Class Graphics2D
Graphics2D
class extends the
Graphics
class to provide more sophisticated
control over geometry, coordinate transformations, color management,
and text layout. This is the fundamental class for rendering
2-dimensional shapes, text and images on the Java(tm) platform.
Coordinate Spaces
All coordinates passed to aGraphics2D
object are specified
in a device-independent coordinate system called User Space, which is
used by applications. The Graphics2D
object contains
an AffineTransform
object as part of its rendering state
that defines how to convert coordinates from user space to
device-dependent coordinates in Device Space.
Coordinates in device space usually refer to individual device pixels
and are aligned on the infinitely thin gaps between these pixels.
Some Graphics2D
objects can be used to capture rendering
operations for storage into a graphics metafile for playback on a
concrete device of unknown physical resolution at a later time. Since
the resolution might not be known when the rendering operations are
captured, the Graphics2D Transform
is set up
to transform user coordinates to a virtual device space that
approximates the expected resolution of the target device. Further
transformations might need to be applied at playback time if the
estimate is incorrect.
Some of the operations performed by the rendering attribute objects
occur in the device space, but all Graphics2D
methods take
user space coordinates.
Every Graphics2D
object is associated with a target that
defines where rendering takes place. A
GraphicsConfiguration
object defines the characteristics
of the rendering target, such as pixel format and resolution.
The same rendering target is used throughout the life of a
Graphics2D
object.
When creating a Graphics2D
object, the
GraphicsConfiguration
specifies the default transform for
the target of the Graphics2D
(a
Component
or Image
). This default transform maps the
user space coordinate system to screen and printer device coordinates
such that the origin maps to the upper left hand corner of the
target region of the device with increasing X coordinates extending
to the right and increasing Y coordinates extending downward.
The scaling of the default transform is set to identity for those devices
that are close to 72 dpi, such as screen devices.
The scaling of the default transform is set to approximately 72 user
space coordinates per square inch for high resolution devices, such as
printers. For image buffers, the default transform is the
Identity
transform.
Rendering Process
The Rendering Process can be broken down into four phases that are controlled by theGraphics2D
rendering attributes.
The renderer can optimize many of these steps, either by caching the
results for future calls, by collapsing multiple virtual steps into
a single operation, or by recognizing various attributes as common
simple cases that can be eliminated by modifying other parts of the
operation.
The steps in the rendering process are:
- Determine what to render.
-
Constrain the rendering operation to the current
Clip
. TheClip
is specified by aShape
in user space and is controlled by the program using the various clip manipulation methods ofGraphics
andGraphics2D
. This user clip is transformed into device space by the currentTransform
and combined with the device clip, which is defined by the visibility of windows and device extents. The combination of the user clip and device clip defines the composite clip, which determines the final clipping region. The user clip is not modified by the rendering system to reflect the resulting composite clip. - Determine what colors to render.
-
Apply the colors to the destination drawing surface using the current
Composite
attribute in theGraphics2D
context.
The three types of rendering operations, along with details of each of their particular rendering processes are:
-
Shape
operations-
If the operation is a
draw(Shape)
operation, then thecreateStrokedShape
method on the currentStroke
attribute in theGraphics2D
context is used to construct a newShape
object that contains the outline of the specifiedShape
. -
The
Shape
is transformed from user space to device space using the currentTransform
in theGraphics2D
context. -
The outline of the
Shape
is extracted using thegetPathIterator
method ofShape
, which returns aPathIterator
object that iterates along the boundary of theShape
. -
If the
Graphics2D
object cannot handle the curved segments that thePathIterator
object returns then it can call the alternategetPathIterator
method ofShape
, which flattens theShape
. -
The current
Paint
in theGraphics2D
context is queried for aPaintContext
, which specifies the colors to render in device space.
-
If the operation is a
-
Text operations
-
The following steps are used to determine the set of glyphs required
to render the indicated
String
:-
If the argument is a
String
, then the currentFont
in theGraphics2D
context is asked to convert the Unicode characters in theString
into a set of glyphs for presentation with whatever basic layout and shaping algorithms the font implements. -
If the argument is an
AttributedCharacterIterator
, the iterator is asked to convert itself to aTextLayout
using its embedded font attributes. TheTextLayout
implements more sophisticated glyph layout algorithms that perform Unicode bi-directional layout adjustments automatically for multiple fonts of differing writing directions. -
If the argument is a
GlyphVector
, then theGlyphVector
object already contains the appropriate font-specific glyph codes with explicit coordinates for the position of each glyph.
-
If the argument is a
-
The current
Font
is queried to obtain outlines for the indicated glyphs. These outlines are treated as shapes in user space relative to the position of each glyph that was determined in step 1. -
The character outlines are filled as indicated above
under
Shape
operations. -
The current
Paint
is queried for aPaintContext
, which specifies the colors to render in device space.
-
The following steps are used to determine the set of glyphs required
to render the indicated
-
Image
Operations-
The region of interest is defined by the bounding box of the source
Image
. This bounding box is specified in Image Space, which is theImage
object's local coordinate system. -
If an
AffineTransform
is passed todrawImage(Image, AffineTransform, ImageObserver)
, theAffineTransform
is used to transform the bounding box from image space to user space. If noAffineTransform
is supplied, the bounding box is treated as if it is already in user space. -
The bounding box of the source
Image
is transformed from user space into device space using the currentTransform
. Note that the result of transforming the bounding box does not necessarily result in a rectangular region in device space. -
The
Image
object determines what colors to render, sampled according to the source to destination coordinate mapping specified by the currentTransform
and the optional image transform.
-
The region of interest is defined by the bounding box of the source
Default Rendering Attributes
The default values for theGraphics2D
rendering attributes are:
Paint
- The color of the
Component
. Font
- The
Font
of theComponent
. Stroke
- A square pen with a linewidth of 1, no dashing, miter segment joins and square end caps.
Transform
- The
getDefaultTransform
for theGraphicsConfiguration
of theComponent
. Composite
- The
AlphaComposite.SRC_OVER
rule. Clip
- No rendering
Clip
, the output is clipped to theComponent
.
Rendering Compatibility Issues
The JDK(tm) 1.1 rendering model is based on a pixelization model that specifies that coordinates are infinitely thin, lying between the pixels. Drawing operations are performed using a one-pixel wide pen that fills the pixel below and to the right of the anchor point on the path. The JDK 1.1 rendering model is consistent with the capabilities of most of the existing class of platform renderers that need to resolve integer coordinates to a discrete pen that must fall completely on a specified number of pixels.
The Java 2D(tm) (Java(tm) 2 platform) API supports antialiasing renderers.
A pen with a width of one pixel does not need to fall
completely on pixel N as opposed to pixel N+1. The pen can fall
partially on both pixels. It is not necessary to choose a bias
direction for a wide pen since the blending that occurs along the
pen traversal edges makes the sub-pixel position of the pen
visible to the user. On the other hand, when antialiasing is
turned off by setting the
KEY_ANTIALIASING
hint key
to the
VALUE_ANTIALIAS_OFF
hint value, the renderer might need
to apply a bias to determine which pixel to modify when the pen
is straddling a pixel boundary, such as when it is drawn
along an integer coordinate in device space. While the capabilities
of an antialiasing renderer make it no longer necessary for the
rendering model to specify a bias for the pen, it is desirable for the
antialiasing and non-antialiasing renderers to perform similarly for
the common cases of drawing one-pixel wide horizontal and vertical
lines on the screen. To ensure that turning on antialiasing by
setting the
KEY_ANTIALIASING
hint
key to
VALUE_ANTIALIAS_ON
does not cause such lines to suddenly become twice as wide and half
as opaque, it is desirable to have the model specify a path for such
lines so that they completely cover a particular set of pixels to help
increase their crispness.
Java 2D API maintains compatibility with JDK 1.1 rendering
behavior, such that legacy operations and existing renderer
behavior is unchanged under Java 2D API. Legacy
methods that map onto general draw
and
fill
methods are defined, which clearly indicates
how Graphics2D
extends Graphics
based
on settings of Stroke
and Transform
attributes and rendering hints. The definition
performs identically under default attribute settings.
For example, the default Stroke
is a
BasicStroke
with a width of 1 and no dashing and the
default Transform for screen drawing is an Identity transform.
The following two rules provide predictable rendering behavior whether aliasing or antialiasing is being used.
- Device coordinates are defined to be between device pixels which avoids any inconsistent results between aliased and antialiased rendering. If coordinates were defined to be at a pixel's center, some of the pixels covered by a shape, such as a rectangle, would only be half covered. With aliased rendering, the half covered pixels would either be rendered inside the shape or outside the shape. With anti-aliased rendering, the pixels on the entire edge of the shape would be half covered. On the other hand, since coordinates are defined to be between pixels, a shape like a rectangle would have no half covered pixels, whether or not it is rendered using antialiasing.
- Lines and paths stroked using the
BasicStroke
object may be "normalized" to provide consistent rendering of the outlines when positioned at various points on the drawable and whether drawn with aliased or antialiased rendering. This normalization process is controlled by theKEY_STROKE_CONTROL
hint. The exact normalization algorithm is not specified, but the goals of this normalization are to ensure that lines are rendered with consistent visual appearance regardless of how they fall on the pixel grid and to promote more solid horizontal and vertical lines in antialiased mode so that they resemble their non-antialiased counterparts more closely. A typical normalization step might promote antialiased line endpoints to pixel centers to reduce the amount of blending or adjust the subpixel positioning of non-antialiased lines so that the floating point line widths round to even or odd pixel counts with equal likelihood. This process can move endpoints by up to half a pixel (usually towards positive infinity along both axes) to promote these consistent results.
The following definitions of general legacy methods perform identically to previously specified behavior under default attribute settings:
-
For
fill
operations, includingfillRect
,fillRoundRect
,fillOval
,fillArc
,fillPolygon
, andclearRect
,fill
can now be called with the desiredShape
. For example, when filling a rectangle:fill(new Rectangle(x, y, w, h));
is called. -
Similarly, for draw operations, including
drawLine
,drawRect
,drawRoundRect
,drawOval
,drawArc
,drawPolyline
, anddrawPolygon
,draw
can now be called with the desiredShape
. For example, when drawing a rectangle:draw(new Rectangle(x, y, w, h));
is called. -
The
draw3DRect
andfill3DRect
methods were implemented in terms of thedrawLine
andfillRect
methods in theGraphics
class which would predicate their behavior upon the currentStroke
andPaint
objects in aGraphics2D
context. This class overrides those implementations with versions that use the currentColor
exclusively, overriding the currentPaint
and which usesfillRect
to describe the exact same behavior as the preexisting methods regardless of the setting of the currentStroke
.
Graphics
class defines only the setColor
method to control the color to be painted. Since the Java 2D API extends
the Color
object to implement the new Paint
interface, the existing
setColor
method is now a convenience method for setting the
current Paint
attribute to a Color
object.
setColor(c)
is equivalent to setPaint(c)
.
The Graphics
class defines two methods for controlling
how colors are applied to the destination.
-
The
setPaintMode
method is implemented as a convenience method to set the defaultComposite
, equivalent tosetComposite(new AlphaComposite.SrcOver)
. -
The
setXORMode(Color xorcolor)
method is implemented as a convenience method to set a specialComposite
object that ignores theAlpha
components of source colors and sets the destination color to the value:dstpixel = (PixelOf(srccolor) ^ PixelOf(xorcolor) ^ dstpixel);
- See Also:
-
Constructor Summary
Constructors -
Method Summary
Modifier and TypeMethodDescriptionabstract void
addRenderingHints
(Map<?, ?> hints) Sets the values of an arbitrary number of preferences for the rendering algorithms.abstract void
Intersects the currentClip
with the interior of the specifiedShape
and sets theClip
to the resulting intersection.abstract void
Strokes the outline of aShape
using the settings of the currentGraphics2D
context.void
draw3DRect
(int x, int y, int width, int height, boolean raised) Draws a 3-D highlighted outline of the specified rectangle.abstract void
drawGlyphVector
(GlyphVector g, float x, float y) Renders the text of the specifiedGlyphVector
using theGraphics2D
context's rendering attributes.abstract void
drawImage
(BufferedImage img, BufferedImageOp op, int x, int y) Renders aBufferedImage
that is filtered with aBufferedImageOp
.abstract boolean
drawImage
(Image img, AffineTransform xform, ImageObserver obs) Renders an image, applying a transform from image space into user space before drawing.abstract void
drawRenderableImage
(RenderableImage img, AffineTransform xform) Renders aRenderableImage
, applying a transform from image space into user space before drawing.abstract void
drawRenderedImage
(RenderedImage img, AffineTransform xform) Renders aRenderedImage
, applying a transform from image space into user space before drawing.abstract void
drawString
(String str, float x, float y) Renders the text specified by the specifiedString
, using the current text attribute state in theGraphics2D
context.abstract void
drawString
(String str, int x, int y) Renders the text of the specifiedString
, using the current text attribute state in theGraphics2D
context.abstract void
drawString
(AttributedCharacterIterator iterator, float x, float y) Renders the text of the specified iterator applying its attributes in accordance with the specification of theTextAttribute
class.abstract void
drawString
(AttributedCharacterIterator iterator, int x, int y) Renders the text of the specified iterator applying its attributes in accordance with the specification of theTextAttribute
class.abstract void
Fills the interior of aShape
using the settings of theGraphics2D
context.void
fill3DRect
(int x, int y, int width, int height, boolean raised) Paints a 3-D highlighted rectangle filled with the current color.abstract Color
Returns the background color used for clearing a region.abstract Composite
Returns the currentComposite
in theGraphics2D
context.abstract GraphicsConfiguration
Returns the device configuration associated with thisGraphics2D
.abstract FontRenderContext
Get the rendering context of theFont
within thisGraphics2D
context.abstract Paint
getPaint()
Returns the currentPaint
of theGraphics2D
context.abstract Object
getRenderingHint
(RenderingHints.Key hintKey) Returns the value of a single preference for the rendering algorithms.abstract RenderingHints
Gets the preferences for the rendering algorithms.abstract Stroke
Returns the currentStroke
in theGraphics2D
context.abstract AffineTransform
Returns a copy of the currentTransform
in theGraphics2D
context.abstract boolean
Checks whether or not the specifiedShape
intersects the specifiedRectangle
, which is in device space.abstract void
rotate
(double theta) Concatenates the currentGraphics2D
Transform
with a rotation transform.abstract void
rotate
(double theta, double x, double y) Concatenates the currentGraphics2D
Transform
with a translated rotation transform.abstract void
scale
(double sx, double sy) Concatenates the currentGraphics2D
Transform
with a scaling transformation Subsequent rendering is resized according to the specified scaling factors relative to the previous scaling.abstract void
setBackground
(Color color) Sets the background color for theGraphics2D
context.abstract void
setComposite
(Composite comp) Sets theComposite
for theGraphics2D
context.abstract void
Sets thePaint
attribute for theGraphics2D
context.abstract void
setRenderingHint
(RenderingHints.Key hintKey, Object hintValue) Sets the value of a single preference for the rendering algorithms.abstract void
setRenderingHints
(Map<?, ?> hints) Replaces the values of all preferences for the rendering algorithms with the specifiedhints
.abstract void
Sets theStroke
for theGraphics2D
context.abstract void
Overwrites the Transform in theGraphics2D
context.abstract void
shear
(double shx, double shy) Concatenates the currentGraphics2D
Transform
with a shearing transform.abstract void
Composes anAffineTransform
object with theTransform
in thisGraphics2D
according to the rule last-specified-first-applied.abstract void
translate
(double tx, double ty) Concatenates the currentGraphics2D Transform
with a translation transform.abstract void
translate
(int x, int y) Translates the origin of theGraphics2D
context to the point (x, y) in the current coordinate system.Methods declared in class java.awt.Graphics
clearRect, clipRect, copyArea, create, create, dispose, drawArc, drawBytes, drawChars, drawImage, drawImage, drawImage, drawImage, drawImage, drawImage, drawLine, drawOval, drawPolygon, drawPolygon, drawPolyline, drawRect, drawRoundRect, fillArc, fillOval, fillPolygon, fillPolygon, fillRect, fillRoundRect, finalize, getClip, getClipBounds, getClipBounds, getClipRect, getColor, getFont, getFontMetrics, getFontMetrics, hitClip, setClip, setClip, setColor, setFont, setPaintMode, setXORMode, toString