blob: ce64a9bc53d460596a79af5c49a5867c8fbb2d3d [file] [log] [blame]
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Weak pointers are pointers to an object that do not affect its lifetime,
// and which may be invalidated (i.e. reset to nullptr) by the object, or its
// owner, at any time, most commonly when the object is about to be deleted.
// Weak pointers are useful when an object needs to be accessed safely by one
// or more objects other than its owner, and those callers can cope with the
// object vanishing and e.g. tasks posted to it being silently dropped.
// Reference-counting such an object would complicate the ownership graph and
// make it harder to reason about the object's lifetime.
// EXAMPLE:
//
// class Controller {
// public:
// void SpawnWorker() { Worker::StartNew(weak_factory_.GetWeakPtr()); }
// void WorkComplete(const Result& result) { ... }
// private:
// // Member variables should appear before the WeakPtrFactory, to ensure
// // that any WeakPtrs to Controller are invalidated before its members
// // variable's destructors are executed, rendering them invalid.
// WeakPtrFactory<Controller> weak_factory_{this};
// };
//
// class Worker {
// public:
// static void StartNew(WeakPtr<Controller> controller) {
// // Move WeakPtr when possible to avoid atomic refcounting churn on its
// // internal state.
// Worker* worker = new Worker(std::move(controller));
// // Kick off asynchronous processing...
// }
// private:
// Worker(WeakPtr<Controller> controller)
// : controller_(std::move(controller)) {}
// void DidCompleteAsynchronousProcessing(const Result& result) {
// if (controller_)
// controller_->WorkComplete(result);
// }
// WeakPtr<Controller> controller_;
// };
//
// With this implementation a caller may use SpawnWorker() to dispatch multiple
// Workers and subsequently delete the Controller, without waiting for all
// Workers to have completed.
// ------------------------- IMPORTANT: Thread-safety -------------------------
// Weak pointers may be passed safely between sequences, but must always be
// dereferenced and invalidated on the same SequencedTaskRunner otherwise
// checking the pointer would be racey.
//
// To ensure correct use, the first time a WeakPtr issued by a WeakPtrFactory
// is dereferenced, the factory and its WeakPtrs become bound to the calling
// sequence or current SequencedWorkerPool token, and cannot be dereferenced or
// invalidated on any other task runner. Bound WeakPtrs can still be handed
// off to other task runners, e.g. to use to post tasks back to object on the
// bound sequence.
//
// If all WeakPtr objects are destroyed or invalidated then the factory is
// unbound from the SequencedTaskRunner/Thread. The WeakPtrFactory may then be
// destroyed, or new WeakPtr objects may be used, from a different sequence.
//
// Thus, at least one WeakPtr object must exist and have been dereferenced on
// the correct sequence to enforce that other WeakPtr objects will enforce they
// are used on the desired sequence.
#ifndef BASE_MEMORY_WEAK_PTR_H_
#define BASE_MEMORY_WEAK_PTR_H_
#include <cstddef>
#include <type_traits>
#include <utility>
#include "base/base_export.h"
#include "base/check.h"
#include "base/compiler_specific.h"
#include "base/dcheck_is_on.h"
#include "base/memory/raw_ptr.h"
#include "base/memory/ref_counted.h"
#include "base/memory/safe_ref_traits.h"
#include "base/sequence_checker.h"
#include "base/synchronization/atomic_flag.h"
namespace base {
namespace sequence_manager::internal {
class TaskQueueImpl;
}
template <typename T>
class WeakPtr;
namespace internal {
// These classes are part of the WeakPtr implementation.
// DO NOT USE THESE CLASSES DIRECTLY YOURSELF.
class BASE_EXPORT TRIVIAL_ABI WeakReference {
public:
// Although Flag is bound to a specific SequencedTaskRunner, it may be
// deleted from another via base::WeakPtr::~WeakPtr().
class BASE_EXPORT Flag : public RefCountedThreadSafe<Flag> {
public:
Flag();
void Invalidate();
bool IsValid() const;
bool MaybeValid() const;
#if DCHECK_IS_ON()
void DetachFromSequence();
void BindToCurrentSequence();
#endif
private:
friend class base::RefCountedThreadSafe<Flag>;
~Flag();
SEQUENCE_CHECKER(sequence_checker_);
AtomicFlag invalidated_;
};
WeakReference();
explicit WeakReference(const scoped_refptr<Flag>& flag);
~WeakReference();
WeakReference(const WeakReference& other);
WeakReference& operator=(const WeakReference& other);
WeakReference(WeakReference&& other) noexcept;
WeakReference& operator=(WeakReference&& other) noexcept;
void Reset();
// Returns whether the WeakReference is valid, meaning the WeakPtrFactory has
// not invalidated the pointer. Unlike, RefIsMaybeValid(), this may only be
// called from the same sequence as where the WeakPtr was created.
bool IsValid() const;
// Returns false if the WeakReference is confirmed to be invalid. This call is
// safe to make from any thread, e.g. to optimize away unnecessary work, but
// RefIsValid() must always be called, on the correct sequence, before
// actually using the pointer.
//
// Warning: as with any object, this call is only thread-safe if the WeakPtr
// instance isn't being re-assigned or reset() racily with this call.
bool MaybeValid() const;
private:
scoped_refptr<const Flag> flag_;
};
class BASE_EXPORT WeakReferenceOwner {
public:
WeakReferenceOwner();
~WeakReferenceOwner();
WeakReference GetRef() const;
bool HasRefs() const { return !flag_->HasOneRef(); }
void Invalidate();
void BindToCurrentSequence();
private:
scoped_refptr<WeakReference::Flag> flag_;
};
// Forward declaration from safe_ptr.h.
template <typename T>
SafeRef<T> MakeSafeRefFromWeakPtrInternals(internal::WeakReference&& ref,
T* ptr);
} // namespace internal
template <typename T>
class WeakPtrFactory;
// The WeakPtr class holds a weak reference to |T*|.
//
// This class is designed to be used like a normal pointer. You should always
// null-test an object of this class before using it or invoking a method that
// may result in the underlying object being destroyed.
//
// EXAMPLE:
//
// class Foo { ... };
// WeakPtr<Foo> foo;
// if (foo)
// foo->method();
//
// WeakPtr intentionally doesn't implement operator== or operator<=>, because
// comparisons of weak references are inherently unstable. If the comparison
// takes validity into account, the result can change at any time as pointers
// are invalidated. If it depends only on the underlying pointer value, even
// after the pointer is invalidated, unrelated WeakPtrs can unexpectedly
// compare equal if the address is reused.
template <typename T>
class TRIVIAL_ABI WeakPtr {
public:
WeakPtr() = default;
// NOLINTNEXTLINE(google-explicit-constructor)
WeakPtr(std::nullptr_t) {}
// Allow conversion from U to T provided U "is a" T. Note that this
// is separate from the (implicit) copy and move constructors.
template <typename U>
requires(std::convertible_to<U*, T*>)
// NOLINTNEXTLINE(google-explicit-constructor)
WeakPtr(const WeakPtr<U>& other) : ref_(other.ref_), ptr_(other.ptr_) {}
template <typename U>
requires(std::convertible_to<U*, T*>)
// NOLINTNEXTLINE(google-explicit-constructor)
WeakPtr& operator=(const WeakPtr<U>& other) {
ref_ = other.ref_;
ptr_ = other.ptr_;
return *this;
}
template <typename U>
requires(std::convertible_to<U*, T*>)
// NOLINTNEXTLINE(google-explicit-constructor)
WeakPtr(WeakPtr<U>&& other)
: ref_(std::move(other.ref_)), ptr_(std::move(other.ptr_)) {}
template <typename U>
requires(std::convertible_to<U*, T*>)
// NOLINTNEXTLINE(google-explicit-constructor)
WeakPtr& operator=(WeakPtr<U>&& other) {
ref_ = std::move(other.ref_);
ptr_ = std::move(other.ptr_);
return *this;
}
T* get() const { return ref_.IsValid() ? ptr_ : nullptr; }
// Provide access to the underlying T as a reference. Will CHECK() if the T
// pointee is no longer alive.
T& operator*() const {
CHECK(ref_.IsValid());
return *ptr_;
}
// Used to call methods on the underlying T. Will CHECK() if the T pointee is
// no longer alive.
T* operator->() const {
CHECK(ref_.IsValid());
return ptr_;
}
// Allow conditionals to test validity, e.g. if (weak_ptr) {...};
explicit operator bool() const { return get() != nullptr; }
// Resets the WeakPtr to hold nothing.
//
// The `get()` method will return `nullptr` thereafter, and `MaybeValid()`
// will be `false`.
void reset() {
ref_.Reset();
ptr_ = nullptr;
}
// Do not use this method. Almost all callers should instead use operator
// bool().
//
// There are a few rare cases where the caller intentionally needs to check
// validity of a base::WeakPtr on a sequence different from the bound sequence
// as an unavoidable performance optimization. This is the only valid use-case
// for this method. See
// https://docs.google.com/document/d/1IGzq9Nx69GS_2iynGmPWo5sFAD2DcCyBY1zIvZwF7k8
// for details.
//
// Returns false if the WeakPtr is confirmed to be invalid. This call is safe
// to make from any thread, e.g. to optimize away unnecessary work, but
// RefIsValid() must always be called, on the correct sequence, before
// actually using the pointer.
//
// Warning: as with any object, this call is only thread-safe if the WeakPtr
// instance isn't being re-assigned or reset() racily with this call.
bool MaybeValid() const { return ref_.MaybeValid(); }
// Returns whether the object |this| points to has been invalidated. This can
// be used to distinguish a WeakPtr to a destroyed object from one that has
// been explicitly set to null.
bool WasInvalidated() const { return ptr_ && !ref_.IsValid(); }
private:
template <typename U>
friend class WeakPtr;
friend class WeakPtrFactory<T>;
friend class WeakPtrFactory<std::remove_const_t<T>>;
WeakPtr(internal::WeakReference&& ref, T* ptr)
: ref_(std::move(ref)), ptr_(ptr) {
DCHECK(ptr);
}
internal::WeakReference CloneWeakReference() const { return ref_; }
internal::WeakReference ref_;
// This pointer is only valid when ref_.is_valid() is true. Otherwise, its
// value is undefined (as opposed to nullptr). The pointer is allowed to
// dangle as we verify its liveness through `ref_` before allowing access to
// the pointee. We don't use raw_ptr<T> here to prevent WeakPtr from keeping
// the memory allocation in quarantine, as it can't be accessed through the
// WeakPtr.
RAW_PTR_EXCLUSION T* ptr_ = nullptr;
};
// Allow callers to compare WeakPtrs against nullptr to test validity.
template <class T>
bool operator!=(const WeakPtr<T>& weak_ptr, std::nullptr_t) {
return !(weak_ptr == nullptr);
}
template <class T>
bool operator!=(std::nullptr_t, const WeakPtr<T>& weak_ptr) {
return weak_ptr != nullptr;
}
template <class T>
bool operator==(const WeakPtr<T>& weak_ptr, std::nullptr_t) {
return weak_ptr.get() == nullptr;
}
template <class T>
bool operator==(std::nullptr_t, const WeakPtr<T>& weak_ptr) {
return weak_ptr == nullptr;
}
namespace internal {
class BASE_EXPORT WeakPtrFactoryBase {
protected:
WeakPtrFactoryBase(uintptr_t ptr);
~WeakPtrFactoryBase();
internal::WeakReferenceOwner weak_reference_owner_;
uintptr_t ptr_;
};
} // namespace internal
namespace subtle {
// Restricts access to WeakPtrFactory::BindToCurrentSequence() to authorized
// callers.
class BASE_EXPORT BindWeakPtrFactoryPassKey {
private:
BindWeakPtrFactoryPassKey() = default;
friend class BindWeakPtrFactoryForTesting;
friend class sequence_manager::internal::TaskQueueImpl;
};
} // namespace subtle
// A class may be composed of a WeakPtrFactory and thereby
// control how it exposes weak pointers to itself. This is helpful if you only
// need weak pointers within the implementation of a class. This class is also
// useful when working with primitive types. For example, you could have a
// WeakPtrFactory<bool> that is used to pass around a weak reference to a bool.
template <class T>
class WeakPtrFactory : public internal::WeakPtrFactoryBase {
public:
WeakPtrFactory() = delete;
explicit WeakPtrFactory(T* ptr)
: WeakPtrFactoryBase(reinterpret_cast<uintptr_t>(ptr)) {}
WeakPtrFactory(const WeakPtrFactory&) = delete;
WeakPtrFactory& operator=(const WeakPtrFactory&) = delete;
~WeakPtrFactory() = default;
WeakPtr<const T> GetWeakPtr() const {
return WeakPtr<const T>(weak_reference_owner_.GetRef(),
reinterpret_cast<const T*>(ptr_));
}
WeakPtr<T> GetWeakPtr()
requires(!std::is_const_v<T>)
{
return WeakPtr<T>(weak_reference_owner_.GetRef(),
reinterpret_cast<T*>(ptr_));
}
WeakPtr<T> GetMutableWeakPtr() const
requires(!std::is_const_v<T>)
{
return WeakPtr<T>(weak_reference_owner_.GetRef(),
reinterpret_cast<T*>(ptr_));
}
// Returns a smart pointer that is valid until the WeakPtrFactory is
// invalidated. Unlike WeakPtr, this smart pointer cannot be null, and cannot
// be checked to see if the WeakPtrFactory is invalidated. It's intended to
// express that the pointer will not (intentionally) outlive the `T` object it
// points to, and to crash safely in the case of a bug instead of causing a
// use-after-free. This type provides an alternative to WeakPtr to prevent
// use-after-free bugs without also introducing "fuzzy lifetimes" that can be
// checked for at runtime.
SafeRef<T> GetSafeRef() const {
return internal::MakeSafeRefFromWeakPtrInternals(
weak_reference_owner_.GetRef(), reinterpret_cast<T*>(ptr_));
}
// Call this method to invalidate all existing weak pointers.
void InvalidateWeakPtrs() {
DCHECK(ptr_);
weak_reference_owner_.Invalidate();
}
// Call this method to determine if any weak pointers exist.
bool HasWeakPtrs() const {
DCHECK(ptr_);
return weak_reference_owner_.HasRefs();
}
// Rebind the factory to the current sequence. This allows creating an object
// and associated weak pointers on a different thread from the one they are
// used on.
void BindToCurrentSequence(subtle::BindWeakPtrFactoryPassKey) {
weak_reference_owner_.BindToCurrentSequence();
}
};
} // namespace base
#endif // BASE_MEMORY_WEAK_PTR_H_