| // Copyright 2012 The Chromium Authors |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "base/message_loop/message_pump_android.h" |
| |
| #include <android/looper.h> |
| #include <errno.h> |
| #include <fcntl.h> |
| #include <jni.h> |
| #include <sys/eventfd.h> |
| #include <sys/timerfd.h> |
| #include <sys/types.h> |
| #include <unistd.h> |
| |
| #include <atomic> |
| #include <map> |
| #include <memory> |
| #include <utility> |
| |
| #include "base/android/input_hint_checker.h" |
| #include "base/android/jni_android.h" |
| #include "base/android/scoped_java_ref.h" |
| #include "base/check.h" |
| #include "base/check_op.h" |
| #include "base/message_loop/io_watcher.h" |
| #include "base/notreached.h" |
| #include "base/numerics/safe_conversions.h" |
| #include "base/run_loop.h" |
| #include "base/task/task_features.h" |
| #include "base/time/time.h" |
| #include "build/build_config.h" |
| |
| using base::android::InputHintChecker; |
| using base::android::InputHintResult; |
| |
| namespace base { |
| |
| namespace { |
| |
| // https://crbug.com/873588. The stack may not be aligned when the ALooper calls |
| // into our code due to the inconsistent ABI on older Android OS versions. |
| // |
| // https://crbug.com/330761384#comment3. Calls from libutils.so into |
| // NonDelayedLooperCallback() and DelayedLooperCallback() confuse aarch64 builds |
| // with orderfile instrumentation causing incorrect value in |
| // __builtin_return_address(0). Disable instrumentation for them. TODO(pasko): |
| // Add these symbols to the orderfile manually or fix the builtin. |
| #if defined(ARCH_CPU_X86) |
| #define NO_INSTRUMENT_STACK_ALIGN \ |
| __attribute__((force_align_arg_pointer, no_instrument_function)) |
| #else |
| #define NO_INSTRUMENT_STACK_ALIGN __attribute__((no_instrument_function)) |
| #endif |
| |
| NO_INSTRUMENT_STACK_ALIGN int NonDelayedLooperCallback(int fd, |
| int events, |
| void* data) { |
| if (events & ALOOPER_EVENT_HANGUP) { |
| return 0; |
| } |
| |
| DCHECK(events & ALOOPER_EVENT_INPUT); |
| MessagePumpAndroid* pump = reinterpret_cast<MessagePumpAndroid*>(data); |
| pump->OnNonDelayedLooperCallback(); |
| return 1; // continue listening for events |
| } |
| |
| NO_INSTRUMENT_STACK_ALIGN int DelayedLooperCallback(int fd, |
| int events, |
| void* data) { |
| if (events & ALOOPER_EVENT_HANGUP) { |
| return 0; |
| } |
| |
| DCHECK(events & ALOOPER_EVENT_INPUT); |
| MessagePumpAndroid* pump = reinterpret_cast<MessagePumpAndroid*>(data); |
| pump->OnDelayedLooperCallback(); |
| return 1; // continue listening for events |
| } |
| |
| // A bit added to the |non_delayed_fd_| to keep it signaled when we yield to |
| // native work below. |
| constexpr uint64_t kTryNativeWorkBeforeIdleBit = uint64_t(1) << 32; |
| |
| std::atomic_bool g_fast_to_sleep = false; |
| |
| // Implements IOWatcher to allow any MessagePumpAndroid thread to watch |
| // arbitrary file descriptors for I/O events. |
| class IOWatcherImpl : public IOWatcher { |
| public: |
| explicit IOWatcherImpl(ALooper* looper) : looper_(looper) {} |
| |
| ~IOWatcherImpl() override { |
| for (auto& [fd, watches] : watched_fds_) { |
| ALooper_removeFd(looper_, fd); |
| if (auto read_watch = std::exchange(watches.read_watch, nullptr)) { |
| read_watch->Detach(); |
| } |
| if (auto write_watch = std::exchange(watches.write_watch, nullptr)) { |
| write_watch->Detach(); |
| } |
| } |
| } |
| |
| // IOWatcher: |
| std::unique_ptr<IOWatcher::FdWatch> WatchFileDescriptorImpl( |
| int fd, |
| FdWatchDuration duration, |
| FdWatchMode mode, |
| IOWatcher::FdWatcher& watcher, |
| const Location& location) override { |
| auto& watches = watched_fds_[fd]; |
| auto watch = std::make_unique<FdWatchImpl>(*this, fd, duration, watcher); |
| if (mode == FdWatchMode::kRead || mode == FdWatchMode::kReadWrite) { |
| CHECK(!watches.read_watch) << "Only one watch per FD per condition."; |
| watches.read_watch = watch.get(); |
| } |
| if (mode == FdWatchMode::kWrite || mode == FdWatchMode::kReadWrite) { |
| CHECK(!watches.write_watch) << "Only one watch per FD per condition."; |
| watches.write_watch = watch.get(); |
| } |
| |
| const int events = (watches.read_watch ? ALOOPER_EVENT_INPUT : 0) | |
| (watches.write_watch ? ALOOPER_EVENT_OUTPUT : 0); |
| ALooper_addFd(looper_, fd, 0, events, &OnFdIoEvent, this); |
| return watch; |
| } |
| |
| private: |
| // Scopes the maximum lifetime of an FD watch started by WatchFileDescriptor. |
| class FdWatchImpl : public FdWatch { |
| public: |
| FdWatchImpl(IOWatcherImpl& io_watcher, |
| int fd, |
| FdWatchDuration duration, |
| FdWatcher& fd_watcher) |
| : fd_(fd), |
| duration_(duration), |
| fd_watcher_(fd_watcher), |
| io_watcher_(&io_watcher) {} |
| |
| ~FdWatchImpl() override { |
| Stop(); |
| if (destruction_flag_) { |
| *destruction_flag_ = true; |
| } |
| } |
| |
| void set_destruction_flag(bool* flag) { destruction_flag_ = flag; } |
| int fd() const { return fd_; } |
| FdWatcher& fd_watcher() const { return *fd_watcher_; } |
| |
| bool is_persistent() const { |
| return duration_ == FdWatchDuration::kPersistent; |
| } |
| |
| void Detach() { io_watcher_ = nullptr; } |
| |
| void Stop() { |
| if (io_watcher_) { |
| std::exchange(io_watcher_, nullptr)->StopWatching(*this); |
| } |
| } |
| |
| private: |
| const int fd_; |
| const FdWatchDuration duration_; |
| raw_ref<FdWatcher> fd_watcher_; |
| raw_ptr<IOWatcherImpl> io_watcher_; |
| |
| // If non-null during destruction, the pointee is set to true. Used to |
| // detect reentrant destruction during dispatch. |
| raw_ptr<bool> destruction_flag_ = nullptr; |
| }; |
| |
| enum class EventResult { |
| kStopWatching, |
| kKeepWatching, |
| }; |
| |
| static NO_INSTRUMENT_STACK_ALIGN int OnFdIoEvent(int fd, |
| int events, |
| void* data) { |
| switch (static_cast<IOWatcherImpl*>(data)->HandleEvent(fd, events)) { |
| case EventResult::kStopWatching: |
| return 0; |
| case EventResult::kKeepWatching: |
| return 1; |
| } |
| } |
| |
| EventResult HandleEvent(int fd, int events) { |
| // NOTE: It is possible for Looper to dispatch one last event for `fd` |
| // *after* we have removed the FD from the Looper - for example if multiple |
| // FDs wake the thread at the same time, and a handler for another FD runs |
| // first and removes the watch for `fd`; this callback will have already |
| // been queued for `fd` and will still run. As such, we must gracefully |
| // tolerate receiving a callback for an FD that is no longer watched. |
| auto it = watched_fds_.find(fd); |
| if (it == watched_fds_.end()) { |
| return EventResult::kStopWatching; |
| } |
| |
| auto& watches = it->second; |
| const bool is_readable = |
| events & (ALOOPER_EVENT_INPUT | ALOOPER_EVENT_HANGUP); |
| const bool is_writable = |
| events & (ALOOPER_EVENT_OUTPUT | ALOOPER_EVENT_HANGUP); |
| auto* read_watch = watches.read_watch.get(); |
| auto* write_watch = watches.write_watch.get(); |
| |
| // Any event dispatch can stop any number of watches, so we're careful to |
| // set up destruction observation before dispatching anything. |
| bool read_watch_destroyed = false; |
| bool write_watch_destroyed = false; |
| bool fd_removed = false; |
| if (read_watch) { |
| read_watch->set_destruction_flag(&read_watch_destroyed); |
| } |
| if (write_watch && read_watch != write_watch) { |
| write_watch->set_destruction_flag(&write_watch_destroyed); |
| } |
| watches.removed_flag = &fd_removed; |
| |
| bool did_observe_one_shot_read = false; |
| if (read_watch && is_readable) { |
| DCHECK_EQ(read_watch->fd(), fd); |
| did_observe_one_shot_read = !read_watch->is_persistent(); |
| read_watch->fd_watcher().OnFdReadable(fd); |
| if (!read_watch_destroyed && did_observe_one_shot_read) { |
| read_watch->Stop(); |
| } |
| } |
| |
| // If the read and write watches are the same object, it may have been |
| // destroyed; or it may have been a one-shot watch already consumed by a |
| // read above. In either case we inhibit write dispatch. |
| if (read_watch == write_watch && |
| (read_watch_destroyed || did_observe_one_shot_read)) { |
| write_watch = nullptr; |
| } |
| |
| if (write_watch && is_writable && !write_watch_destroyed) { |
| DCHECK_EQ(write_watch->fd(), fd); |
| const bool is_persistent = write_watch->is_persistent(); |
| write_watch->fd_watcher().OnFdWritable(fd); |
| if (!write_watch_destroyed && !is_persistent) { |
| write_watch->Stop(); |
| } |
| } |
| |
| if (read_watch && !read_watch_destroyed) { |
| read_watch->set_destruction_flag(nullptr); |
| } |
| if (write_watch && !write_watch_destroyed) { |
| write_watch->set_destruction_flag(nullptr); |
| } |
| |
| if (fd_removed) { |
| return EventResult::kStopWatching; |
| } |
| |
| watches.removed_flag = nullptr; |
| return EventResult::kKeepWatching; |
| } |
| |
| void StopWatching(FdWatchImpl& watch) { |
| const int fd = watch.fd(); |
| auto it = watched_fds_.find(fd); |
| if (it == watched_fds_.end()) { |
| return; |
| } |
| |
| WatchPair& watches = it->second; |
| if (watches.read_watch == &watch) { |
| watches.read_watch = nullptr; |
| } |
| if (watches.write_watch == &watch) { |
| watches.write_watch = nullptr; |
| } |
| |
| const int remaining_events = |
| (watches.read_watch ? ALOOPER_EVENT_INPUT : 0) | |
| (watches.write_watch ? ALOOPER_EVENT_OUTPUT : 0); |
| if (remaining_events) { |
| ALooper_addFd(looper_, fd, 0, remaining_events, &OnFdIoEvent, this); |
| return; |
| } |
| |
| ALooper_removeFd(looper_, fd); |
| if (watches.removed_flag) { |
| *watches.removed_flag = true; |
| } |
| watched_fds_.erase(it); |
| } |
| |
| private: |
| const raw_ptr<ALooper> looper_; |
| |
| // The set of active FdWatches. Note that each FD may have up to two active |
| // watches only - one for read and one for write. No two FdWatches can watch |
| // the same FD for the same signal. `read_watch` and `write_watch` may point |
| // to the same object. |
| struct WatchPair { |
| raw_ptr<FdWatchImpl> read_watch = nullptr; |
| raw_ptr<FdWatchImpl> write_watch = nullptr; |
| |
| // If non-null when this WatchPair is removed, the pointee is set to true. |
| // Used to track reentrant map mutations during dispatch. |
| raw_ptr<bool> removed_flag = nullptr; |
| }; |
| std::map<int, WatchPair> watched_fds_; |
| }; |
| |
| } // namespace |
| |
| MessagePumpAndroid::MessagePumpAndroid() |
| : env_(base::android::AttachCurrentThread()) { |
| // The Android native ALooper uses epoll to poll our file descriptors and wake |
| // us up. We use a simple level-triggered eventfd to signal that non-delayed |
| // work is available, and a timerfd to signal when delayed work is ready to |
| // be run. |
| non_delayed_fd_ = eventfd(0, EFD_NONBLOCK | EFD_CLOEXEC); |
| CHECK_NE(non_delayed_fd_, -1); |
| DCHECK_EQ(TimeTicks::GetClock(), TimeTicks::Clock::LINUX_CLOCK_MONOTONIC); |
| |
| delayed_fd_ = checked_cast<int>( |
| timerfd_create(CLOCK_MONOTONIC, TFD_NONBLOCK | TFD_CLOEXEC)); |
| CHECK_NE(delayed_fd_, -1); |
| |
| looper_ = ALooper_prepare(0); |
| DCHECK(looper_); |
| // Add a reference to the looper so it isn't deleted on us. |
| ALooper_acquire(looper_); |
| ALooper_addFd(looper_, non_delayed_fd_, 0, ALOOPER_EVENT_INPUT, |
| &NonDelayedLooperCallback, reinterpret_cast<void*>(this)); |
| ALooper_addFd(looper_, delayed_fd_, 0, ALOOPER_EVENT_INPUT, |
| &DelayedLooperCallback, reinterpret_cast<void*>(this)); |
| } |
| |
| MessagePumpAndroid::~MessagePumpAndroid() { |
| DCHECK_EQ(ALooper_forThread(), looper_); |
| io_watcher_.reset(); |
| ALooper_removeFd(looper_, non_delayed_fd_); |
| ALooper_removeFd(looper_, delayed_fd_); |
| ALooper_release(looper_); |
| looper_ = nullptr; |
| |
| close(non_delayed_fd_); |
| close(delayed_fd_); |
| } |
| |
| void MessagePumpAndroid::InitializeFeatures() { |
| g_fast_to_sleep = base::FeatureList::IsEnabled(kPumpFastToSleepAndroid); |
| } |
| |
| void MessagePumpAndroid::OnDelayedLooperCallback() { |
| OnReturnFromLooper(); |
| // There may be non-Chromium callbacks on the same ALooper which may have left |
| // a pending exception set, and ALooper does not check for this between |
| // callbacks. Check here, and if there's already an exception, just skip this |
| // iteration without clearing the fd. If the exception ends up being non-fatal |
| // then we'll just get called again on the next polling iteration. |
| if (base::android::HasException(env_)) { |
| return; |
| } |
| |
| // ALooper_pollOnce may call this after Quit() if OnNonDelayedLooperCallback() |
| // resulted in Quit() in the same round. |
| if (ShouldQuit()) { |
| return; |
| } |
| |
| // Clear the fd. |
| uint64_t value; |
| long ret = read(delayed_fd_, &value, sizeof(value)); |
| |
| // TODO(mthiesse): Figure out how it's possible to hit EAGAIN here. |
| // According to http://man7.org/linux/man-pages/man2/timerfd_create.2.html |
| // EAGAIN only happens if no timer has expired. Also according to the man page |
| // poll only returns readable when a timer has expired. So this function will |
| // only be called when a timer has expired, but reading reveals no timer has |
| // expired... |
| // Quit() and ScheduleDelayedWork() are the only other functions that touch |
| // the timerfd, and they both run on the same thread as this callback, so |
| // there are no obvious timing or multi-threading related issues. |
| DPCHECK(ret >= 0 || errno == EAGAIN); |
| DoDelayedLooperWork(); |
| } |
| |
| void MessagePumpAndroid::DoDelayedLooperWork() { |
| delayed_scheduled_time_.reset(); |
| |
| Delegate::NextWorkInfo next_work_info = delegate_->DoWork(); |
| |
| if (ShouldQuit()) { |
| return; |
| } |
| |
| if (next_work_info.is_immediate()) { |
| ScheduleWork(); |
| return; |
| } |
| |
| delegate_->DoIdleWork(); |
| if (!next_work_info.delayed_run_time.is_max()) { |
| ScheduleDelayedWork(next_work_info); |
| } |
| } |
| |
| void MessagePumpAndroid::OnNonDelayedLooperCallback() { |
| OnReturnFromLooper(); |
| // There may be non-Chromium callbacks on the same ALooper which may have left |
| // a pending exception set, and ALooper does not check for this between |
| // callbacks. Check here, and if there's already an exception, just skip this |
| // iteration without clearing the fd. If the exception ends up being non-fatal |
| // then we'll just get called again on the next polling iteration. |
| if (base::android::HasException(env_)) { |
| return; |
| } |
| |
| // ALooper_pollOnce may call this after Quit() if OnDelayedLooperCallback() |
| // resulted in Quit() in the same round. |
| if (ShouldQuit()) { |
| return; |
| } |
| |
| // We're about to process all the work requested by ScheduleWork(). |
| // MessagePump users are expected to do their best not to invoke |
| // ScheduleWork() again before DoWork() returns a non-immediate |
| // NextWorkInfo below. Hence, capturing the file descriptor's value now and |
| // resetting its contents to 0 should be okay. The value currently stored |
| // should be greater than 0 since work having been scheduled is the reason |
| // we're here. See http://man7.org/linux/man-pages/man2/eventfd.2.html |
| uint64_t value = 0; |
| long ret = read(non_delayed_fd_, &value, sizeof(value)); |
| DPCHECK(ret >= 0); |
| DCHECK_GT(value, 0U); |
| bool do_idle_work = value == kTryNativeWorkBeforeIdleBit; |
| DoNonDelayedLooperWork(do_idle_work); |
| } |
| |
| void MessagePumpAndroid::DoNonDelayedLooperWork(bool do_idle_work) { |
| // Note: We can't skip DoWork() even if |do_idle_work| is true here (i.e. no |
| // additional ScheduleWork() since yielding to native) as delayed tasks might |
| // have come in and we need to re-sample |next_work_info|. |
| |
| // Runs all application tasks scheduled to run. |
| Delegate::NextWorkInfo next_work_info; |
| do { |
| if (ShouldQuit()) { |
| return; |
| } |
| |
| next_work_info = delegate_->DoWork(); |
| |
| // As an optimization, yield to the Looper when input events are waiting to |
| // be handled. In some cases input events can remain undetected. Such "input |
| // hint false negatives" happen, for example, during initialization, in |
| // multi-window cases, or when a previous value is cached to throttle |
| // polling the input channel. |
| if (is_type_ui_ && next_work_info.is_immediate() && |
| InputHintChecker::HasInput()) { |
| InputHintChecker::GetInstance().set_is_after_input_yield(true); |
| ScheduleWork(); |
| return; |
| } |
| } while (next_work_info.is_immediate()); |
| |
| // Do not resignal |non_delayed_fd_| if we're quitting (this pump doesn't |
| // allow nesting so needing to resume in an outer loop is not an issue |
| // either). |
| if (ShouldQuit()) { |
| return; |
| } |
| |
| // Under the fast to sleep feature, `do_idle_work` is ignored, and the pump |
| // will always "sleep" after finishing all its work items. |
| if (!g_fast_to_sleep) { |
| // Before declaring this loop idle, yield to native work items and arrange |
| // to be called again (unless we're already in that second call). |
| if (!do_idle_work) { |
| ScheduleWorkInternal(/*do_idle_work=*/true); |
| return; |
| } |
| |
| // We yielded to native work items already and they didn't generate a |
| // ScheduleWork() request so we can declare idleness. It's possible for a |
| // ScheduleWork() request to come in racily while this method unwinds, this |
| // is fine and will merely result in it being re-invoked shortly after it |
| // returns. |
| // TODO(scheduler-dev): this doesn't account for tasks that don't ever call |
| // SchedulerWork() but still keep the system non-idle (e.g., the Java |
| // Handler API). It would be better to add an API to query the presence of |
| // native tasks instead of relying on yielding once + |
| // kTryNativeWorkBeforeIdleBit. |
| DCHECK(do_idle_work); |
| } |
| |
| if (ShouldQuit()) { |
| return; |
| } |
| |
| // Do the idle work. |
| // |
| // At this point, the Java Looper might not be idle. It is possible to skip |
| // idle work if !MessageQueue.isIdle(), but this check is not very accurate |
| // because the MessageQueue does not know about the additional tasks |
| // potentially waiting in the Looper. |
| // |
| // Note that this won't cause us to fail to run java tasks using QuitWhenIdle, |
| // as the JavaHandlerThread will finish running all currently scheduled tasks |
| // before it quits. Also note that we can't just add an idle callback to the |
| // java looper, as that will fire even if application tasks are still queued |
| // up. |
| delegate_->DoIdleWork(); |
| if (!next_work_info.delayed_run_time.is_max()) { |
| ScheduleDelayedWork(next_work_info); |
| } |
| } |
| |
| void MessagePumpAndroid::Run(Delegate* delegate) { |
| NOTREACHED() << "Unexpected call to Run()"; |
| } |
| |
| void MessagePumpAndroid::Attach(Delegate* delegate) { |
| DCHECK(!quit_); |
| |
| // Since the Looper is controlled by the UI thread or JavaHandlerThread, we |
| // can't use Run() like we do on other platforms or we would prevent Java |
| // tasks from running. Instead we create and initialize a run loop here, then |
| // return control back to the Looper. |
| |
| SetDelegate(delegate); |
| run_loop_ = std::make_unique<RunLoop>(); |
| // Since the RunLoop was just created above, BeforeRun should be guaranteed to |
| // return true (it only returns false if the RunLoop has been Quit already). |
| CHECK(run_loop_->BeforeRun()); |
| } |
| |
| void MessagePumpAndroid::Quit() { |
| if (quit_) { |
| return; |
| } |
| |
| quit_ = true; |
| |
| int64_t value; |
| // Clear any pending timer. |
| read(delayed_fd_, &value, sizeof(value)); |
| // Clear the eventfd. |
| read(non_delayed_fd_, &value, sizeof(value)); |
| |
| if (run_loop_) { |
| run_loop_->AfterRun(); |
| run_loop_ = nullptr; |
| } |
| if (on_quit_callback_) { |
| std::move(on_quit_callback_).Run(); |
| } |
| } |
| |
| void MessagePumpAndroid::ScheduleWork() { |
| ScheduleWorkInternal(/*do_idle_work=*/false); |
| } |
| |
| void MessagePumpAndroid::ScheduleWorkInternal(bool do_idle_work) { |
| // Write (add) |value| to the eventfd. This tells the Looper to wake up and |
| // call our callback, allowing us to run tasks. This also allows us to detect, |
| // when we clear the fd, whether additional work was scheduled after we |
| // finished performing work, but before we cleared the fd, as we'll read back |
| // >=2 instead of 1 in that case. See the eventfd man pages |
| // (http://man7.org/linux/man-pages/man2/eventfd.2.html) for details on how |
| // the read and write APIs for this file descriptor work, specifically without |
| // EFD_SEMAPHORE. |
| // Note: Calls with |do_idle_work| set to true may race with potential calls |
| // where the parameter is false. This is fine as write() is adding |value|, |
| // not overwriting the existing value, and as such racing calls would merely |
| // have their values added together. Since idle work is only executed when the |
| // value read equals kTryNativeWorkBeforeIdleBit, a race would prevent idle |
| // work from being run and trigger another call to this method with |
| // |do_idle_work| set to true. |
| uint64_t value = do_idle_work ? kTryNativeWorkBeforeIdleBit : 1; |
| long ret = write(non_delayed_fd_, &value, sizeof(value)); |
| DPCHECK(ret >= 0); |
| } |
| |
| void MessagePumpAndroid::OnReturnFromLooper() { |
| if (!is_type_ui_) { |
| return; |
| } |
| auto& checker = InputHintChecker::GetInstance(); |
| if (checker.is_after_input_yield()) { |
| InputHintChecker::GetInstance().RecordInputHintResult( |
| InputHintResult::kBackToNative); |
| } |
| checker.set_is_after_input_yield(false); |
| } |
| |
| void MessagePumpAndroid::ScheduleDelayedWork( |
| const Delegate::NextWorkInfo& next_work_info) { |
| if (ShouldQuit()) { |
| return; |
| } |
| |
| if (delayed_scheduled_time_ && |
| *delayed_scheduled_time_ == next_work_info.delayed_run_time) { |
| return; |
| } |
| |
| DCHECK(!next_work_info.is_immediate()); |
| delayed_scheduled_time_ = next_work_info.delayed_run_time; |
| int64_t nanos = |
| next_work_info.delayed_run_time.since_origin().InNanoseconds(); |
| struct itimerspec ts; |
| ts.it_interval.tv_sec = 0; // Don't repeat. |
| ts.it_interval.tv_nsec = 0; |
| ts.it_value.tv_sec = |
| static_cast<time_t>(nanos / TimeTicks::kNanosecondsPerSecond); |
| ts.it_value.tv_nsec = nanos % TimeTicks::kNanosecondsPerSecond; |
| |
| long ret = timerfd_settime(delayed_fd_, TFD_TIMER_ABSTIME, &ts, nullptr); |
| DPCHECK(ret >= 0); |
| } |
| |
| IOWatcher* MessagePumpAndroid::GetIOWatcher() { |
| if (!io_watcher_) { |
| io_watcher_ = std::make_unique<IOWatcherImpl>(looper_); |
| } |
| return io_watcher_.get(); |
| } |
| |
| void MessagePumpAndroid::QuitWhenIdle(base::OnceClosure callback) { |
| DCHECK(!on_quit_callback_); |
| DCHECK(run_loop_); |
| on_quit_callback_ = std::move(callback); |
| run_loop_->QuitWhenIdle(); |
| // Pump the loop in case we're already idle. |
| ScheduleWork(); |
| } |
| |
| MessagePump::Delegate* MessagePumpAndroid::SetDelegate(Delegate* delegate) { |
| return std::exchange(delegate_, delegate); |
| } |
| |
| bool MessagePumpAndroid::SetQuit(bool quit) { |
| return std::exchange(quit_, quit); |
| } |
| |
| } // namespace base |