an rb_cString - Type::CString = Type[:CString] # An un-subclassed string of type rb_cString (can have instance vars in some cases) - Type::TArray = Type[:TArray] # An object with the T_ARRAY flag set, possibly an rb_cArray - - Type::BlockParamProxy = Type[:BlockParamProxy] # A special sentinel value indicating the block parameter should be read from - - module TypeDiff - Compatible = Data.define(:diversion) # The smaller, the more compatible. - Incompatible = :Incompatible - end -end |