Network Working Group                              A. Satyanarayana, Ed.
Request for Comments: 5063                                R. Rahman, Ed.
Updates: 2961, 3473                                        Cisco Systems
Category: Standards Track                                   October 2007


        Extensions to GMPLS Resource Reservation Protocol (RSVP)
                            Graceful Restart

Status of This Memo

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

Abstract

   This document describes extensions to the Resource Reservation
   Protocol (RSVP) Graceful Restart mechanisms defined in RFC 3473.  The
   extensions enable the recovery of RSVP signaling state based on the
   Path message last sent by the node being restarted.

   Previously defined Graceful Restart mechanisms, also called recovery
   from nodal faults, permit recovery of signaling state from adjacent
   nodes when the data plane has retained the associated forwarding
   state across a restart.  Those mechanisms do not fully support
   signaling state recovery on ingress nodes or recovery of all RSVP
   objects.

   The extensions defined in this document build on the RSVP Hello
   extensions defined in RFC 3209, and extensions for state recovery on
   nodal faults defined in RFC 3473.  Using these extensions, the
   restarting node can recover all previously transmitted Path state,
   including the Explicit Route Object and the downstream (outgoing)
   interface identifiers.  The extensions can also be used to recover
   signaling state after the restart of an ingress node.

   These extensions are not used to create or restore data plane state.

   The extensions optionally support the use of Summary Refresh, defined
   in RFC 2961, to reduce the number of messages exchanged during the
   Recovery Phase when the restarting node has recovered signaling state
   locally for one or more Label Switched Paths (LSPs).






Satyanarayana & Rahman      Standards Track                     [Page 1]


RFC 5063         GMPLS RSVP Graceful Restart Extensions     October 2007


   Table of Contents

   1. Introduction ....................................................3
   2. Conventions Used in This Document ...............................5
   3. Terminology .....................................................5
   4. Extensions to Nodal Fault Handling ..............................5
      4.1. RecoveryPath Message Format ................................5
      4.2. Capability Object ..........................................6
           4.2.1. Conformance .........................................7
      4.3. Related Procedures .........................................7
      4.4. Procedures for the Capability Object .......................8
           4.4.1. Procedures for the Downstream Neighbor ..............8
           4.4.2. Procedures for the Restarting Node ..................8
      4.5. Procedures for the RecoveryPath Message ....................9
           4.5.1. Procedures for the Downstream Neighbor ..............9
           4.5.2. Procedures for the Restarting Node .................10
                  4.5.2.1. Path and RecoveryPath Message Procedures ..11
                  4.5.2.2. Re-Synchronization Procedures .............12
                  4.5.2.3. Procedures on Expiration of
                           Recovery Period ...........................13
      4.6. Compatibility .............................................13
   5. RecoveryPath Summary Refresh ...................................14
      5.1. MESSAGE_ID ACK/NACK and MESSAGE_ID LIST Objects ...........15
      5.2. RecoveryPath Srefresh Capable Bit .........................16
           5.2.1. Procedures .........................................16
           5.2.2. Compatibility ......................................17
      5.3. RecoveryPath Summary Refresh Procedures ...................17
           5.3.1. Generation of RecoveryPath-Related Srefresh
                  Messages ...........................................17
           5.3.2. RecoveryPath-Related Srefresh Receive
                  Processing and NACK Generation .....................19
           5.3.3. RecoveryPath-Related MESSAGE_ID NACK
                  Receive Processing .................................19
   6. Security Considerations ........................................20
   7. Acknowledgments ................................................21
   8. IANA Considerations ............................................21
   9. Normative References ...........................................22














Satyanarayana & Rahman      Standards Track                     [Page 2]


RFC 5063         GMPLS RSVP Graceful Restart Extensions     October 2007


1.  Introduction

   RSVP Graceful Restart is defined in [RFC3473] and uses mechanisms
   defined in [RFC3209].  When data/forwarding plane state can be
   retained across the restart of the RSVP agent that established such
   state, RSVP Graceful Restart provides the ability for the RSVP agent
   to resynchronize its state based on updates received from its
   neighboring RSVP agents, and, reconcile such state with the retained
   data/forwarding plane state.  [RFC3209] describes a mechanism, using
   RSVP Hello messages, to detect the state of an adjacent RSVP agent.
   [RFC3473] extends this mechanism to advertise the capability of
   retaining data/forwarding plane state across the restart of a node or
   a "nodal fault".  [RFC3473] also defines the Recovery Label object
   for use in the Path message of the RSVP neighbor upstream of a
   restarting node, to indicate that the Path message is for existing
   data plane state.

   This document presents extensions to address two aspects of graceful
   restart not previously supported.  The presented extensions enable a
   restarting node to recover all objects in previously transmitted Path
   messages, including the Explicit Route Object (ERO), from its
   downstream neighbors, thus recovering the control plane state.  The
   extensions do not facilitate the recovery or creation of
   data/forwarding plane state, and can only be used to reestablish
   control plane state that matches in-place data/forwarding state.  The
   extensions also enable graceful restart of an ingress node that does
   not preserve full RSVP state across restarts.  The presented
   extensions are equally applicable to LSPs of various switching types
   as defined in [RFC3471].

   Per [RFC3473], a restarting node can distinguish Path messages
   associated with LSPs being recovered by the presence of the Recovery
   Label object.  To determine the downstream (outgoing) interface and
   associated label(s), the restarting node must consult the data plane.
   This may not be possible for all types of nodes.  Furthermore, data
   plane information is not sufficient to reconstruct all previously
   transmitted Path state.  In these cases, the only source of RSVP
   state is the downstream RSVP neighbor.

   For example, when the restarting node is an ingress node, all
   previously transmitted Path state may need to be recovered.  Such
   Path state may include (but is not restricted to) the Protection
   object, the Admin Status object, the Session Attribute object, the
   Notify Request object, and the Sender Tspec object.  A restarting
   transit node may have modified received Path state in its previously
   transmitted Path message, which cannot be reconstructed internally
   during recovery.




Satyanarayana & Rahman      Standards Track                     [Page 3]


RFC 5063         GMPLS RSVP Graceful Restart Extensions     October 2007


   Another example of state that cannot be completely recovered from the
   data plane in some cases is the previously transmitted ERO.  Recovery
   of the previously transmitted ERO minimizes subsequent change of
   downstream LSP state.  On a restarting ingress node, the ERO may have
   been based on configuration or the result of a previous path
   computation.  A restarting transit node may have previously performed
   some form of path computation as a result of not receiving an ERO or
   receiving a loose hop in the ERO.  In addition to the ERO, the
   restarting node may have modified other received Path state in its
   previously transmitted Path state, which cannot be reconstructed
   internally during recovery.

   The defined extensions provide a restarting upstream node with all
   information previously transmitted by the node in Path messages.
   This is accomplished by the downstream RSVP neighbor sending a new
   message for every Path message it has previously received from the
   restarting node, after reestablishing RSVP communication with a
   restarted node that supports the recovery procedures defined in
   Section 4.5.2 of this document.

   The new message is called the RecoveryPath message.  The message
   conveys the contents of the last received Path message back to the
   restarting node.  The restarting node can use the RecoveryPath
   message, along with the state in the received Path message to
   associate control and data plane state and to validate the forwarding
   state with the state presented by the neighboring RSVP nodes.

   The restarting node indicates its desire to receive and process the
   RecoveryPath message by including a new object called the Capability
   object with the RecoveryPath Desired bit set, in its Hello messages
   sent to the downstream RSVP neighbor.  The downstream RSVP neighbor
   can indicate its ability to send RecoveryPath messages by including
   the Capability object with the RecoveryPath Transmit Enabled set in
   its Hello messages to the restarting node.  Thus, both the restarting
   node and its RSVP neighbor, with the help of the Capability object,
   can detect if the RecoveryPath message extensions defined in this
   document can be used to recover signaling state after a restart.

   If the restarting node is a transit node, it will receive a Path
   message with a Recovery Label object from its upstream RSVP neighbor.
   In addition, the RecoveryPath message allows such transit nodes to
   reconstruct any state that was previously dynamically constructed by
   the node, e.g., ERO sub-objects.  If the restarting node is an
   ingress node, all significant signaling state can be recovered based
   on the RecoveryPath message.






Satyanarayana & Rahman      Standards Track                     [Page 4]


RFC 5063         GMPLS RSVP Graceful Restart Extensions     October 2007


   Selective transmission of the RecoveryPath message is supported by
   enhancing the Summary Refresh mechanisms defined in [RFC2961].  When
   Recovery Summary Refresh is supported, the restarting node can select
   the LSPs for which it would like to receive RecoveryPath messages.
   This is useful when the restarting node is able to locally recover
   the signaling state for a subset of the previously active LSPs.

   Restarting egress nodes, and Resv message processing are not impacted
   by the presented extensions, see [RFC3473] for details.

2.  Conventions Used in This Document

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

3.  Terminology

   The reader is assumed to be familiar with the terminology defined in
   [RFC3209] and [RFC3473].

   Throughout this document, the term "node", when used in the context
   of a restarting or restarted node, generally refers to the control
   plane component, which is the signaling controller for a data plane
   switch.

4.  Extensions to Nodal Fault Handling

   This section presents the protocol modifications to Section 9 of
   [RFC3473].

4.1.  RecoveryPath Message Format

   The format of a RecoveryPath message is the same as the format of a
   Path message, as defined in [RFC3473], but uses a new message number
   (30) so that it can be identified correctly.

      <RecoveryPath Message> ::= <Path Message>

   The destination address used in the IP header of a RecoveryPath
   message MUST be the same as the destination address used in the IP
   header of the corresponding Resv message last generated by the
   sending node.  Except as specified below, all objects in a
   RecoveryPath message are identical to the objects in the
   corresponding Path message last received by the sending node.






Satyanarayana & Rahman      Standards Track                     [Page 5]


RFC 5063         GMPLS RSVP Graceful Restart Extensions     October 2007


4.2.  Capability Object

   Capability objects are carried in RSVP Hello messages.  The
   Capability object uses Class-Number 134 (of form 10bbbbbb) and C-Type
   of 1.

   The message format of a Hello message is modified to be:

      <Hello Message> ::= <Common Header> [ <INTEGRITY> ] <HELLO>
                          [ <RESTART_CAP> ] [ <CAPABILITY> ]

   The format of a Capability object is:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |            Length             | Class-Num(134)|  C-Type  (1)  |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                         Reserved                        |T|R|S|
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      RecoveryPath Transmit Enabled (T): 1 bit

         When set (1), indicates that the sending node is enabled to
         send RecoveryPath messages.  Absence of the Capability object
         MUST be treated as if the T-bit is cleared (0).

      RecoveryPath Desired (R): 1 bit

         When set (1), indicates that the sending node desires to
         receive RecoveryPath messages.  Absence of the Capability
         object MUST be treated as if the R-bit is cleared (0).

      RecoveryPath Srefresh Capable (S): 1 bit

         When set (1), along with the R-bit, indicates that the sending
         node is capable of receiving and processing Srefresh messages
         with the RecoveryPath Flag set (1) in the MESSAGE_ID LIST
         object.  Absence of the Capability object MUST be treated as if
         the S-bit is cleared (0).  Related procedures are defined in
         Section 5.2.1.

      Reserved bits

         Reserved bits MUST be set to zero on transmission and MUST be
         ignored on receipt.





Satyanarayana & Rahman      Standards Track                     [Page 6]


RFC 5063         GMPLS RSVP Graceful Restart Extensions     October 2007


4.2.1.  Conformance

   All nodes supporting the extensions defined in this document MUST be
   able to transmit, and properly receive and process RecoveryPath
   messages.  All nodes MUST be able to set both the T and R bits.  Both
   the T and R bits SHOULD be set (1) by default.  A node MAY allow
   RecoveryPath message transmission and reception to be independently
   disabled based on local policy.  When RecoveryPath message
   transmission is disabled, the T-bit MUST be set to zero (0).  When
   RecoveryPath message reception is not desired, the R-bit MUST be set
   to zero (0).

   Any node that supports the extensions defined in this document and
   sets the Refresh-Reduction-Capable bit [RFC2961] SHOULD support
   setting of the S-bit and support the mechanisms defined in Section 5.

4.3.  Related Procedures

   This document does not modify existing procedures for sending and
   receiving RSVP Hello messages, as defined in [RFC3209], and the
   Restart_Cap object in RSVP Hello messages as defined in [RFC3473].
   The procedures for control channel faults are defined in [RFC3473]
   and are not changed by this document.

   The presented extensions require the use of RSVP Hellos, as defined
   in [RFC3209], and the use of the Restart_Cap object extension as
   defined in [RFC3473].  The presented extensions address only "Nodal
   Faults" as defined in [RFC3473].  Control channel faults are fully
   addressed in [RFC3473].

   Note: There are no changes to the procedures defined in Section 9.5.3
   in [RFC3473] (Procedures for the Neighbor of a Restarting node).
   There are no changes to the procedures defined in Section 9.5.2 in
   [RFC3473] if the restarting node is an egress node.

   There are no changes to the procedures with respect to the
   data/forwarding plane as described in [RFC3473].  In particular, a
   restarting node MUST NOT create data/forwarding plane state as the
   result of any of the extensions defined in this document.

   The following sections assume previously defined procedures are
   followed, except where explicitly modified.









Satyanarayana & Rahman      Standards Track                     [Page 7]


RFC 5063         GMPLS RSVP Graceful Restart Extensions     October 2007


4.4.  Procedures for the Capability Object

4.4.1.  Procedures for the Downstream Neighbor

   If a node is capable of sending RecoveryPath messages, it MUST
   include the Capability object with the RecoveryPath Transmit Enabled
   (T) bit set (1) in all its Hello messages.

   If the downstream RSVP neighbor receives Hello messages from a
   restarting node, with the Restart_Cap object, as defined in
   [RFC3473], and with the Capability object with the RecoveryPath
   Desired (R) bit set (1), it MUST treat the restarting node as capable
   of receiving and processing RecoveryPath messages as defined in this
   document.

   If the downstream RSVP neighbor receives a Capability object in a
   Hello message with the RecoveryPath Desired (R) bit set (1), but
   without the Restart_Cap object, it MUST process the Hello message as
   if the RecoveryPath Receive Desired (R) bit is cleared (0) in the
   Hello message.

   If the downstream RSVP neighbor does not receive the Capability
   object in Hello messages sent by the restarting node or the
   RecoveryPath Desired (R) bit is cleared (0) in the Capability object,
   it MUST treat the restarting node as not capable of supporting the
   RecoveryPath message procedures defined in this document, and MUST
   revert to recovery procedures as defined in [RFC3473].

4.4.2.  Procedures for the Restarting Node

   A node that expects to recover RSVP state by the receipt and
   processing of RecoveryPath messages according to procedures defined
   in this document, MUST include the Capability object with the
   RecoveryPath Desired (R) bit set (1) in its RSVP Hello messages to
   its neighbors.  The node MUST also include the Restart_Cap object, as
   defined in [RFC3473], in all those Hello messages.

   If the Recovery Time is zero (0) or the restarting node does not
   support/desire the use of RecoveryPath messages, the RecoveryPath
   Desired (R) bit MUST be cleared (0) in the Capability object included
   in Hello messages, or the Capability object MAY be omitted from Hello
   messages sent by the restarting node.

   During the Recovery Period, if the restarting node receives Hello
   messages from a downstream RSVP neighbor with the RecoveryPath
   Transmit Enabled (T) bit set (1) in the Capability object and the
   Restart_Cap object, as defined in [RFC3473], it MUST treat the
   downstream RSVP neighbor as capable of sending RecoveryPath messages



Satyanarayana & Rahman      Standards Track                     [Page 8]


RFC 5063         GMPLS RSVP Graceful Restart Extensions     October 2007


   according to procedures defined in Section 4.5.1.  If the restarting
   node expects to recover RSVP state by the receipt and processing of
   RecoveryPath messages, it MUST follow procedures defined in Section
   4.5.2, with the downstream RSVP neighbor.

   During the Recovery Period, if the restarting node receives Hello
   messages from a downstream RSVP neighbor with the RecoveryPath
   Transmit Enabled (T) bit cleared (0) in the Capability object, or,
   with the Capability object not present, it MUST treat the downstream
   RSVP neighbor as not capable of the RecoveryPath message procedures
   defined in this document, and, it MUST revert to the recovery
   procedures defined in [RFC3473] immediately, with the downstream RSVP
   neighbor.

4.5.  Procedures for the RecoveryPath Message

4.5.1.  Procedures for the Downstream Neighbor

   After a downstream RSVP neighbor has detected that its upstream node
   has restarted, is capable of recovery as defined in [RFC3473], and,
   is capable of receiving RecoveryPath messages as defined in Section
   4.4, the downstream RSVP neighbor MUST send a RecoveryPath message
   for each LSP associated with the restarting node for which it has
   sent a Resv message.  During the Recovery Period, if the downstream
   RSVP neighbor detects that the restarting node is not capable of
   receiving RecoveryPath messages by the absence of the Capability
   object or the RecoveryPath Desired (R) bit cleared (0) in the
   Capability object in the restarting node's Hello messages, the
   downstream RSVP neighbor SHOULD NOT send the RecoveryPath messages to
   the restarting node.

   The RecoveryPath message is constructed by copying all objects from
   the last received associated Path message, with the following
   exceptions:

      The MESSAGE_ID, MESSAGE_ID_ACK and MESSAGE_ID_NACK objects are not
      copied.  Any MESSAGE_ID, MESSAGE_ID_ACK and MESSAGE_ID_NACK
      objects used in RecoveryPath messages are generated based on
      procedures defined in [RFC2961].

      The Integrity object is not copied.  Any Integrity objects used in
      RecoveryPath messages are generated based on procedures defined in
      [RFC2747].

      The RSVP Hop object is copied from the most recent associated Resv
      message sent to the restarted node for the LSP being recovered.





Satyanarayana & Rahman      Standards Track                     [Page 9]


RFC 5063         GMPLS RSVP Graceful Restart Extensions     October 2007


      In the sender descriptor, the Recovery Label object MUST be
      included, with the label value copied from the label value in the
      Label object in the most recent associated Resv message sent to
      the restarted node, for the LSP being recovered.

   All other objects from the most recent received Path message MUST be
   included in the RecoveryPath message.

   All RecoveryPath messages SHOULD be sent at least once within
   approximately 1/2 of the Recovery Time advertised by the restarted
   neighbor.  If there are many LSPs to be recovered by the restarted
   node, the downstream RSVP neighbor should avoid sending RecoveryPath
   messages in a short time interval to avoid overloading the restarted
   node's CPU.  Instead, it should spread the messages across 1/2 the
   Recovery Time interval.  The range of Recovery Time is dependent on
   many factors including, but not limited to, the CPU processing power
   on the restarting node as well as the upstream and downstream
   neighbors, the amount of CPU available for processing RSVP recovery
   procedures, and the implementation specifics that affect the amount
   of time taken to verify the received recovery state against existing
   forwarding plane state.  Such discussion is out of scope of this
   document.

   After sending a RecoveryPath message and during the Recovery Period,
   the node SHOULD periodically resend the RecoveryPath message until it
   receives a corresponding response.  A corresponding response is a
   Message ID acknowledgment or a Path message for the LSP the
   RecoveryPath message represents.  Each such resend attempt is at the
   end of any Message ID rapid retransmissions, if the Message ID
   mechanism is used.  If the Message ID mechanism is not in use, the
   period between resend attempts SHOULD be such that at least 3
   attempts are completed before the expiry of 3/4 the Recovery Time
   interval.  Each such resend attempt MUST treat the RecoveryPath
   message as a new message and update the MESSAGE_ID object according
   to procedures defined in [RFC2961].  Note, per [RFC3473], Resv
   messages are suppressed during this recovery period until a
   corresponding Path message is received.

4.5.2.  Procedures for the Restarting Node

   These procedures apply during the "state recovery process" and
   "Recovery Period" as defined in Section 9.5.2 of [RFC3473].  Any
   RecoveryPath message received after the Recovery Period has expired
   SHOULD be matched against local LSP state.  If matching fully
   resynchronized state is located, the node SHOULD send a Path message
   downstream.  If non-resynchronized or no LSP state matching the
   RecoveryPath message is located, the restarted node MAY send a
   PathTear message constructed from the RecoveryPath message to



Satyanarayana & Rahman      Standards Track                    [Page 10]


RFC 5063         GMPLS RSVP Graceful Restart Extensions     October 2007


   expedite the cleanup of unrecovered RSVP and associated forwarding
   state downstream of the restarted node.  The restarting node MUST NOT
   create data plane or forwarding state to match the received
   RecoveryPath message.

   The remaining procedures are broken down into three sub-sections.
   The term "resynchronized state", originally defined in [RFC3473], is
   used and modified in these sections.  This term refers to LSP state
   that is fully recovered.

   Signaling state may be recovered from sources other than the
   mechanisms defined in this document.  The restarting node SHOULD
   consider signaling state as resynchronized for all such LSPs and
   follow corresponding procedures defined below.  Further, recovery
   procedures defined below may be overridden by local policy.

   Again, there are no changes to the procedures defined in Section
   9.5.2 in [RFC3473] if the restarting node is an egress node.

4.5.2.1.  Path and RecoveryPath Message Procedures

   When a node receives a RecoveryPath message during the Recovery
   Period, the node first checks if it has resynchronized RSVP state
   associated with the message.  If there is resynchronized state, and
   when both reliable message delivery [RFC2961] is supported and a
   MESSAGE_ID object is present in the RecoveryPath message, the node
   MUST follow Message ID acknowledgment procedures, as defined in
   [RFC2961], and consider the message as processed.  If there is
   resynchronized state and there is no MESSAGE_ID object or reliable
   message delivery [RFC2961] is not supported, the node SHOULD send a
   trigger Path message, and, consider the message as processed.

   If a non-resynchronized state is found or the node is the ingress,
   the node saves the information contained in the RecoveryPath message
   and continues with processing as defined in Section 4.5.2.2.

   If no associated RSVP state is found and the node is not the ingress
   node, the node saves the information contained in the RecoveryPath
   message for later use.

   Note the following modifies Section 9.5.2 of [RFC3473]:

   When a node receives a Path message during the Recovery Period, the
   node first locates any RSVP state associated with the message.  If
   resynchronized RSVP state is found, then the node handles this
   message according to previously defined procedures.





Satyanarayana & Rahman      Standards Track                    [Page 11]


RFC 5063         GMPLS RSVP Graceful Restart Extensions     October 2007


   If a non-resynchronized state is found, the node saves the
   information contained in the Path message, including the
   Recovery_Label object, and continues with processing as defined in
   Section 4.5.2.2.

   Per [RFC3473], if matching RSVP state is not found, and the message
   does not carry a Recovery_Label object, the node treats this as a
   setup for a new LSP, and handles it according to previously defined
   procedures.

   If a matching RSVP state is not found and the message carries a
   Recovery_Label object, the node saves the information contained in
   the Path message, including the Recovery_Label object for later use.

4.5.2.2.  Re-Synchronization Procedures

   After receipt of the RecoveryPath message and, for non-ingress LSPs,
   the corresponding Path message with a Recovery Label object, the
   restarting node SHOULD locate and associate corresponding forwarding
   state using the received information.  The restarting node associates
   the corresponding active forwarding plane state from the following
   signaled information:

      The upstream data interface is recovered from the RSVP HOP object
      in the received Path message.

      The label on the upstream data interface is recovered from the
      Recovery Label object in the received Path message.  If the LSP is
      bidirectional, the label for the upstream direction is recovered
      from the Upstream Label object in the received Path message.

      The downstream data interface is recovered from the RSVP HOP
      object in the received RecoveryPath message.

      The label on the downstream data interface is recovered from the
      Recovery Label object in the received RecoveryPath message.  If
      the LSP is bidirectional, the label for the upstream direction is
      recovered from the Upstream Label object in the RecoveryPath
      message.

   If complete forwarding state is located, the restarted node MUST
   treat the LSP as resynchronized and MUST send a trigger Path message
   downstream.  The Explicit Route object in the Path message SHOULD
   match the Explicit Route object received in the RecoveryPath message.
   In addition, the restarted node SHOULD recover state from the other
   objects received in the RecoveryPath message.  Optimally, the
   resulting Path message should not cause any redundant or unnecessary
   reprocessing of state along the remaining downstream nodes.  Ideally,



Satyanarayana & Rahman      Standards Track                    [Page 12]


RFC 5063         GMPLS RSVP Graceful Restart Extensions     October 2007


   except for MESSAGE_ID processing and recovery processing, the
   transmitted Path message will be treated as a refresh by the
   downstream RSVP neighbor (and hence, should not trigger any
   generation of Path messages with changed state further downstream).

   If no forwarding state is located, the node treats the received Path
   message as a setup request for a new LSP.  The outgoing interface and
   label(s) indicated in the RecoveryPath message SHOULD be reused when
   possible.  All other information contained in the RecoveryPath
   message MAY also be used.  That is, forwarding state MUST NOT be
   created except after receipt of a Path message from upstream or, at
   an ingress node, the receipt of a command from the management plane.
   Further, the forwarding state created is subject to local policy and
   the information received from downstream in the RecoveryPath message
   is treated only as advisory.

4.5.2.3.  Procedures on Expiration of Recovery Period

   There are several cleanup steps to follow at the end of the Recovery
   Period.  At the end of the Recovery Period, any state that was
   installed as the result of a received RecoveryPath message that is
   not resynchronized SHOULD be discarded.

   Any Path messages that were received containing a Recovery_Label that
   has not been resynchronized, MUST be treated as being received during
   the Recovery Period and processed as per [RFC3473].

   Per [RFC3473], any other state that is not resynchronized during the
   Recovery Period SHOULD be removed at the end of the Period.

4.6.  Compatibility

   This document introduces a new RSVP signaling message called the
   RecoveryPath message to be generated by the downstream RSVP neighbor
   of a restarting node.  To advertise the capability of sending and
   receiving RecoveryPath messages, this document introduces the
   Capability object to be included in Hello messages by a restarting
   node and its downstream RSVP neighbors.

   If a restarting node does not support the Capability object, it will
   discard the object, as the Class-Number is of the form 10bbbbbb, and
   revert to recovery processing as defined in [RFC3473].  The
   restarting node will not include the Capability object in its Hello
   messages.  Hence, all downstream RSVP neighbors that detect that the
   restarting node is not capable of supporting the extensions defined
   in this document will not send the RecoveryPath messages to the
   restarting node and will revert to recovery processing as defined in
   [RFC3473].



Satyanarayana & Rahman      Standards Track                    [Page 13]


RFC 5063         GMPLS RSVP Graceful Restart Extensions     October 2007


   If a downstream RSVP neighbor does not support the Capability object,
   it will discard the object received in Hello messages and revert to
   recovery processing as defined in [RFC3473].  The downstream RSVP
   neighbor will not include the Capability object in its Hello
   messages.  Hence, the restarting node will detect that the downstream
   RSVP neighbor is not capable of supporting the extensions defined in
   this document and will revert to recovery processing as defined in
   [RFC3473].

5.  RecoveryPath Summary Refresh

   This section describes a mechanism to control which LSP state is
   communicated in RecoveryPath messages.  This mechanism enhances the
   Summary Refresh mechanism defined in [RFC2961], and uses the
   RecoveryPath Srefresh Capable (S) bit in the Capability object, as
   defined in Section 4.2, carried in the Hello message defined in
   [RFC3209] and [RFC3473].  The described mechanism is referred to as
   RecoveryPath Summary Refresh.

   Selective transmission of RecoveryPath messages is controlled much
   the same way transmission of Path or Resv messages is controlled with
   standard Summary Refresh, see [RFC2961].  In standard Summary
   Refresh, an Srefresh message is sent by a node to identify to its
   neighbor about Path and Resv state that is locally installed and
   available.  The receiver of the Srefresh message can then attempt to
   locate matching Path and Resv state.  If no matching state is found,
   the receiver can request that the missing state be sent to it by
   sending an Srefresh NACK to the sender of the Srefresh message.  When
   the Srefresh NACK is received, the corresponding Path or Resv message
   is sent.  MESSAGE_ID information is used to identify Path and Resv
   state in this process.

   The mechanism described in this section extends the Summary Refresh
   process to the Path state that can be represented in RecoveryPath
   messages.  In this case, the Srefresh messages represent previously
   received Path messages, rather than previously transmitted Path
   messages.  This is the primary difference between standard Summary
   Refresh and RecoveryPath Summary Refresh described in this section.

   When a node restarts, and is capable of supporting the mechanisms
   described in this section, it includes the Capability object with the
   RecoveryPath Desired (R) bit set and the RecoveryPath Srefresh
   Capable (S) bit set in Hello messages it sends to its RSVP neighbors.

   When a neighbor of the restarting node detects a restart (see
   [RFC3209]), it detects that the restarted node is capable of
   receiving RecoveryPath messages, as defined in Section 4.4, and that
   the restarted node is requesting RecoveryPath Srefresh messages by



Satyanarayana & Rahman      Standards Track                    [Page 14]


RFC 5063         GMPLS RSVP Graceful Restart Extensions     October 2007


   the RecoveryPath Srefresh Capable (S) bit set in the Capability
   object.  When such an indication is found, the neighbor generates one
   or more Srefresh messages.  Each message indicates the Path state
   that can be represented in a RecoveryPath message.  Within such
   Srefresh messages, the Path state that can be represented in
   RecoveryPath messages is represented using MESSAGE_ID information,
   and this information is communicated within MESSAGE_ID LIST objects.
   To indicate that the MESSAGE_ID LIST object is for recovery purposes,
   a new flag is set in the MESSAGE_ID LIST object.  This flag is called
   the RecoveryPath Flag and is defined below.

   The restarted node can then use the Srefresh message and the
   MESSAGE_ID LIST object to try to identify matching transmitted Path
   state.  The node identifies local state by matching Epoch and Message
   ID tuples against Path messages transmitted downstream prior to the
   restart.

   If matching state is located, then the restarted node operates as if
   a RecoveryPath message has been received, per Section 4.5.2.  If no
   matching state can be located, the restarted node generates a
   Srefresh NACK, see