6Lo Working Group                                           Y. Choi, Ed.
Internet-Draft                                            Y-G. Hong, Ed.
Intended status: Standards Track                                    ETRI
Expires: May 2, 2018                                           J-S. Youn
                                                            Dongeui Univ
                                                                D-K. Kim
                                                                     KNU
                                                               J-H. Choi
                                                Samsung Electronics Co.,
                                                        October 29, 2017


       Transmission of IPv6 Packets over Near Field Communication
                         draft-ietf-6lo-nfc-08

Abstract

   Near field communication (NFC) is a set of standards for smartphones
   and portable devices to establish radio communication with each other
   by touching them together or bringing them into proximity, usually no
   more than 10 cm.  NFC standards cover communications protocols and
   data exchange formats, and are based on existing radio-frequency
   identification (RFID) standards including ISO/IEC 14443 and FeliCa.
   The standards include ISO/IEC 18092 and those defined by the NFC
   Forum.  The NFC technology has been widely implemented and available
   in mobile phones, laptop computers, and many other devices.  This
   document describes how IPv6 is transmitted over NFC using 6LowPAN
   techniques.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on May 2, 2018.






Choi, et al.               Expires May 2, 2018                  [Page 1]


Internet-Draft                IPv6 over NFC                 October 2017


Copyright Notice

   Copyright (c) 2017 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
   2.  Conventions and Terminology . . . . . . . . . . . . . . . . .   3
   3.  Overview of Near Field Communication Technology . . . . . . .   4
     3.1.  Peer-to-peer Mode of NFC  . . . . . . . . . . . . . . . .   4
     3.2.  Protocol Stacks of NFC  . . . . . . . . . . . . . . . . .   4
     3.3.  NFC-enabled Device Addressing . . . . . . . . . . . . . .   6
     3.4.  MTU of NFC Link Layer . . . . . . . . . . . . . . . . . .   6
   4.  Specification of IPv6 over NFC  . . . . . . . . . . . . . . .   7
     4.1.  Protocol Stacks . . . . . . . . . . . . . . . . . . . . .   7
     4.2.  Link Model  . . . . . . . . . . . . . . . . . . . . . . .   7
     4.3.  Stateless Address Autoconfiguration . . . . . . . . . . .   8
     4.4.  IPv6 Link Local Address . . . . . . . . . . . . . . . . .   9
     4.5.  Neighbor Discovery  . . . . . . . . . . . . . . . . . . .   9
     4.6.  Dispatch Header . . . . . . . . . . . . . . . . . . . . .  10
     4.7.  Header Compression  . . . . . . . . . . . . . . . . . . .  10
     4.8.  Fragmentation and Reassembly  . . . . . . . . . . . . . .  11
     4.9.  Unicast Address Mapping . . . . . . . . . . . . . . . . .  11
     4.10. Multicast Address Mapping . . . . . . . . . . . . . . . .  12
   5.  Internet Connectivity Scenarios . . . . . . . . . . . . . . .  12
     5.1.  NFC-enabled Device Connected to the Internet  . . . . . .  12
     5.2.  Isolated NFC-enabled Device Network . . . . . . . . . . .  13
   6.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  13
   7.  Security Considerations . . . . . . . . . . . . . . . . . . .  13
   8.  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .  14
   9.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  14
     9.1.  Normative References  . . . . . . . . . . . . . . . . . .  14
     9.2.  Informative References  . . . . . . . . . . . . . . . . .  15
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  16






Choi, et al.               Expires May 2, 2018                  [Page 2]


Internet-Draft                IPv6 over NFC                 October 2017


1.  Introduction

   NFC is a set of short-range wireless technologies, typically
   requiring a distance of 10 cm or less.  NFC operates at 13.56 MHz on
   ISO/IEC 18000-3 air interface and at rates ranging from 106 kbit/s to
   424 kbit/s.  NFC always involves an initiator and a target; the
   initiator actively generates an RF field that can power a passive
   target.  This enables NFC targets to take very simple form factors
   such as tags, stickers, key fobs, or cards that do not require
   batteries.  NFC peer-to-peer communication is possible, provided both
   devices are powered.  NFC builds upon RFID systems by allowing two-
   way communication between endpoints, where earlier systems such as
   contactless smart cards were one-way only.  It has been used in
   devices such as mobile phones, running Android operating system,
   named with a feature called "Android Beam".  In addition, it is
   expected for the other mobile phones, running the other operating
   systems (e.g., iOS, etc.) to be equipped with NFC technology in the
   near future.

   Considering the potential for exponential growth in the number of
   heterogeneous air interface technologies, NFC would be widely used as
   one of the other air interface technologies, such as Bluetooth Low
   Energy (BT-LE), Wi-Fi, and so on.  Each of the heterogeneous air
   interface technologies has its own characteristics, which cannot be
   covered by the other technologies, so various kinds of air interface
   technologies would co-exist together.  Therefore, it is required for
   them to communicate with each other.  NFC also has the strongest
   ability (e.g., secure communication distance of 10 cm) to prevent a
   third party from attacking privacy.

   When the number of devices and things having different air interface
   technologies communicate with each other, IPv6 is an ideal internet
   protocols owing to its large address space.  Also, NFC would be one
   of the endpoints using IPv6.  Therefore, this document describes how
   IPv6 is transmitted over NFC using 6LoWPAN techniques.

   [RFC4944] specifies the transmission of IPv6 over IEEE 802.15.4.  The
   NFC link also has similar characteristics to that of IEEE 802.15.4.
   Many of the mechanisms defined in [RFC4944] can be applied to the
   transmission of IPv6 on NFC links.  This document specifies the
   details of IPv6 transmission over NFC links.

2.  Conventions and Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].




Choi, et al.               Expires May 2, 2018                  [Page 3]


Internet-Draft                IPv6 over NFC                 October 2017


3.  Overview of Near Field Communication Technology

   NFC technology enables simple and safe two-way interactions between
   electronic devices, allowing consumers to perform contactless
   transactions, access digital content, and connect electronic devices
   with a single touch.  NFC complements many popular consumer level
   wireless technologies, by utilizing the key elements in existing
   standards for contactless card technology (ISO/IEC 14443 A&B and
   JIS-X 6319-4).  NFC can be compatible with existing contactless card
   infrastructure and it enables a consumer to utilize one device across
   different systems.

   Extending the capability of contactless card technology, NFC also
   enables devices to share information at a distance that is less than
   10 cm with a maximum communication speed of 424 kbps.  Users can
   share business cards, make transactions, access information from a
   smart poster or provide credentials for access control systems with a
   simple touch.

   NFC's bidirectional communication ability is ideal for establishing
   connections with other technologies by the simplicity of touch.  In
   addition to the easy connection and quick transactions, simple data
   sharing is also available.

3.1.  Peer-to-peer Mode of NFC

   NFC-enabled devices are unique in that they can support three modes
   of operation: card emulation, peer-to-peer, and reader/writer.  Peer-
   to-peer mode enables two NFC-enabled devices to communicate with each
   other to exchange information and share files, so that users of NFC-
   enabled devices can quickly share contact information and other files
   with a touch.  Therefore, an NFC-enabled device can securely send
   IPv6 packets to any corresponding node on the Internet when an NFC-
   enabled gateway is linked to the Internet.

3.2.  Protocol Stacks of NFC

   IP can use the services provided by the Logical Link Control Protocol
   (LLCP) in the NFC stack to provide reliable, two-way transport of
   information between the peer devices.  Figure 1 depicts the NFC P2P
   protocol stack with IPv6 bindings to LLCP.

   For data communication in IPv6 over NFC, an IPv6 packet SHALL be
   passed down to LLCP of NFC and transported to an Information Field in
   Protocol Data Unit (I PDU) of LLCP of the NFC-enabled peer device.
   LLCP does not support fragmentation and reassembly.  For IPv6
   addressing or address configuration, LLCP SHALL provide related
   information, such as link layer addresses, to its upper layer.  The



Choi, et al.               Expires May 2, 2018                  [Page 4]


Internet-Draft                IPv6 over NFC                 October 2017


   LLCP to IPv6 protocol binding SHALL transfer the SSAP and DSAP value
   to the IPv6 over NFC protocol.  SSAP stands for Source Service Access
   Point, which is a 6-bit value meaning a kind of Logical Link Control
   (LLC) address, while DSAP means an LLC address of the destination
   NFC-enabled device.

      |                                        |
      |                                        |  Application Layer
      |         Upper Layer Protocols          |   Transport Layer
      |                                        |    Network Layer
      |                                        |         |
      +----------------------------------------+ <------------------
      |            IPv6-LLCP Binding           |         |
      +----------------------------------------+        NFC
      |                                        |    Logical Link
      |      Logical Link Control Protocol     |       Layer
      |                 (LLCP)                 |         |
      +----------------------------------------+ <------------------
      |                                        |         |
      |               Activities               |         |
      |            Digital Protocol            |        NFC
      |                                        |      Physical
      +----------------------------------------+       Layer
      |                                        |         |
      |               RF Analog                |         |
      |                                        |         |
      +----------------------------------------+ <------------------

                     Figure 1: Protocol Stacks of NFC

   The LLCP consists of Logical Link Control (LLC) and MAC Mapping.  The
   MAC Mapping integrates an existing RF protocol into the LLCP
   architecture.  The LLC contains three components, such as Link
   Management, Connection-oriented Transport, and Connection-less
   Transport.  The Link Management component is responsible for
   serializing all connection-oriented and connection-less LLC PDU
   (Protocol Data Unit) exchanges and for aggregation and disaggregation
   of small PDUs.  This component also guarantees asynchronous balanced
   mode communication and provides link status supervision by performing
   the symmetry procedure.  The Connection-oriented Transport component
   is responsible for maintaining all connection-oriented data exchanges
   including connection set-up and termination.  The Connectionless
   Transport component is responsible for handling unacknowledged data
   exchanges.







Choi, et al.               Expires May 2, 2018                  [Page 5]


Internet-Draft                IPv6 over NFC                 October 2017


3.3.  NFC-enabled Device Addressing

   According to NFC Logical Link Control Protocol v1.3 [LLCP-1.3], NFC-
   enabled devices have two types of 6-bit addresses (i.e., SSAP and
   DSAP) to identify service access points.  The several service access
   points can be installed on a NFC device.  However, the SSAP and DSAP
   can be used as identifiers for NFC link connections with the IPv6
   over NFC adaptation layer.  Therefore, the SSAP can be used to
   generate an IPv6 interface identifier.  Address values between 00h
   and 0Fh of SSAP and DSAP are reserved for identifying the well-known
   service access points, which are defined in the NFC Forum Assigned
   Numbers Register.  Address values between 10h and 1Fh SHALL be
   assigned by the local LLC to services registered by local service
   environment.  In addition, address values between 20h and 3Fh SHALL
   be assigned by the local LLC as a result of an upper layer service
   request.  Therefore, the address values between 20h and 3Fh can be
   used for generating IPv6 interface identifiers.

3.4.  MTU of NFC Link Layer

   As mentioned in Section 3.2, an IPv6 packet SHALL passed down to LLCP
   of NFC and transported to an Unnumbered Information Protocol Data
   Unit (UI PDU) and an Information Field in Protocol Data Unit (I PDU)
   of LLCP of the NFC-enabled peer device.

   The information field of an I PDU SHALL contain a single service data
   unit.  The maximum number of octets in the information field is
   determined by the Maximum Information Unit (MIU) for the data link
   connection.  The default value of the MIU for I PDUs SHALL be 128
   octets.  The local and remote LLCs each establish and maintain
   distinct MIU values for each data link connection endpoint.  Also, an
   LLC MAY announce a larger MIU for a data link connection by
   transmitting an MIUX extension parameter within the information
   field.  If no MIUX parameter is transmitted, the default MIU value of
   128 SHALL be used.  Otherwise, the MTU size in NFC LLCP SHALL
   calculate the MIU value as follows:

                             MIU = 128 + MIUX.

   When the MIUX parameter is encoded as a TLV, the TLV Type field SHALL
   be 0x02 and the TLV Length field SHALL be 0x02.  The MIUX parameter
   SHALL be encoded into the least significant 11 bits of the TLV Value
   field.  The unused bits in the TLV Value field SHALL be set to zero
   by the sender and SHALL be ignored by the receiver.  However, a
   maximum value of the TLV Value field can be 0x7FF, and a maximum size
   of the MTU in NFC LLCP is 2176 bytes.





Choi, et al.               Expires May 2, 2018                  [Page 6]


Internet-Draft                IPv6 over NFC                 October 2017


4.  Specification of IPv6 over NFC

   NFC technology also has considerations and requirements owing to low
   power consumption and allowed protocol overhead. 6LoWPAN standards
   [RFC4944], [RFC6775], and [RFC6282] provide useful functionality for
   reducing overhead which can be applied to NFC.  This functionality
   consists of link-local IPv6 addresses and stateless IPv6 address
   auto-configuration (see Section 4.3), Neighbor Discovery (see
   Section 4.5) and header compression (see Section 4.7).

4.1.  Protocol Stacks

   Figure 2 illustrates IPv6 over NFC.  Upper layer protocols can be
   transport layer protocols (TCP and UDP), application layer protocols,
   and others capable running on top of IPv6.

      |                                        |     Transport &
      |         Upper Layer Protocols          |  Application Layer
      +----------------------------------------+ <------------------
      |                                        |         |
      |                 IPv6                   |         |
      |                                        |      Network
      +----------------------------------------+       Layer
      |   Adaptation Layer for IPv6 over NFC   |         |
      +----------------------------------------+ <------------------
      |            IPv6-LLCP Binding                     |
      |      Logical Link Control Protocol     |   NFC Link Layer
      |                 (LLCP)                 |         |
      +----------------------------------------+ <------------------
      |                                        |         |
      |               Activities               |        NFC
      |            Digital Protocol            |   Physical Layer
      |               RF Analog                |         |
      |                                        |         |
      +----------------------------------------+ <------------------

                Figure 2: Protocol Stacks for IPv6 over NFC

   The adaptation layer for IPv6 over NFC SHALL support neighbor
   discovery, stateless address auto-configuration, header compression,
   and fragmentation & reassembly.

4.2.  Link Model

   In the case of BT-LE, the Logical Link Control and Adaptation
   Protocol (L2CAP) supports fragmentation and reassembly (FAR)
   functionality; therefore, the adaptation layer for IPv6 over BT-LE
   does not have to conduct the FAR procedure.  The NFC LLCP, in



Choi, et al.               Expires May 2, 2018                  [Page 7]


Internet-Draft                IPv6 over NFC                 October 2017


   contrast, does not support the FAR functionality, so IPv6 over NFC
   needs to consider the FAR functionality, defined in [