| // Copyright 2017 The Chromium Authors |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #ifndef BASE_MEMORY_SCOPED_REFPTR_H_ |
| #define BASE_MEMORY_SCOPED_REFPTR_H_ |
| |
| #include <stddef.h> |
| |
| #include <compare> |
| #include <concepts> |
| #include <iosfwd> |
| #include <type_traits> |
| #include <utility> |
| |
| #include "base/check.h" |
| #include "base/compiler_specific.h" |
| #include "base/memory/raw_ptr.h" |
| #include "base/memory/raw_ptr_exclusion.h" |
| |
| template <class T> |
| class scoped_refptr; |
| |
| namespace base { |
| |
| template <class, typename> |
| class RefCounted; |
| template <class, typename> |
| class RefCountedThreadSafe; |
| template <class> |
| class RefCountedDeleteOnSequence; |
| class SequencedTaskRunner; |
| |
| template <typename T> |
| scoped_refptr<T> AdoptRef(T* t); |
| |
| namespace subtle { |
| |
| enum AdoptRefTag { kAdoptRefTag }; |
| enum StartRefCountFromZeroTag { kStartRefCountFromZeroTag }; |
| enum StartRefCountFromOneTag { kStartRefCountFromOneTag }; |
| |
| template <typename TagType> |
| struct RefCountPreferenceTagTraits; |
| |
| template <> |
| struct RefCountPreferenceTagTraits<StartRefCountFromZeroTag> { |
| static constexpr StartRefCountFromZeroTag kTag = kStartRefCountFromZeroTag; |
| }; |
| |
| template <> |
| struct RefCountPreferenceTagTraits<StartRefCountFromOneTag> { |
| static constexpr StartRefCountFromOneTag kTag = kStartRefCountFromOneTag; |
| }; |
| |
| template <typename T, typename Tag = typename T::RefCountPreferenceTag> |
| constexpr Tag GetRefCountPreference() { |
| return RefCountPreferenceTagTraits<Tag>::kTag; |
| } |
| |
| // scoped_refptr<T> is typically used with one of several RefCounted<T> base |
| // classes or with custom AddRef and Release methods. These overloads dispatch |
| // on which was used. |
| |
| template <typename T, typename U, typename V> |
| constexpr bool IsRefCountPreferenceOverridden(const T*, |
| const RefCounted<U, V>*) { |
| return !std::same_as<std::decay_t<decltype(GetRefCountPreference<T>())>, |
| std::decay_t<decltype(GetRefCountPreference<U>())>>; |
| } |
| |
| template <typename T, typename U, typename V> |
| constexpr bool IsRefCountPreferenceOverridden( |
| const T*, |
| const RefCountedThreadSafe<U, V>*) { |
| return !std::same_as<std::decay_t<decltype(GetRefCountPreference<T>())>, |
| std::decay_t<decltype(GetRefCountPreference<U>())>>; |
| } |
| |
| template <typename T, typename U> |
| constexpr bool IsRefCountPreferenceOverridden( |
| const T*, |
| const RefCountedDeleteOnSequence<U>*) { |
| return !std::same_as<std::decay_t<decltype(GetRefCountPreference<T>())>, |
| std::decay_t<decltype(GetRefCountPreference<U>())>>; |
| } |
| |
| constexpr bool IsRefCountPreferenceOverridden(...) { |
| return false; |
| } |
| |
| template <typename T, typename U, typename V> |
| constexpr void AssertRefCountBaseMatches(const T*, const RefCounted<U, V>*) { |
| static_assert(std::derived_from<T, U>, |
| "T implements RefCounted<U>, but U is not a base of T."); |
| } |
| |
| template <typename T, typename U, typename V> |
| constexpr void AssertRefCountBaseMatches(const T*, |
| const RefCountedThreadSafe<U, V>*) { |
| static_assert( |
| std::derived_from<T, U>, |
| "T implements RefCountedThreadSafe<U>, but U is not a base of T."); |
| } |
| |
| template <typename T, typename U> |
| constexpr void AssertRefCountBaseMatches(const T*, |
| const RefCountedDeleteOnSequence<U>*) { |
| static_assert( |
| std::derived_from<T, U>, |
| "T implements RefCountedDeleteOnSequence<U>, but U is not a base of T."); |
| } |
| |
| constexpr void AssertRefCountBaseMatches(...) {} |
| |
| } // namespace subtle |
| |
| // Creates a scoped_refptr from a raw pointer without incrementing the reference |
| // count. Use this only for a newly created object whose reference count starts |
| // from 1 instead of 0. |
| template <typename T> |
| scoped_refptr<T> AdoptRef(T* obj) { |
| using Tag = std::decay_t<decltype(subtle::GetRefCountPreference<T>())>; |
| static_assert(std::same_as<subtle::StartRefCountFromOneTag, Tag>, |
| "Use AdoptRef only if the reference count starts from one."); |
| |
| DCHECK(obj); |
| DCHECK(obj->HasOneRef()); |
| obj->Adopted(); |
| return scoped_refptr<T>(obj, subtle::kAdoptRefTag); |
| } |
| |
| namespace subtle { |
| |
| template <typename T> |
| scoped_refptr<T> AdoptRefIfNeeded(T* obj, StartRefCountFromZeroTag) { |
| return scoped_refptr<T>(obj); |
| } |
| |
| template <typename T> |
| scoped_refptr<T> AdoptRefIfNeeded(T* obj, StartRefCountFromOneTag) { |
| return AdoptRef(obj); |
| } |
| |
| } // namespace subtle |
| |
| // Constructs an instance of T, which is a ref counted type, and wraps the |
| // object into a scoped_refptr<T>. |
| template <typename T, typename... Args> |
| scoped_refptr<T> MakeRefCounted(Args&&... args) { |
| T* obj = new T(std::forward<Args>(args)...); |
| return subtle::AdoptRefIfNeeded(obj, subtle::GetRefCountPreference<T>()); |
| } |
| |
| // Takes an instance of T, which is a ref counted type, and wraps the object |
| // into a scoped_refptr<T>. |
| template <typename T> |
| scoped_refptr<T> WrapRefCounted(T* t) { |
| return scoped_refptr<T>(t); |
| } |
| |
| template <typename T, base::RawPtrTraits Traits = base::RawPtrTraits::kEmpty> |
| scoped_refptr<T> WrapRefCounted(const raw_ptr<T, Traits>& t) { |
| return scoped_refptr<T>(t.get()); |
| } |
| |
| } // namespace base |
| |
| // |
| // A smart pointer class for reference counted objects. Use this class instead |
| // of calling AddRef and Release manually on a reference counted object to |
| // avoid common memory leaks caused by forgetting to Release an object |
| // reference. Sample usage: |
| // |
| // class MyFoo : public RefCounted<MyFoo> { |
| // ... |
| // private: |
| // friend class RefCounted<MyFoo>; // Allow destruction by RefCounted<>. |
| // ~MyFoo(); // Destructor must be private/protected. |
| // }; |
| // |
| // void some_function() { |
| // scoped_refptr<MyFoo> foo = MakeRefCounted<MyFoo>(); |
| // foo->Method(param); |
| // // |foo| is released when this function returns |
| // } |
| // |
| // void some_other_function() { |
| // scoped_refptr<MyFoo> foo = MakeRefCounted<MyFoo>(); |
| // ... |
| // foo.reset(); // explicitly releases |foo| |
| // ... |
| // if (foo) |
| // foo->Method(param); |
| // } |
| // |
| // The above examples show how scoped_refptr<T> acts like a pointer to T. |
| // Given two scoped_refptr<T> classes, it is also possible to exchange |
| // references between the two objects, like so: |
| // |
| // { |
| // scoped_refptr<MyFoo> a = MakeRefCounted<MyFoo>(); |
| // scoped_refptr<MyFoo> b; |
| // |
| // b.swap(a); |
| // // now, |b| references the MyFoo object, and |a| references nullptr. |
| // } |
| // |
| // To make both |a| and |b| in the above example reference the same MyFoo |
| // object, simply use the assignment operator: |
| // |
| // { |
| // scoped_refptr<MyFoo> a = MakeRefCounted<MyFoo>(); |
| // scoped_refptr<MyFoo> b; |
| // |
| // b = a; |
| // // now, |a| and |b| each own a reference to the same MyFoo object. |
| // } |
| // |
| // Also see Chromium's ownership and calling conventions: |
| // https://chromium.googlesource.com/chromium/src/+/lkgr/styleguide/c++/c++.md#object-ownership-and-calling-conventions |
| // Specifically: |
| // If the function (at least sometimes) takes a ref on a refcounted object, |
| // declare the param as scoped_refptr<T>. The caller can decide whether it |
| // wishes to transfer ownership (by calling std::move(t) when passing t) or |
| // retain its ref (by simply passing t directly). |
| // In other words, use scoped_refptr like you would a std::unique_ptr except |
| // in the odd case where it's required to hold on to a ref while handing one |
| // to another component (if a component merely needs to use t on the stack |
| // without keeping a ref: pass t as a raw T*). |
| template <class T> |
| class TRIVIAL_ABI scoped_refptr { |
| public: |
| typedef T element_type; |
| |
| constexpr scoped_refptr() = default; |
| |
| // Allow implicit construction from nullptr. |
| constexpr scoped_refptr(std::nullptr_t) {} |
| |
| // Constructs from a raw pointer. Note that this constructor allows implicit |
| // conversion from T* to scoped_refptr<T> which is strongly discouraged. If |
| // you are creating a new ref-counted object please use |
| // base::MakeRefCounted<T>() or base::WrapRefCounted<T>(). Otherwise you |
| // should move or copy construct from an existing scoped_refptr<T> to the |
| // ref-counted object. |
| scoped_refptr(T* p) : ptr_(p) { |
| if (ptr_) { |
| AddRef(ptr_); |
| } |
| } |
| |
| // Copy constructor. This is required in addition to the copy conversion |
| // constructor below. |
| scoped_refptr(const scoped_refptr& r) : scoped_refptr(r.ptr_) {} |
| |
| // Copy conversion constructor. |
| template <typename U> |
| requires(std::convertible_to<U*, T*>) |
| scoped_refptr(const scoped_refptr<U>& r) : scoped_refptr(r.ptr_) {} |
| |
| // Move constructor. This is required in addition to the move conversion |
| // constructor below. |
| scoped_refptr(scoped_refptr&& r) noexcept : ptr_(r.ptr_) { r.ptr_ = nullptr; } |
| |
| // Move conversion constructor. |
| template <typename U> |
| requires(std::convertible_to<U*, T*>) |
| scoped_refptr(scoped_refptr<U>&& r) noexcept : ptr_(r.ptr_) { |
| r.ptr_ = nullptr; |
| } |
| |
| ~scoped_refptr() { |
| static_assert(!base::subtle::IsRefCountPreferenceOverridden( |
| static_cast<T*>(nullptr), static_cast<T*>(nullptr)), |
| "It's unsafe to override the ref count preference." |
| " Please remove REQUIRE_ADOPTION_FOR_REFCOUNTED_TYPE" |
| " from subclasses."); |
| if (ptr_) { |
| Release(ptr_); |
| } |
| } |
| |
| T* get() const { return ptr_; } |
| |
| T& operator*() const { |
| DCHECK(ptr_); |
| return *ptr_; |
| } |
| |
| T* operator->() const { |
| DCHECK(ptr_); |
| return ptr_; |
| } |
| |
| scoped_refptr& operator=(std::nullptr_t) { |
| reset(); |
| return *this; |
| } |
| |
| scoped_refptr& operator=(T* p) { return *this = scoped_refptr(p); } |
| |
| // Unified assignment operator. |
| scoped_refptr& operator=(scoped_refptr r) noexcept { |
| swap(r); |
| return *this; |
| } |
| |
| // Sets managed object to null and releases reference to the previous managed |
| // object, if it existed. |
| void reset() { scoped_refptr().swap(*this); } |
| |
| // Returns the owned pointer (if any), releasing ownership to the caller. The |
| // caller is responsible for managing the lifetime of the reference. |
| [[nodiscard]] T* release(); |
| |
| void swap(scoped_refptr& r) noexcept { std::swap(ptr_, r.ptr_); } |
| |
| explicit operator bool() const { return ptr_ != nullptr; } |
| |
| template <typename U> |
| friend bool operator==(const scoped_refptr<T>& lhs, |
| const scoped_refptr<U>& rhs) { |
| return lhs.ptr_ == rhs.ptr_; |
| } |
| |
| // This operator is an optimization to avoid implicitly constructing a |
| // scoped_refptr<U> when comparing scoped_refptr against raw pointer. If the |
| // implicit conversion is ever removed this operator can also be removed. |
| template <typename U> |
| friend bool operator==(const scoped_refptr<T>& lhs, const U* rhs) { |
| return lhs.ptr_ == rhs; |
| } |
| |
| friend bool operator==(const scoped_refptr<T>& lhs, std::nullptr_t null) { |
| return !static_cast<bool>(lhs); |
| } |
| |
| template <typename U> |
| friend auto operator<=>(const scoped_refptr<T>& lhs, |
| const scoped_refptr<U>& rhs) { |
| return lhs.ptr_ <=> rhs.ptr_; |
| } |
| |
| friend auto operator<=>(const scoped_refptr<T>& lhs, std::nullptr_t null) { |
| return lhs.ptr_ <=> static_cast<T*>(nullptr); |
| } |
| |
| protected: |
| // RAW_PTR_EXCLUSION: scoped_refptr<> has its own UaF prevention mechanism. |
| // Given how widespread it is, we it'll likely a perf regression for no |
| // additional security benefit. |
| RAW_PTR_EXCLUSION T* ptr_ = nullptr; |
| |
| private: |
| template <typename U> |
| friend scoped_refptr<U> base::AdoptRef(U*); |
| friend class ::base::SequencedTaskRunner; |
| |
| scoped_refptr(T* p, base::subtle::AdoptRefTag) : ptr_(p) {} |
| |
| // Friend required for move constructors that set r.ptr_ to null. |
| template <typename U> |
| friend class scoped_refptr; |
| |
| // Non-inline helpers to allow: |
| // class Opaque; |
| // extern template class scoped_refptr<Opaque>; |
| // Otherwise the compiler will complain that Opaque is an incomplete type. |
| static void AddRef(T* ptr); |
| static void Release(T* ptr); |
| }; |
| |
| template <typename T> |
| T* scoped_refptr<T>::release() { |
| T* ptr = ptr_; |
| ptr_ = nullptr; |
| return ptr; |
| } |
| |
| // static |
| template <typename T> |
| void scoped_refptr<T>::AddRef(T* ptr) { |
| base::subtle::AssertRefCountBaseMatches(ptr, ptr); |
| ptr->AddRef(); |
| } |
| |
| // static |
| template <typename T> |
| void scoped_refptr<T>::Release(T* ptr) { |
| base::subtle::AssertRefCountBaseMatches(ptr, ptr); |
| ptr->Release(); |
| } |
| |
| template <typename T> |
| std::ostream& operator<<(std::ostream& out, const scoped_refptr<T>& p) { |
| return out << p.get(); |
| } |
| |
| template <typename T> |
| void swap(scoped_refptr<T>& lhs, scoped_refptr<T>& rhs) noexcept { |
| lhs.swap(rhs); |
| } |
| |
| #endif // BASE_MEMORY_SCOPED_REFPTR_H_ |