Internet Engineering Task Force (IETF) C. Filsfils, Ed.
Request for Comments: 8355 S. Previdi, Ed.
Category: Informational Cisco Systems, Inc.
ISSN: 2070-1721 B. Decraene
Orange
R. Shakir
Google
March 2018
Resiliency Use Cases
in Source Packet Routing in Networking (SPRING) Networks
Abstract
This document identifies and describes the requirements for a set of
use cases related to Segment Routing network resiliency on Source
Packet Routing in Networking (SPRING) networks.
Status of This Memo
This document is not an Internet Standards Track specification; it is
published for informational purposes.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Not all documents
approved by the IESG are candidates for any level of Internet
Standard; see Section 2 of RFC 7841.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
https://www.rfc-editor.org/info/rfc8355.
Filsfils, et al. Informational [Page 1]
RFC 8355 SPRING Resiliency Use Cases March 2018
Copyright Notice
Copyright (c) 2018 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1. Requirements Language . . . . . . . . . . . . . . . . . . 4
2. Path Protection . . . . . . . . . . . . . . . . . . . . . . . 4
3. Management-Free Local Protection . . . . . . . . . . . . . . 6
3.1. Management-Free Bypass Protection . . . . . . . . . . . . 7
3.2. Management-Free Shortest-Path-Based Protection . . . . . 8
4. Managed Local Protection . . . . . . . . . . . . . . . . . . 8
4.1. Managed Bypass Protection . . . . . . . . . . . . . . . . 9
4.2. Managed Shortest Path Protection . . . . . . . . . . . . 9
5. Loop Avoidance . . . . . . . . . . . . . . . . . . . . . . . 10
6. Coexistence of Multiple Resilience Techniques in the Same
Infrastructure . . . . . . . . . . . . . . . . . . . . . . . 10
7. Security Considerations . . . . . . . . . . . . . . . . . . . 11
8. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 11
9. Manageability Considerations . . . . . . . . . . . . . . . . 11
10. References . . . . . . . . . . . . . . . . . . . . . . . . .