blob: 5d9d8e8e4b0551163d9ae3c6da1af53a594bee41 [file] [log] [blame]
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/message_loop/message_pump_android.h"
#include <android/looper.h>
#include <errno.h>
#include <fcntl.h>
#include <jni.h>
#include <sys/eventfd.h>
#include <sys/timerfd.h>
#include <sys/types.h>
#include <unistd.h>
#include <atomic>
#include <map>
#include <memory>
#include <utility>
#include "base/android/input_hint_checker.h"
#include "base/android/jni_android.h"
#include "base/android/scoped_java_ref.h"
#include "base/check.h"
#include "base/check_op.h"
#include "base/message_loop/io_watcher.h"
#include "base/notreached.h"
#include "base/numerics/safe_conversions.h"
#include "base/run_loop.h"
#include "base/task/task_features.h"
#include "base/time/time.h"
#include "build/build_config.h"
using base::android::InputHintChecker;
using base::android::InputHintResult;
namespace base {
namespace {
// https://crbug.com/873588. The stack may not be aligned when the ALooper calls
// into our code due to the inconsistent ABI on older Android OS versions.
//
// https://crbug.com/330761384#comment3. Calls from libutils.so into
// NonDelayedLooperCallback() and DelayedLooperCallback() confuse aarch64 builds
// with orderfile instrumentation causing incorrect value in
// __builtin_return_address(0). Disable instrumentation for them. TODO(pasko):
// Add these symbols to the orderfile manually or fix the builtin.
#if defined(ARCH_CPU_X86)
#define NO_INSTRUMENT_STACK_ALIGN \
__attribute__((force_align_arg_pointer, no_instrument_function))
#else
#define NO_INSTRUMENT_STACK_ALIGN __attribute__((no_instrument_function))
#endif
NO_INSTRUMENT_STACK_ALIGN int NonDelayedLooperCallback(int fd,
int events,
void* data) {
if (events & ALOOPER_EVENT_HANGUP) {
return 0;
}
DCHECK(events & ALOOPER_EVENT_INPUT);
MessagePumpAndroid* pump = reinterpret_cast<MessagePumpAndroid*>(data);
pump->OnNonDelayedLooperCallback();
return 1; // continue listening for events
}
NO_INSTRUMENT_STACK_ALIGN int DelayedLooperCallback(int fd,
int events,
void* data) {
if (events & ALOOPER_EVENT_HANGUP) {
return 0;
}
DCHECK(events & ALOOPER_EVENT_INPUT);
MessagePumpAndroid* pump = reinterpret_cast<MessagePumpAndroid*>(data);
pump->OnDelayedLooperCallback();
return 1; // continue listening for events
}
// A bit added to the |non_delayed_fd_| to keep it signaled when we yield to
// native work below.
constexpr uint64_t kTryNativeWorkBeforeIdleBit = uint64_t(1) << 32;
std::atomic_bool g_fast_to_sleep = false;
// Implements IOWatcher to allow any MessagePumpAndroid thread to watch
// arbitrary file descriptors for I/O events.
class IOWatcherImpl : public IOWatcher {
public:
explicit IOWatcherImpl(ALooper* looper) : looper_(looper) {}
~IOWatcherImpl() override {
for (auto& [fd, watches] : watched_fds_) {
ALooper_removeFd(looper_, fd);
if (auto read_watch = std::exchange(watches.read_watch, nullptr)) {
read_watch->Detach();
}
if (auto write_watch = std::exchange(watches.write_watch, nullptr)) {
write_watch->Detach();
}
}
}
// IOWatcher:
std::unique_ptr<IOWatcher::FdWatch> WatchFileDescriptorImpl(
int fd,
FdWatchDuration duration,
FdWatchMode mode,
IOWatcher::FdWatcher& watcher,
const Location& location) override {
auto& watches = watched_fds_[fd];
auto watch = std::make_unique<FdWatchImpl>(*this, fd, duration, watcher);
if (mode == FdWatchMode::kRead || mode == FdWatchMode::kReadWrite) {
CHECK(!watches.read_watch) << "Only one watch per FD per condition.";
watches.read_watch = watch.get();
}
if (mode == FdWatchMode::kWrite || mode == FdWatchMode::kReadWrite) {
CHECK(!watches.write_watch) << "Only one watch per FD per condition.";
watches.write_watch = watch.get();
}
const int events = (watches.read_watch ? ALOOPER_EVENT_INPUT : 0) |
(watches.write_watch ? ALOOPER_EVENT_OUTPUT : 0);
ALooper_addFd(looper_, fd, 0, events, &OnFdIoEvent, this);
return watch;
}
private:
// Scopes the maximum lifetime of an FD watch started by WatchFileDescriptor.
class FdWatchImpl : public FdWatch {
public:
FdWatchImpl(IOWatcherImpl& io_watcher,
int fd,
FdWatchDuration duration,
FdWatcher& fd_watcher)
: fd_(fd),
duration_(duration),
fd_watcher_(fd_watcher),
io_watcher_(&io_watcher) {}
~FdWatchImpl() override {
Stop();
if (destruction_flag_) {
*destruction_flag_ = true;
}
}
void set_destruction_flag(bool* flag) { destruction_flag_ = flag; }
int fd() const { return fd_; }
FdWatcher& fd_watcher() const { return *fd_watcher_; }
bool is_persistent() const {
return duration_ == FdWatchDuration::kPersistent;
}
void Detach() { io_watcher_ = nullptr; }
void Stop() {
if (io_watcher_) {
std::exchange(io_watcher_, nullptr)->StopWatching(*this);
}
}
private:
const int fd_;
const FdWatchDuration duration_;
raw_ref<FdWatcher> fd_watcher_;
raw_ptr<IOWatcherImpl> io_watcher_;
// If non-null during destruction, the pointee is set to true. Used to
// detect reentrant destruction during dispatch.
raw_ptr<bool> destruction_flag_ = nullptr;
};
enum class EventResult {
kStopWatching,
kKeepWatching,
};
static NO_INSTRUMENT_STACK_ALIGN int OnFdIoEvent(int fd,
int events,
void* data) {
switch (static_cast<IOWatcherImpl*>(data)->HandleEvent(fd, events)) {
case EventResult::kStopWatching:
return 0;
case EventResult::kKeepWatching:
return 1;
}
}
EventResult HandleEvent(int fd, int events) {
// NOTE: It is possible for Looper to dispatch one last event for `fd`
// *after* we have removed the FD from the Looper - for example if multiple
// FDs wake the thread at the same time, and a handler for another FD runs
// first and removes the watch for `fd`; this callback will have already
// been queued for `fd` and will still run. As such, we must gracefully
// tolerate receiving a callback for an FD that is no longer watched.
auto it = watched_fds_.find(fd);
if (it == watched_fds_.end()) {
return EventResult::kStopWatching;
}
auto& watches = it->second;
const bool is_readable =
events & (ALOOPER_EVENT_INPUT | ALOOPER_EVENT_HANGUP);
const bool is_writable =
events & (ALOOPER_EVENT_OUTPUT | ALOOPER_EVENT_HANGUP);
auto* read_watch = watches.read_watch.get();
auto* write_watch = watches.write_watch.get();
// Any event dispatch can stop any number of watches, so we're careful to
// set up destruction observation before dispatching anything.
bool read_watch_destroyed = false;
bool write_watch_destroyed = false;
bool fd_removed = false;
if (read_watch) {
read_watch->set_destruction_flag(&read_watch_destroyed);
}
if (write_watch && read_watch != write_watch) {
write_watch->set_destruction_flag(&write_watch_destroyed);
}
watches.removed_flag = &fd_removed;
bool did_observe_one_shot_read = false;
if (read_watch && is_readable) {
DCHECK_EQ(read_watch->fd(), fd);
did_observe_one_shot_read = !read_watch->is_persistent();
read_watch->fd_watcher().OnFdReadable(fd);
if (!read_watch_destroyed && did_observe_one_shot_read) {
read_watch->Stop();
}
}
// If the read and write watches are the same object, it may have been
// destroyed; or it may have been a one-shot watch already consumed by a
// read above. In either case we inhibit write dispatch.
if (read_watch == write_watch &&
(read_watch_destroyed || did_observe_one_shot_read)) {
write_watch = nullptr;
}
if (write_watch && is_writable && !write_watch_destroyed) {
DCHECK_EQ(write_watch->fd(), fd);
const bool is_persistent = write_watch->is_persistent();
write_watch->fd_watcher().OnFdWritable(fd);
if (!write_watch_destroyed && !is_persistent) {
write_watch->Stop();
}
}
if (read_watch && !read_watch_destroyed) {
read_watch->set_destruction_flag(nullptr);
}
if (write_watch && !write_watch_destroyed) {
write_watch->set_destruction_flag(nullptr);
}
if (fd_removed) {
return EventResult::kStopWatching;
}
watches.removed_flag = nullptr;
return EventResult::kKeepWatching;
}
void StopWatching(FdWatchImpl& watch) {
const int fd = watch.fd();
auto it = watched_fds_.find(fd);
if (it == watched_fds_.end()) {
return;
}
WatchPair& watches = it->second;
if (watches.read_watch == &watch) {
watches.read_watch = nullptr;
}
if (watches.write_watch == &watch) {
watches.write_watch = nullptr;
}
const int remaining_events =
(watches.read_watch ? ALOOPER_EVENT_INPUT : 0) |
(watches.write_watch ? ALOOPER_EVENT_OUTPUT : 0);
if (remaining_events) {
ALooper_addFd(looper_, fd, 0, remaining_events, &OnFdIoEvent, this);
return;
}
ALooper_removeFd(looper_, fd);
if (watches.removed_flag) {
*watches.removed_flag = true;
}
watched_fds_.erase(it);
}
private:
const raw_ptr<ALooper> looper_;
// The set of active FdWatches. Note that each FD may have up to two active
// watches only - one for read and one for write. No two FdWatches can watch
// the same FD for the same signal. `read_watch` and `write_watch` may point
// to the same object.
struct WatchPair {
raw_ptr<FdWatchImpl> read_watch = nullptr;
raw_ptr<FdWatchImpl> write_watch = nullptr;
// If non-null when this WatchPair is removed, the pointee is set to true.
// Used to track reentrant map mutations during dispatch.
raw_ptr<bool> removed_flag = nullptr;
};
std::map<int, WatchPair> watched_fds_;
};
} // namespace
MessagePumpAndroid::MessagePumpAndroid()
: env_(base::android::AttachCurrentThread()) {
// The Android native ALooper uses epoll to poll our file descriptors and wake
// us up. We use a simple level-triggered eventfd to signal that non-delayed
// work is available, and a timerfd to signal when delayed work is ready to
// be run.
non_delayed_fd_ = eventfd(0, EFD_NONBLOCK | EFD_CLOEXEC);
CHECK_NE(non_delayed_fd_, -1);
DCHECK_EQ(TimeTicks::GetClock(), TimeTicks::Clock::LINUX_CLOCK_MONOTONIC);
delayed_fd_ = checked_cast<int>(
timerfd_create(CLOCK_MONOTONIC, TFD_NONBLOCK | TFD_CLOEXEC));
CHECK_NE(delayed_fd_, -1);
looper_ = ALooper_prepare(0);
DCHECK(looper_);
// Add a reference to the looper so it isn't deleted on us.
ALooper_acquire(looper_);
ALooper_addFd(looper_, non_delayed_fd_, 0, ALOOPER_EVENT_INPUT,
&NonDelayedLooperCallback, reinterpret_cast<void*>(this));
ALooper_addFd(looper_, delayed_fd_, 0, ALOOPER_EVENT_INPUT,
&DelayedLooperCallback, reinterpret_cast<void*>(this));
}
MessagePumpAndroid::~MessagePumpAndroid() {
DCHECK_EQ(ALooper_forThread(), looper_);
io_watcher_.reset();
ALooper_removeFd(looper_, non_delayed_fd_);
ALooper_removeFd(looper_, delayed_fd_);
ALooper_release(looper_);
looper_ = nullptr;
close(non_delayed_fd_);
close(delayed_fd_);
}
void MessagePumpAndroid::InitializeFeatures() {
g_fast_to_sleep = base::FeatureList::IsEnabled(kPumpFastToSleepAndroid);
}
void MessagePumpAndroid::OnDelayedLooperCallback() {
OnReturnFromLooper();
// There may be non-Chromium callbacks on the same ALooper which may have left
// a pending exception set, and ALooper does not check for this between
// callbacks. Check here, and if there's already an exception, just skip this
// iteration without clearing the fd. If the exception ends up being non-fatal
// then we'll just get called again on the next polling iteration.
if (base::android::HasException(env_)) {
return;
}
// ALooper_pollOnce may call this after Quit() if OnNonDelayedLooperCallback()
// resulted in Quit() in the same round.
if (ShouldQuit()) {
return;
}
// Clear the fd.
uint64_t value;
long ret = read(delayed_fd_, &value, sizeof(value));
// TODO(mthiesse): Figure out how it's possible to hit EAGAIN here.
// According to http://man7.org/linux/man-pages/man2/timerfd_create.2.html
// EAGAIN only happens if no timer has expired. Also according to the man page
// poll only returns readable when a timer has expired. So this function will
// only be called when a timer has expired, but reading reveals no timer has
// expired...
// Quit() and ScheduleDelayedWork() are the only other functions that touch
// the timerfd, and they both run on the same thread as this callback, so
// there are no obvious timing or multi-threading related issues.
DPCHECK(ret >= 0 || errno == EAGAIN);
DoDelayedLooperWork();
}
void MessagePumpAndroid::DoDelayedLooperWork() {
delayed_scheduled_time_.reset();
Delegate::NextWorkInfo next_work_info = delegate_->DoWork();
if (ShouldQuit()) {
return;
}
if (next_work_info.is_immediate()) {
ScheduleWork();
return;
}
delegate_->DoIdleWork();
if (!next_work_info.delayed_run_time.is_max()) {
ScheduleDelayedWork(next_work_info);
}
}
void MessagePumpAndroid::OnNonDelayedLooperCallback() {
OnReturnFromLooper();
// There may be non-Chromium callbacks on the same ALooper which may have left
// a pending exception set, and ALooper does not check for this between
// callbacks. Check here, and if there's already an exception, just skip this
// iteration without clearing the fd. If the exception ends up being non-fatal
// then we'll just get called again on the next polling iteration.
if (base::android::HasException(env_)) {
return;
}
// ALooper_pollOnce may call this after Quit() if OnDelayedLooperCallback()
// resulted in Quit() in the same round.
if (ShouldQuit()) {
return;
}
// We're about to process all the work requested by ScheduleWork().
// MessagePump users are expected to do their best not to invoke
// ScheduleWork() again before DoWork() returns a non-immediate
// NextWorkInfo below. Hence, capturing the file descriptor's value now and
// resetting its contents to 0 should be okay. The value currently stored
// should be greater than 0 since work having been scheduled is the reason
// we're here. See http://man7.org/linux/man-pages/man2/eventfd.2.html
uint64_t value = 0;
long ret = read(non_delayed_fd_, &value, sizeof(value));
DPCHECK(ret >= 0);
DCHECK_GT(value, 0U);
bool do_idle_work = value == kTryNativeWorkBeforeIdleBit;
DoNonDelayedLooperWork(do_idle_work);
}
void MessagePumpAndroid::DoNonDelayedLooperWork(bool do_idle_work) {
// Note: We can't skip DoWork() even if |do_idle_work| is true here (i.e. no
// additional ScheduleWork() since yielding to native) as delayed tasks might
// have come in and we need to re-sample |next_work_info|.
// Runs all application tasks scheduled to run.
Delegate::NextWorkInfo next_work_info;
do {
if (ShouldQuit()) {
return;
}
next_work_info = delegate_->DoWork();
// As an optimization, yield to the Looper when input events are waiting to
// be handled. In some cases input events can remain undetected. Such "input
// hint false negatives" happen, for example, during initialization, in
// multi-window cases, or when a previous value is cached to throttle
// polling the input channel.
if (is_type_ui_ && next_work_info.is_immediate() &&
InputHintChecker::HasInput()) {
InputHintChecker::GetInstance().set_is_after_input_yield(true);
ScheduleWork();
return;
}
} while (next_work_info.is_immediate());
// Do not resignal |non_delayed_fd_| if we're quitting (this pump doesn't
// allow nesting so needing to resume in an outer loop is not an issue
// either).
if (ShouldQuit()) {
return;
}
// Under the fast to sleep feature, `do_idle_work` is ignored, and the pump
// will always "sleep" after finishing all its work items.
if (!g_fast_to_sleep) {
// Before declaring this loop idle, yield to native work items and arrange
// to be called again (unless we're already in that second call).
if (!do_idle_work) {
ScheduleWorkInternal(/*do_idle_work=*/true);
return;
}
// We yielded to native work items already and they didn't generate a
// ScheduleWork() request so we can declare idleness. It's possible for a
// ScheduleWork() request to come in racily while this method unwinds, this
// is fine and will merely result in it being re-invoked shortly after it
// returns.
// TODO(scheduler-dev): this doesn't account for tasks that don't ever call
// SchedulerWork() but still keep the system non-idle (e.g., the Java
// Handler API). It would be better to add an API to query the presence of
// native tasks instead of relying on yielding once +
// kTryNativeWorkBeforeIdleBit.
DCHECK(do_idle_work);
}
if (ShouldQuit()) {
return;
}
// Do the idle work.
//
// At this point, the Java Looper might not be idle. It is possible to skip
// idle work if !MessageQueue.isIdle(), but this check is not very accurate
// because the MessageQueue does not know about the additional tasks
// potentially waiting in the Looper.
//
// Note that this won't cause us to fail to run java tasks using QuitWhenIdle,
// as the JavaHandlerThread will finish running all currently scheduled tasks
// before it quits. Also note that we can't just add an idle callback to the
// java looper, as that will fire even if application tasks are still queued
// up.
delegate_->DoIdleWork();
if (!next_work_info.delayed_run_time.is_max()) {
ScheduleDelayedWork(next_work_info);
}
}
void MessagePumpAndroid::Run(Delegate* delegate) {
NOTREACHED() << "Unexpected call to Run()";
}
void MessagePumpAndroid::Attach(Delegate* delegate) {
DCHECK(!quit_);
// Since the Looper is controlled by the UI thread or JavaHandlerThread, we
// can't use Run() like we do on other platforms or we would prevent Java
// tasks from running. Instead we create and initialize a run loop here, then
// return control back to the Looper.
SetDelegate(delegate);
run_loop_ = std::make_unique<RunLoop>();
// Since the RunLoop was just created above, BeforeRun should be guaranteed to
// return true (it only returns false if the RunLoop has been Quit already).
CHECK(run_loop_->BeforeRun());
}
void MessagePumpAndroid::Quit() {
if (quit_) {
return;
}
quit_ = true;
int64_t value;
// Clear any pending timer.
read(delayed_fd_, &value, sizeof(value));
// Clear the eventfd.
read(non_delayed_fd_, &value, sizeof(value));
if (run_loop_) {
run_loop_->AfterRun();
run_loop_ = nullptr;
}
if (on_quit_callback_) {
std::move(on_quit_callback_).Run();
}
}
void MessagePumpAndroid::ScheduleWork() {
ScheduleWorkInternal(/*do_idle_work=*/false);
}
void MessagePumpAndroid::ScheduleWorkInternal(bool do_idle_work) {
// Write (add) |value| to the eventfd. This tells the Looper to wake up and
// call our callback, allowing us to run tasks. This also allows us to detect,
// when we clear the fd, whether additional work was scheduled after we
// finished performing work, but before we cleared the fd, as we'll read back
// >=2 instead of 1 in that case. See the eventfd man pages
// (http://man7.org/linux/man-pages/man2/eventfd.2.html) for details on how
// the read and write APIs for this file descriptor work, specifically without
// EFD_SEMAPHORE.
// Note: Calls with |do_idle_work| set to true may race with potential calls
// where the parameter is false. This is fine as write() is adding |value|,
// not overwriting the existing value, and as such racing calls would merely
// have their values added together. Since idle work is only executed when the
// value read equals kTryNativeWorkBeforeIdleBit, a race would prevent idle
// work from being run and trigger another call to this method with
// |do_idle_work| set to true.
uint64_t value = do_idle_work ? kTryNativeWorkBeforeIdleBit : 1;
long ret = write(non_delayed_fd_, &value, sizeof(value));
DPCHECK(ret >= 0);
}
void MessagePumpAndroid::OnReturnFromLooper() {
if (!is_type_ui_) {
return;
}
auto& checker = InputHintChecker::GetInstance();
if (checker.is_after_input_yield()) {
InputHintChecker::GetInstance().RecordInputHintResult(
InputHintResult::kBackToNative);
}
checker.set_is_after_input_yield(false);
}
void MessagePumpAndroid::ScheduleDelayedWork(
const Delegate::NextWorkInfo& next_work_info) {
if (ShouldQuit()) {
return;
}
if (delayed_scheduled_time_ &&
*delayed_scheduled_time_ == next_work_info.delayed_run_time) {
return;
}
DCHECK(!next_work_info.is_immediate());
delayed_scheduled_time_ = next_work_info.delayed_run_time;
int64_t nanos =
next_work_info.delayed_run_time.since_origin().InNanoseconds();
struct itimerspec ts;
ts.it_interval.tv_sec = 0; // Don't repeat.
ts.it_interval.tv_nsec = 0;
ts.it_value.tv_sec =
static_cast<time_t>(nanos / TimeTicks::kNanosecondsPerSecond);
ts.it_value.tv_nsec = nanos % TimeTicks::kNanosecondsPerSecond;
long ret = timerfd_settime(delayed_fd_, TFD_TIMER_ABSTIME, &ts, nullptr);
DPCHECK(ret >= 0);
}
IOWatcher* MessagePumpAndroid::GetIOWatcher() {
if (!io_watcher_) {
io_watcher_ = std::make_unique<IOWatcherImpl>(looper_);
}
return io_watcher_.get();
}
void MessagePumpAndroid::QuitWhenIdle(base::OnceClosure callback) {
DCHECK(!on_quit_callback_);
DCHECK(run_loop_);
on_quit_callback_ = std::move(callback);
run_loop_->QuitWhenIdle();
// Pump the loop in case we're already idle.
ScheduleWork();
}
MessagePump::Delegate* MessagePumpAndroid::SetDelegate(Delegate* delegate) {
return std::exchange(delegate_, delegate);
}
bool MessagePumpAndroid::SetQuit(bool quit) {
return std::exchange(quit_, quit);
}
} // namespace base