| // Copyright 2012 The Chromium Authors |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #ifndef BASE_COMPILER_SPECIFIC_H_ |
| #define BASE_COMPILER_SPECIFIC_H_ |
| |
| #include "build/build_config.h" |
| |
| #if defined(COMPILER_MSVC) && !defined(__clang__) |
| #error "Only clang-cl is supported on Windows, see https://crbug.com/988071" |
| #endif |
| |
| // A wrapper around `__has_attribute()`, which is similar to the C++20-standard |
| // `__has_cpp_attribute()`, but tests for support for `__attribute__(())`s. |
| // Compilers that do not support this (e.g. MSVC) are also assumed not to |
| // support `__attribute__`, so this is simply mapped to `0` there. |
| // |
| // See also: |
| // https://clang.llvm.org/docs/LanguageExtensions.html#has-attribute |
| #if defined(__has_attribute) |
| #define HAS_ATTRIBUTE(x) __has_attribute(x) |
| #else |
| #define HAS_ATTRIBUTE(x) 0 |
| #endif |
| |
| // A wrapper around `__has_builtin`, similar to `HAS_ATTRIBUTE()`. |
| // |
| // See also: |
| // https://clang.llvm.org/docs/LanguageExtensions.html#has-builtin |
| #if defined(__has_builtin) |
| #define HAS_BUILTIN(x) __has_builtin(x) |
| #else |
| #define HAS_BUILTIN(x) 0 |
| #endif |
| |
| // A wrapper around `__has_feature`, similar to `HAS_ATTRIBUTE()`. |
| // |
| // See also: |
| // https://clang.llvm.org/docs/LanguageExtensions.html#has-feature-and-has-extension |
| #if defined(__has_feature) |
| #define HAS_FEATURE(FEATURE) __has_feature(FEATURE) |
| #else |
| #define HAS_FEATURE(FEATURE) 0 |
| #endif |
| |
| // Annotates a function indicating it should not be inlined. |
| // |
| // You may also want `NOOPT` if your goal is to preserve a function call even |
| // for the most trivial cases; see |
| // https://stackoverflow.com/questions/54481855/clang-ignoring-attribute-noinline/54482070#54482070. |
| // |
| // See also: |
| // https://clang.llvm.org/docs/AttributeReference.html#noinline |
| // |
| // Usage: |
| // ``` |
| // NOINLINE void Func() { |
| // // This body will not be inlined into callers. |
| // } |
| // ``` |
| #if __has_cpp_attribute(clang::noinline) |
| #define NOINLINE [[clang::noinline]] |
| #elif __has_cpp_attribute(gnu::noinline) |
| #define NOINLINE [[gnu::noinline]] |
| #elif __has_cpp_attribute(msvc::noinline) |
| #define NOINLINE [[msvc::noinline]] |
| #else |
| #define NOINLINE |
| #endif |
| |
| // Annotates a call site indicating that the callee should not be inlined. |
| // |
| // See also: |
| // https://clang.llvm.org/docs/AttributeReference.html#noinline |
| // |
| // Usage: |
| // ``` |
| // void Func() { |
| // // This specific call to `DoSomething` should not be inlined. |
| // NOINLINE_CALL DoSomething(); |
| // } |
| // ``` |
| #if __has_cpp_attribute(clang::noinline) |
| #define NOINLINE_CALL [[clang::noinline]] |
| #else |
| #define NOINLINE_CALL |
| #endif |
| |
| // Annotates a function indicating it should not be optimized. |
| // |
| // See also: |
| // https://clang.llvm.org/docs/AttributeReference.html#optnone |
| // https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#index-optimize-function-attribute |
| // |
| // Usage: |
| // ``` |
| // NOOPT void Func() { |
| // // This body will not be optimized. |
| // } |
| // ``` |
| #if __has_cpp_attribute(clang::optnone) |
| #define NOOPT [[clang::optnone]] |
| #elif __has_cpp_attribute(gnu::optimize) |
| #define NOOPT [[gnu::optimize(0)]] |
| #else |
| #define NOOPT |
| #endif |
| |
| // Annotates a function indicating it should always be inlined. |
| // |
| // See also: |
| // https://clang.llvm.org/docs/AttributeReference.html#always-inline-force-inline |
| // |
| // Usage: |
| // ``` |
| // ALWAYS_INLINE void Func() { |
| // // This body will be inlined into callers whenever possible. |
| // } |
| // ``` |
| // |
| // Since `ALWAYS_INLINE` is performance-oriented but can hamper debugging, |
| // ignore it in debug mode. |
| #if defined(NDEBUG) |
| #if __has_cpp_attribute(clang::always_inline) |
| #define ALWAYS_INLINE [[clang::always_inline]] inline |
| #elif __has_cpp_attribute(gnu::always_inline) |
| #define ALWAYS_INLINE [[gnu::always_inline]] inline |
| #elif defined(COMPILER_MSVC) |
| #define ALWAYS_INLINE __forceinline |
| #endif |
| #endif |
| #if !defined(ALWAYS_INLINE) |
| #define ALWAYS_INLINE inline |
| #endif |
| |
| // Annotates a call site indicating the calee should always be inlined. |
| // |
| // See also: |
| // https://clang.llvm.org/docs/AttributeReference.html#always-inline-force-inline |
| // |
| // Usage: |
| // ``` |
| // void Func() { |
| // // This specific call will be inlined if possible. |
| // ALWAYS_INLINE_CALL DoSomething(); |
| // } |
| // ``` |
| // |
| // Since `ALWAYS_INLINE_CALL` is performance-oriented but can hamper debugging, |
| // ignore it in debug mode. |
| #if defined(NDEBUG) |
| #if __has_cpp_attribute(clang::always_inline) |
| #define ALWAYS_INLINE_CALL [[clang::always_inline]] |
| #endif |
| #endif |
| #if !defined(ALWAYS_INLINE_CALL) |
| #define ALWAYS_INLINE_CALL |
| #endif |
| |
| // Annotates a function indicating it should never be tail called. Useful to |
| // make sure callers of the annotated function are never omitted from call |
| // stacks. Often useful with `NOINLINE` to make sure the function itself is also |
| // not omitted from call stacks. Note: this does not prevent code folding of |
| // multiple identical callers into a single signature; to do that, see |
| // `NO_CODE_FOLDING()` in base/debug/alias.h. |
| // |
| // For a caller-side version of this, see `DISABLE_TAIL_CALLS`. |
| // |
| // See also: |
| // https://clang.llvm.org/docs/AttributeReference.html#not-tail-called |
| // |
| // Usage: |
| // ``` |
| // // Calls to this function will not be tail calls. |
| // NOT_TAIL_CALLED void Func(); |
| // ``` |
| #if __has_cpp_attribute(clang::not_tail_called) |
| #define NOT_TAIL_CALLED [[clang::not_tail_called]] |
| #else |
| #define NOT_TAIL_CALLED |
| #endif |
| |
| // Annotates a return statement indicating the compiler must convert it to a |
| // tail call. Can be used only on return statements, even for functions |
| // returning void. Caller and callee must have the same number of arguments and |
| // the argument types must be "similar". While the compiler may automatically |
| // convert compatible calls to tail calls when optimizing, this annotation |
| // requires it to occur if doing so is valid, and will not compile otherwise. |
| // |
| // See also: |
| // https://clang.llvm.org/docs/AttributeReference.html#musttail |
| // |
| // Usage: |
| // ``` |
| // int Func1(double); |
| // int Func2(double d) { |
| // MUSTTAIL return Func1(d + 1); // `Func1()` will be tail-called. |
| // } |
| // ``` |
| #if __has_cpp_attribute(clang::musttail) |
| #define MUSTTAIL [[clang::musttail]] |
| #else |
| #define MUSTTAIL |
| #endif |
| |
| // Annotates a data member indicating it need not have an address distinct from |
| // all other non-static data members of the class, and its tail padding may be |
| // used for other objects' storage. This can have subtle and dangerous effects, |
| // including on containing objects; use with caution. |
| // |
| // See also: |
| // https://en.cppreference.com/w/cpp/language/attributes/no_unique_address |
| // https://wg21.link/dcl.attr.nouniqueaddr |
| // Usage: |
| // ``` |
| // // In the following struct, `t` might not have a unique address from `i`, |
| // // and `t`'s tail padding (if any) may be reused by subsequent objects. |
| // struct S { |
| // int i; |
| // NO_UNIQUE_ADDRESS T t; |
| // }; |
| // ``` |
| // |
| // Unfortunately MSVC ignores [[no_unique_address]] (see |
| // https://devblogs.microsoft.com/cppblog/msvc-cpp20-and-the-std-cpp20-switch/#msvc-extensions-and-abi), |
| // and clang-cl matches it for ABI compatibility reasons. We need to prefer |
| // [[msvc::no_unique_address]] when available if we actually want any effect. |
| #if __has_cpp_attribute(msvc::no_unique_address) |
| #define NO_UNIQUE_ADDRESS [[msvc::no_unique_address]] |
| #elif __has_cpp_attribute(no_unique_address) |
| #define NO_UNIQUE_ADDRESS [[no_unique_address]] |
| #else |
| #define NO_UNIQUE_ADDRESS |
| #endif |
| |
| // Annotates a function indicating it takes a `printf()`-style format string. |
| // The compiler will check that the provided arguments match the type specifiers |
| // in the format string. Useful to detect mismatched format strings/args. |
| // |
| // `format_param` is the one-based index of the format string parameter; |
| // `dots_param` is the one-based index of the "..." parameter. |
| // For `v*printf()` functions (which take a `va_list`), `dots_param` should be |
| // 0. For member functions, the implicit `this` parameter is at index 1. |
| // |
| // See also: |
| // https://clang.llvm.org/docs/AttributeReference.html#format |
| // https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#index-format-function-attribute |
| // |
| // Usage: |
| // ``` |
| // PRINTF_FORMAT(1, 2) |
| // void Print(const char* format, ...); |
| // void Func() { |
| // // The following call will not compile; diagnosed as format and argument |
| // // types mismatching. |
| // Print("%s", 1); |
| // } |
| // ``` |
| #if __has_cpp_attribute(gnu::format) |
| #define PRINTF_FORMAT(format_param, dots_param) \ |
| [[gnu::format(printf, format_param, dots_param)]] |
| #else |
| #define PRINTF_FORMAT(format_param, dots_param) |
| #endif |
| |
| // Annotates a function disabling the named sanitizer within its body. |
| // |
| // See also: |
| // https://clang.llvm.org/docs/AttributeReference.html#no-sanitize |
| // https://clang.llvm.org/docs/UsersManual.html#controlling-code-generation |
| // |
| // Usage: |
| // ``` |
| // NO_SANITIZE("cfi-icall") void Func() { |
| // // CFI indirect call checks will not be performed in this body. |
| // } |
| // ``` |
| #if __has_cpp_attribute(clang::no_sanitize) |
| #define NO_SANITIZE(sanitizer) [[clang::no_sanitize(sanitizer)]] |
| #else |
| #define NO_SANITIZE(sanitizer) |
| #endif |
| |
| // Annotates a pointer and size directing MSAN to treat that memory region as |
| // fully initialized. Useful for e.g. code that deliberately reads uninitialized |
| // data, such as a GC scavenging root set pointers from the stack. |
| // |
| // See also: |
| // https://github.com/google/sanitizers/wiki/MemorySanitizer |
| // |
| // Usage: |
| // ``` |
| // T* ptr = ...; |
| // // After the next statement, MSAN will assume `ptr` points to an |
| // // initialized `T`. |
| // MSAN_UNPOISON(ptr, sizeof(T)); |
| // ``` |
| #if defined(MEMORY_SANITIZER) && !BUILDFLAG(IS_NACL) |
| #include <sanitizer/msan_interface.h> |
| #define MSAN_UNPOISON(p, size) __msan_unpoison(p, size) |
| #else |
| #define MSAN_UNPOISON(p, size) |
| #endif |
| |
| // Annotates a pointer and size directing MSAN to check whether that memory |
| // region is initialized, as if it was being read from. If any bits are |
| // uninitialized, crashes with an MSAN report. Useful for e.g. sanitizing data |
| // MSAN won't be able to track, such as data that is about to be passed to |
| // another process via shared memory. |
| // |
| // See also: |
| // https://www.chromium.org/developers/testing/memorysanitizer/#debugging-msan-reports |
| // |
| // Usage: |
| // ``` |
| // T* ptr = ...; |
| // // The following line will crash at runtime in MSAN builds if `ptr` does |
| // // not point to an initialized `T`. |
| // MSAN_CHECK_MEM_IS_INITIALIZED(ptr, sizeof(T)); |
| // ``` |
| #if defined(MEMORY_SANITIZER) && !BUILDFLAG(IS_NACL) |
| #define MSAN_CHECK_MEM_IS_INITIALIZED(p, size) \ |
| __msan_check_mem_is_initialized(p, size) |
| #else |
| #define MSAN_CHECK_MEM_IS_INITIALIZED(p, size) |
| #endif |
| |
| // Annotates a function disabling Control Flow Integrity checks due to perf |
| // impact. |
| // |
| // See also: |
| // https://clang.llvm.org/docs/ControlFlowIntegrity.html#performance |
| // https://www.chromium.org/developers/testing/control-flow-integrity/#overhead-only-tested-on-x64 |
| // |
| // Usage: |
| // ``` |
| // DISABLE_CFI_PERF void Func() { |
| // // CFI checks will not be performed in this body, due to perf reasons. |
| // } |
| // ``` |
| #if !defined(DISABLE_CFI_PERF) |
| #if defined(__clang__) && defined(OFFICIAL_BUILD) |
| #define DISABLE_CFI_PERF NO_SANITIZE("cfi") |
| #else |
| #define DISABLE_CFI_PERF |
| #endif |
| #endif |
| |
| // Annotates a function disabling Control Flow Integrity indirect call checks. |
| // NOTE: Prefer `DISABLE_CFI_DLSYM()` if you just need to allow calling of dlsym |
| // functions. |
| // |
| // See also: |
| // https://clang.llvm.org/docs/ControlFlowIntegrity.html#available-schemes |
| // https://www.chromium.org/developers/testing/control-flow-integrity/#indirect-call-failures |
| // |
| // Usage: |
| // ``` |
| // DISABLE_CFI_ICALL void Func() { |
| // // CFI indirect call checks will not be performed in this body. |
| // } |
| // ``` |
| #if !defined(DISABLE_CFI_ICALL) |
| #if BUILDFLAG(IS_WIN) |
| #define DISABLE_CFI_ICALL NO_SANITIZE("cfi-icall") __declspec(guard(nocf)) |
| #else |
| #define DISABLE_CFI_ICALL NO_SANITIZE("cfi-icall") |
| #endif |
| #endif |
| |
| // Annotates a function disabling Control Flow Integrity indirect call checks if |
| // doing so is necessary to call dlsym functions. The checks are retained on |
| // platforms where loaded modules participate in CFI (viz. Windows). |
| // |
| // See also: |
| // https://www.chromium.org/developers/testing/control-flow-integrity/#indirect-call-failures |
| // |
| // Usage: |
| // ``` |
| // DISABLE_CFI_DLSYM void Func() { |
| // // On non-Windows platforms, CFI indirect call checks will not be |
| // // performed in this body. |
| // } |
| // ``` |
| #if !defined(DISABLE_CFI_DLSYM) |
| #if BUILDFLAG(IS_WIN) |
| #define DISABLE_CFI_DLSYM |
| #else |
| #define DISABLE_CFI_DLSYM DISABLE_CFI_ICALL |
| #endif |
| #endif |
| |
| // Evaluates to a string constant containing the function signature. |
| // |
| // See also: |
| // https://clang.llvm.org/docs/LanguageExtensions.html#source-location-builtins |
| // https://en.cppreference.com/w/c/language/function_definition#func |
| // |
| // Usage: |
| // ``` |
| // void Func(int arg) { |
| // std::cout << PRETTY_FUNCTION; // Prints `void Func(int)` or similar. |
| // } |
| // ``` |
| #if defined(COMPILER_GCC) |
| #define PRETTY_FUNCTION __PRETTY_FUNCTION__ |
| #elif defined(COMPILER_MSVC) |
| #define PRETTY_FUNCTION __FUNCSIG__ |
| #else |
| #define PRETTY_FUNCTION __func__ |
| #endif |
| |
| // Annotates a variable indicating that its storage should not be filled with a |
| // fixed pattern when uninitialized. |
| // |
| // The `init_stack_vars` gn arg (enabled on most build configs) causes the |
| // compiler to generate code that writes a fixed pattern into uninitialized |
| // parts of all local variables, to mitigate security risks. In most cases, e.g. |
| // when such memory is either never accessed or will be initialized later before |
| // reading, the compiler is able to remove the additional stores, and any |
| // remaining stores are unlikely to affect program performance. |
| // |
| // If hot code suffers unavoidable perf penalties, this can disable the |
| // pattern-filling there. This should only be done when necessary, since reads |
| // from uninitialized variables are not only UB, they can in practice allow |
| // attackers to control logic by pre-filling the variable's memory with a |
| // desirable value. |
| // |
| // NOTE: This behavior also increases the likelihood the compiler will generate |
| // `memcpy()`/`memset()` calls to init variables. If this causes link errors for |
| // targets that don't link against the CRT, this macro can help; you may instead |
| // want 'configs -= [ "//build/config/compiler:default_init_stack_vars" ]' in |
| // the relevant .gn file to disable this on the whole target. |
| // |
| // See also: |
| // https://source.chromium.org/chromium/chromium/src/+/main:build/config/compiler/BUILD.gn;l=3088;drc=24ccaf63ff5b1883be1ebe5f979d917ce28b0131 |
| // https://clang.llvm.org/docs/ClangCommandLineReference.html#cmdoption-clang-ftrivial-auto-var-init |
| // https://clang.llvm.org/docs/AttributeReference.html#uninitialized |
| // |
| // Usage: |
| // ``` |
| // // The following line declares `i` without ensuring it initially contains |
| // // any particular pattern. |
| // STACK_UNINITIALIZED int i; |
| // ``` |
| #if __has_cpp_attribute(clang::uninitialized) |
| #define STACK_UNINITIALIZED [[clang::uninitialized]] |
| #elif __has_cpp_attribute(gnu::uninitialized) |
| #define STACK_UNINITIALIZED [[gnu::uninitialized]] |
| #else |
| #define STACK_UNINITIALIZED |
| #endif |
| |
| // Annotates a function disabling stack canary checks. |
| // |
| // The `-fstack-protector` compiler flag (passed on most non-Windows builds) |
| // causes the compiler to extend some function prologues and epilogues to set |
| // and check a canary value, to detect stack buffer overflows and crash in |
| // response. If hot code suffers unavoidable perf penalties, or intentionally |
| // modifies the canary value, this can disable the behavior there. |
| // |
| // See also: |
| // https://clang.llvm.org/docs/ClangCommandLineReference.html#cmdoption-clang-fstack-protector |
| // https://clang.llvm.org/docs/AttributeReference.html#no-stack-protector-safebuffers |
| // |
| // Usage: |
| // ``` |
| // NO_STACK_PROTECTOR void Func() { |
| // // Stack canary checks will not be performed in this body. |
| // } |
| // ``` |
| #if __has_cpp_attribute(gnu::no_stack_protector) |
| #define NO_STACK_PROTECTOR [[gnu::no_stack_protector]] |
| #elif __has_cpp_attribute(gnu::optimize) |
| #define NO_STACK_PROTECTOR [[gnu::optimize("-fno-stack-protector")]] |
| #else |
| #define NO_STACK_PROTECTOR |
| #endif |
| |
| // Annotates a codepath suppressing static analysis along that path. Useful when |
| // code is safe in practice for reasons the analyzer can't detect, e.g. because |
| // the condition leading to that path guarantees a param is non-null. |
| // |
| // Usage: |
| // ``` |
| // if (cond) { |
| // ANALYZER_SKIP_THIS_PATH(); |
| // // Static analysis will be disabled for the remainder of this block. |
| // delete ptr; |
| // } |
| // ``` |
| #if defined(__clang_analyzer__) |
| inline constexpr bool AnalyzerNoReturn() |
| #if HAS_ATTRIBUTE(analyzer_noreturn) |
| __attribute__((analyzer_noreturn)) |
| #endif |
| { |
| return false; |
| } |
| #define ANALYZER_SKIP_THIS_PATH() static_cast<void>(::AnalyzerNoReturn()) |
| #else |
| // The above definition would be safe even outside the analyzer, but defining |
| // the macro away entirely avoids the need for the optimizer to eliminate it. |
| #define ANALYZER_SKIP_THIS_PATH() |
| #endif |
| |
| // Annotates a condition directing static analysis to assume it is always true. |
| // Evaluates to the provided `arg` as a `bool`. |
| // |
| // Usage: |
| // ``` |
| // // Static analysis will assume the following condition always holds. |
| // if (ANALYZER_ASSUME_TRUE(cond)) ... |
| // ``` |
| #if defined(__clang_analyzer__) |
| inline constexpr bool AnalyzerAssumeTrue(bool arg) { |
| return arg || AnalyzerNoReturn(); |
| } |
| #define ANALYZER_ASSUME_TRUE(arg) ::AnalyzerAssumeTrue(!!(arg)) |
| #else |
| // Again, the above definition is safe, this is just simpler for the optimizer. |
| #define ANALYZER_ASSUME_TRUE(arg) (arg) |
| #endif |
| |
| // Annotates a function, function pointer, or statement to disallow |
| // optimizations that merge calls. Useful to ensure the source locations of such |
| // calls are not obscured. |
| // |
| // See also: |
| // https://clang.llvm.org/docs/AttributeReference.html#nomerge |
| // |
| // Usage: |
| // ``` |
| // NOMERGE void Func(); // No direct calls to `Func()` will be merged. |
| // |
| // using Ptr = decltype(&Func); |
| // NOMERGE Ptr ptr = &Func; // No calls through `ptr` will be merged. |
| // |
| // NOMERGE if (cond) { |
| // // No calls in this block will be merged. |
| // } |
| // ``` |
| #if __has_cpp_attribute(clang::nomerge) |
| #define NOMERGE [[clang::nomerge]] |
| #else |
| #define NOMERGE |
| #endif |
| |
| // Annotates a type as being suitable for passing in registers despite having a |
| // non-trivial copy or move constructor or destructor. This requires the type |
| // not be concerned about its address remaining constant, be safely usable after |
| // copying its memory, and have a destructor that may be safely omitted on |
| // moved-from instances; an example is `std::unique_ptr`. Unnecessary if the |
| // copy/move constructor(s) and destructor are unconditionally trivial; likely |
| // ineffective if the type is too large to be passed in one or two registers |
| // with the target ABI. However, annotating a type this way will also cause |
| // `IS_TRIVIALLY_RELOCATABLE()` to return true for that type, and so may be |
| // desirable even for large types, if they are placed in containers that |
| // optimize based on that check. |
| // |
| // NOTE: Use with caution; this has subtle effects on constructor/destructor |
| // ordering. When used with types passed or returned by value, values may be |
| // constructed in the source stack frame, passed in a register, and then used |
| // and destroyed in the target stack frame. |
| // |
| // See also: |
| // https://clang.llvm.org/docs/AttributeReference.html#trivial-abi |
| // https://libcxx.llvm.org/docs/DesignDocs/UniquePtrTrivialAbi.html |
| // |
| // Usage: |
| // ``` |
| // // Instances of type `S` will be eligible to be passed in registers despite |
| // // `S`'s nontrivial destructor. |
| // struct TRIVIAL_ABI S { ~S(); } |
| // ``` |
| #if __has_cpp_attribute(clang::trivial_abi) |
| #define TRIVIAL_ABI [[clang::trivial_abi]] |
| #else |
| #define TRIVIAL_ABI |
| #endif |
| |
| // Determines whether a type is trivially relocatable, i.e. a move-and-destroy |
| // sequence can safely be replaced with `memcpy()`. This is true of types with |
| // trivial copy or move construction plus trivial destruction, as well as types |
| // marked `TRIVIAL_ABI`. Useful to optimize container implementations. |
| // |
| // See also: |
| // https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p1144r8.html |
| // https://clang.llvm.org/docs/LanguageExtensions.html#:~:text=__builtin_is_cpp_trivially_relocatable |
| // |
| // Usage: |
| // ``` |
| // if constexpr (IS_TRIVIALLY_RELOCATABLE(T)) { |
| // // This block will only be executed if type `T` is trivially relocatable. |
| // } |
| // ``` |
| #if HAS_BUILTIN(__builtin_is_cpp_trivially_relocatable) |
| #define IS_TRIVIALLY_RELOCATABLE(t) __builtin_is_cpp_trivially_relocatable(t) |
| #elif HAS_BUILTIN(__is_trivially_relocatable) |
| // TODO(crbug.com/416394845): This is deprecated. Remove once all toolchains |
| // have __builtin_is_cpp_trivially_relocatable. |
| #define IS_TRIVIALLY_RELOCATABLE(t) __is_trivially_relocatable(t) |
| #else |
| #define IS_TRIVIALLY_RELOCATABLE(t) false |
| #endif |
| |
| // Annotates a member function as safe to call on a moved-from object, which it |
| // will reinitialize. |
| // |
| // See also: |
| // https://clang.llvm.org/extra/clang-tidy/checks/bugprone/use-after-move.html#reinitialization |
| // |
| // Usage: |
| // ``` |
| // struct S { |
| // REINITIALIZES_AFTER_MOVE void Reset(); |
| // }; |
| // void Func1(const S&); |
| // void Func2() { |
| // S s1; |
| // S s2 = std::move(s1); |
| // s1.Reset(); |
| // // clang-tidy's `bugprone-use-after-move` check will not flag the |
| // // following call as a use-after-move, due to the intervening `Reset()`. |
| // Func1(s1); |
| // } |
| // ``` |
| #if __has_cpp_attribute(clang::reinitializes) |
| #define REINITIALIZES_AFTER_MOVE [[clang::reinitializes]] |
| #else |
| #define REINITIALIZES_AFTER_MOVE |
| #endif |
| |
| // Annotates a type as owning an object or memory region whose address may be |
| // vended to or stored by other objects. For example, `std::unique_ptr<T>` owns |
| // a `T` and vends its address via `.get()`, and `std::string` owns a block of |
| // `char` and vends its address via `.data()`. Used to detect lifetime errors in |
| // conjunction with `GSL_POINTER`; see documentation there. |
| // |
| // See also: |
| // https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#SS-ownership |
| // https://clang.llvm.org/docs/AttributeReference.html#owner |
| // https://clang.llvm.org/docs/DiagnosticsReference.html#wdangling-gsl |
| // |
| // Usage: |
| // ``` |
| // // Marking `S` as `GSL_OWNER` enables `-Wdangling-gsl` to detect misuse by |
| // // types annotated as `GSL_POINTER`. |
| // struct GSL_OWNER S; |
| // ``` |
| #if __has_cpp_attribute(gsl::Owner) |
| #define GSL_OWNER [[gsl::Owner]] |
| #else |
| #define GSL_OWNER |
| #endif |
| |
| // Annotates a type as holding a pointer into an owner object (an appropriate |
| // STL or `GSL_OWNER`-annotated type). If an instance of the pointer type is |
| // constructed from an instance of the owner type, and the owner instance is |
| // destroyed, the pointer instance is considered to be dangling. Useful to |
| // diagnose some cases of lifetime errors. |
| // |
| // See also: |
| // https://clang.llvm.org/docs/AttributeReference.html#pointer |
| // |
| // Usage: |
| // ``` |
| // struct GSL_OWNER T {}; |
| // struct GSL_POINTER S { |
| // S(const T&); |
| // }; |
| // S Func() { |
| // // The following return will not compile; diagnosed as returning address |
| // // of local temporary. |
| // return S(T()); |
| // } |
| // ``` |
| #if __has_cpp_attribute(gsl::Pointer) |
| #define GSL_POINTER [[gsl::Pointer]] |
| #else |
| #define GSL_POINTER |
| #endif |
| |
| // Annotates a type or variable to add a "logically_const" ABI tag to any |
| // corresponding mangled symbol name(s). Useful to suppress warnings from the |
| // "Mutable Constants" trybot check [1] when logically const instances are named |
| // like `kConstants` but for some reason should not be marked `const`. |
| // |
| // [1]: |
| // https://chromium.googlesource.com/chromium/src/+/main/docs/speed/binary_size/android_binary_size_trybot.md#Mutable-Constants |
| // |
| // Usage: |
| // ``` |
| // struct S {}; |
| // S kConstS; // Fails on some trybots. |
| // LOGICALLY_CONST S kAlsoConstS; // OK |
| // |
| // struct LOGICALLY_CONST T {}; |
| // T kConstT; // OK |
| // ``` |
| #if __has_cpp_attribute(gnu::abi_tag) |
| #define LOGICALLY_CONST [[gnu::abi_tag("logically_const")]] |
| #else |
| #define LOGICALLY_CONST |
| #endif |
| |
| // Annotates a function indicating it is cold, but called from hot functions. |
| // Useful when a performance-sensitive function is usually simple, but in edge |
| // cases must fall back to a more complex handler. |
| // |
| // On X86-64 and AArch64, this changes the calling convention so most registers |
| // are callee-saved, reducing register spills in the caller. This can improve |
| // caller performance in the common case, at the cost of pessimizing the callee. |
| // On other platforms, this attribute has no effect as of Clang 20. |
| // |
| // See also: |
| // https://clang.llvm.org/docs/AttributeReference.html#preserve-most |
| // |
| // Usage: |
| // ``` |
| // // Calls to this function will not require most registers to be saved. |
| // PRESERVE_MOST void Func(); |
| // ``` |
| // |
| // Disable `PRESERVE_MOST` in component builds, since `_dl_runtime_resolve()` |
| // clobbers registers on platforms where it's used, and the component build is |
| // not perf-critical anyway; see |
| // https://github.com/llvm/llvm-project/issues/105588. |
| // |
| // Also disable for Win ARM64 due to as-yet-uninvestigated crashes. |
| // TODO(crbug.com/42204008): Investigate, fix, and re-enable. |
| #if __has_cpp_attribute(clang::preserve_most) && \ |
| (defined(ARCH_CPU_ARM64) || defined(ARCH_CPU_X86_64)) && \ |
| !defined(COMPONENT_BUILD) && \ |
| !(BUILDFLAG(IS_WIN) && defined(ARCH_CPU_ARM64)) |
| #define PRESERVE_MOST [[clang::preserve_most]] |
| #else |
| #define PRESERVE_MOST |
| #endif |
| |
| // Annotates a pointer or reference parameter or return value for a member |
| // function as having lifetime intertwined with the instance on which the |
| // function is called. For parameters, the function is assumed to store the |
| // value into the called-on object, so if the referred-to object is later |
| // destroyed, the called-on object is also considered to be dangling. For return |
| // values, the value is assumed to point into the called-on object, so if that |
| // object is destroyed, the returned value is also considered to be dangling. |
| // Useful to diagnose some cases of lifetime errors. |
| // |
| // See also: |
| // https://clang.llvm.org/docs/AttributeReference.html#lifetimebound |
| // |
| // Usage: |
| // ``` |
| // struct S { |
| // S(int* p LIFETIME_BOUND); |
| // int* Get() LIFETIME_BOUND; |
| // }; |
| // S Func1() { |
| // int i = 0; |
| // // The following return will not compile; diagnosed as returning address |
| // // of a stack object. |
| // return S(&i); |
| // } |
| // int* Func2(int* p) { |
| // // The following return will not compile; diagnosed as returning address |
| // // of a local temporary. |
| // return S(p).Get(); |
| // } |
| // ``` |
| #if __has_cpp_attribute(clang::lifetimebound) |
| #define LIFETIME_BOUND [[clang::lifetimebound]] |
| #else |
| #define LIFETIME_BOUND |
| #endif |
| |
| // Annotates a function or variable to indicate that it should have weak |
| // linkage. Useful for library code that wants code linking against it to be |
| // able to override its functionality; inside a single target, this is better |
| // accomplished via virtual methods and other more standard mechanisms. |
| // |
| // Any weak definition of a symbol will be overridden at link time by a non-weak |
| // definition. Marking a `const` or `constexpr` variable weak makes it no longer |
| // be considered a compile-time constant, since its value may be different after |
| // linking. |
| // |
| // Multiple weak definitions of a symbol may exist, in which case the linker is |
| // free to select any when there are no non-weak definitions. Like with symbols |
| // marked `inline`, this can lead to subtle, difficult-to-diagnose bugs if not |
| // all definitions are identical. |
| // |
| // A weak declaration that has no definitions at link time will be linked as if |
| // the corresponding address is null. Therefore library code can use weak |
| // declarations and conditionals to allow consumers to provide optional |
| // customizations. |
| // |
| // See also: |
| // https://clang.llvm.org/docs/AttributeReference.html#weak |
| // |
| // Usage: |
| // ``` |
| // // The following definition defaults `x` to 10, but allows other object |
| // // files to override its value. Thus, despite `constexpr`, `x` is not |
| // // considered a compile-time constant (and cannot be used in a `constexpr` |
| // // context). |
| // extern const int x; |
| // WEAK_SYMBOL constexpr int x = 10; |
| // |
| // // The following declaration allows linking to occur whether a definition |
| // // of `Func()` is provided or not; if none is present, `&Func` will |
| // // evaluate to `nullptr` at runtime. |
| // WEAK_SYMBOL void Func(); |
| // |
| // // The following definition provides a default implementation of `Func2()`, |
| // // but allows other object files to override. |
| // WEAK_SYMBOL void Func2() { ... } |
| // ``` |
| #if __has_cpp_attribute(gnu::weak) |
| #define WEAK_SYMBOL [[gnu::weak]] |
| #else |
| #define WEAK_SYMBOL |
| #endif |
| |
| // Annotates a function indicating that the compiler should not convert calls |
| // within it to tail calls. |
| // |
| // For a callee-side version of this, see `NOT_TAIL_CALLED`. |
| // |
| // See also: |
| // https://clang.llvm.org/docs/AttributeReference.html#disable-tail-calls |
| // Usage: |
| // ``` |
| // DISABLE_TAIL_CALLS void Func() { |
| // // Function calls in this body will not be tail calls. |
| // } |
| // ``` |
| #if __has_cpp_attribute(clang::disable_tail_calls) |
| #define DISABLE_TAIL_CALLS [[clang::disable_tail_calls]] |
| #else |
| #define DISABLE_TAIL_CALLS |
| #endif |
| |
| // Annotates a type or member indicating the minimum possible alignment (one bit |
| // for bitfields, one byte otherwise) should be used. This can be used to |
| // eliminate padding inside objects, at the cost of potentially pessimizing |
| // code, or even generating invalid code (depending on platform restrictions) if |
| // underaligned objects have their addresses taken and passed elsewhere. |
| // |
| // This is similar to the more-broadly-supported `#pragma pack(1)`. |
| // |
| // See also: |
| // https://gcc.gnu.org/onlinedocs/gcc/Common-Variable-Attributes.html#index-packed-variable-attribute |
| // |
| // Usage: |
| // ``` |
| // struct PACKED_OBJ S1 { |
| // int8_t a; // Alignment 1, offset 0, size 1 |
| // int32_t b; // Alignment 1, offset 1 (0 bytes padding), size 4 |
| // }; // Overall alignment 1, 0 bytes trailing padding, overall size 5 |
| // |
| // struct S2 { |
| // int8_t a; // Alignment 1, offset 0, size 1 |
| // int32_t b; // Alignment 4, offset 4 (3 bytes padding), size 4 |
| // int8_t c; // Alignment 1, offset 8 (0 bytes padding), size 1 |
| // PACKED_OBJ int32_t d; // Alignment 1, offset 9 (0 bytes padding), size 4 |
| // }; // Overall alignment 4, 3 bytes trailing padding, overall size 16 |
| // ``` |
| #if __has_cpp_attribute(gnu::packed) |
| #define PACKED_OBJ [[gnu::packed]] |
| #else |
| #define PACKED_OBJ |
| #endif |
| |
| // Annotates a function indicating that the returned pointer will never be null. |
| // This may allow the compiler to assume null checks on the caller side are |
| // unnecessary. |
| // |
| // In practice, this is usually better-handled by returning a value or |
| // reference, which enforce such guarantees at the type level. |
| // |
| // See also: |
| // https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#index-returns_005fnonnull-function-attribute |
| // https://clang.llvm.org/docs/AttributeReference.html#nullability-attributes |
| // |
| // Usage: |
| // ``` |
| // // The following function will never return `nullptr`. |
| // RETURNS_NONNULL int* Func(); |
| // ``` |
| #if __has_cpp_attribute(gnu::returns_nonnull) |
| #define RETURNS_NONNULL [[gnu::returns_nonnull]] |
| #else |
| #define RETURNS_NONNULL |
| #endif |
| |
| // Annotates a function indicating it is const, meaning that it has no |
| // observable side effects and its return value depends only on its arguments. |
| // Const functions may not read external memory other than unchanging objects |
| // (e.g. non-volatile constants), and the compiler is free to replace calls to |
| // them with the return values of earlier calls with the same arguments no |
| // matter what other state might have changed in the meantime. |
| // |
| // This is a much stronger restriction than `const`-qualified functions, and is |
| // rarely appropriate outside small local helpers, which are frequently |
| // inlineable anyway and would not really benefit. |
| // |
| // WARNING: Misusing this attribute can lead to silent miscompilation, UB, and |
| // difficult-to-diagnose bugs. For this and the above reason, usage should be |
| // very rare. |
| // |
| // See also: |
| // https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#index-const-function-attribute |
| // |
| // Usage: |
| // ``` |
| // // The compiler may replace calls to this function with values returned |
| // // from earlier calls, assuming the args match. |
| // CONST_FUNCTION int Func(int); |
| // ``` |
| #if __has_cpp_attribute(gnu::const) |
| #define CONST_FUNCTION [[gnu::const]] |
| #else |
| #define CONST_FUNCTION |
| #endif |
| |
| // Annotates a function indicating it is pure, meaning that it has no observable |
| // side effects. Unlike functions annotated `CONST_FUNCTION`, pure functions may |
| // still read external memory, and thus their return values may change between |
| // calls. `strlen()` and `memcmp()` are examples of pure functions. Useful to |
| // allow folding/reordering calls for optimization purposes. |
| // |
| // WARNING: Misusing this attribute can lead to silent miscompilation, UB, and |
| // difficult-to-diagnose bugs. Because apparently-safe invocations can sometimes |
| // have side effects (especially when invoking "overridable" functionality like |
| // virtual or templated methods), such misuse is far more likely than it seems. |
| // Therefore, this macro should generally be used only in key vocabulary types, |
| // where the perf and ergonomic benefits of callers not needing to worry about |
| // caching results in local variables in hot code outweighs the risks. |
| // |
| // See also: |
| // https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#index-pure-function-attribute |
| // |
| // Usage: |
| // ``` |
| // // Calls to this function may be subject to more aggressive common |
| // // subexpression (CSE) optimization. |
| // PURE_FUNCTION int Func(int); |
| // ``` |
| #if __has_cpp_attribute(gnu::pure) |
| #define PURE_FUNCTION [[gnu::pure]] |
| #else |
| #define PURE_FUNCTION |
| #endif |
| |
| // Annotates a function or class data member indicating it can lead to |
| // out-of-bounds accesses (OOB) if given incorrect inputs. |
| // |
| // For functions, this commonly includes functions which take pointers, sizes, |
| // iterators, sentinels, etc. and cannot fully check their preconditions (e.g. |
| // that the provided pointer actually points to an allocation of at least the |
| // provided size). Useful to diagnose potential misuse via |
| // `-Wunsafe-buffer-usage`, as well as to mark functions potentially in need of |
| // safer alternatives. |
| // |
| // For fields, this would be used to annotate both pointer and size fields that |
| // have not yet been converted to a span. |
| // |
| // All functions or fields annotated with this macro should come with a |
| // `// PRECONDITIONS: ` comment that explains what the caller must guarantee |
| // to ensure safe operation. Callers can then write `// SAFETY: ` comments |
| // explaining why the specific preconditions have been met. |
| // |
| // Ideally, unsafe functions should also be paired with a safer version, e.g. |
| // one that replaces pointer parameters with `span`s; otherwise, document safer |
| // replacement coding patterns callers can migrate to. |
| // |
| // Annotating a function `UNSAFE_BUFFER_USAGE` means all call sites (that do not |
| // disable the warning) must wrap calls in `UNSAFE_BUFFERS()`; see documentation |
| // there. Annotating a field `UNSAFE_BUFFER_USAGE` means that `UNSAFE_BUFFERS()` |
| // must wrap expressions that mutate of the field. |
| // |
| // See also: |
| // https://chromium.googlesource.com/chromium/src/+/main/docs/unsafe_buffers.md |
| // https://clang.llvm.org/docs/SafeBuffers.html |
| // https://clang.llvm.org/docs/DiagnosticsReference.html#wunsafe-buffer-usage |
| // |
| // Usage: |
| // ``` |
| // // Calls to this function must be wrapped in `UNSAFE_BUFFERS()`. |
| // UNSAFE_BUFFER_USAGE void Func(T* input, T* end); |
| // |
| // struct S { |
| // // Changing this pointer requires `UNSAFE_BUFFERS()`. |
| // UNSAFE_BUFFER_USAGE int* p; |
| // }; |
| // ``` |
| #if __has_cpp_attribute(clang::unsafe_buffer_usage) |
| #define UNSAFE_BUFFER_USAGE [[clang::unsafe_buffer_usage]] |
| #else |
| #define UNSAFE_BUFFER_USAGE |
| #endif |
| |
| // Annotates code indicating that it should be permanently exempted from |
| // `-Wunsafe-buffer-usage`. For temporary cases such as migrating callers to |
| // safer patterns, use `UNSAFE_TODO()` instead; see documentation there. |
| // |
| // All calls to functions annotated with `UNSAFE_BUFFER_USAGE` must be marked |
| // with one of these two macros; they can also be used around pointer |
| // arithmetic, pointer subscripting, and the like. |
| // |
| // ** USE OF THIS MACRO SHOULD BE VERY RARE.** Using this macro indicates that |
| // the compiler cannot verify that the code avoids OOB, and manual review is |
| // required. Even with manual review, it's easy for assumptions to change and |
| // security bugs to creep in over time. Prefer safer patterns instead. |
| // |
| // Usage should wrap the minimum necessary code, and *must* include a |
| // `// SAFETY: ...` comment that explains how the code guarantees safety or |
| // meets the requirements of called `UNSAFE_BUFFER_USAGE` functions. Guarantees |
| // must be manually verifiable by the Chrome security team using only local |
| // invariants; contact [email protected] to schedule such a review. Valid |
| // invariants include: |
| // - Runtime conditions or `CHECK()`s nearby |
| // - Invariants guaranteed by types in the surrounding code |
| // - Invariants guaranteed by function calls in the surrounding code |
| // - Caller requirements, if the containing function is itself annotated with |
| // `UNSAFE_BUFFER_USAGE`; this is less safe and should be a last resort |
| // |
| // See also: |
| // https://chromium.googlesource.com/chromium/src/+/main/docs/unsafe_buffers.md |
| // https://clang.llvm.org/docs/SafeBuffers.html |
| // https://clang.llvm.org/docs/DiagnosticsReference.html#wunsafe-buffer-usage |
| // |
| // Usage: |
| // ``` |
| // // The following call will not trigger a compiler warning even if `Func()` |
| // // is annotated `UNSAFE_BUFFER_USAGE`. |
| // return UNSAFE_BUFFERS(Func(input, end)); |
| // ``` |
| // |
| // Test for `__clang__` directly, as there's no `__has_pragma` or similar (see |
| // https://github.com/llvm/llvm-project/issues/51887). |
| #if defined(__clang__) |
| // Disabling `clang-format` allows each `_Pragma` to be on its own line, as |
| // recommended by https://gcc.gnu.org/onlinedocs/cpp/Pragmas.html. |
| // clang-format off |
| #define UNSAFE_BUFFERS(...) \ |
| _Pragma("clang unsafe_buffer_usage begin") \ |
| __VA_ARGS__ \ |
| _Pragma("clang unsafe_buffer_usage end") |
| // clang-format on |
| #else |
| #define UNSAFE_BUFFERS(...) __VA_ARGS__ |
| #endif |
| |
| // Annotates code indicating that it should be temporarily exempted from |
| // `-Wunsafe-buffer-usage`. While this is functionally the same as |
| // `UNSAFE_BUFFERS()`, semantically it indicates that this is for migration |
| // purposes, and should be cleaned up as soon as possible. |
| // |
| // Usage: |
| // ``` |
| // // The following call will not trigger a compiler warning even if `Func()` |
| // // is annotated `UNSAFE_BUFFER_USAGE`. |
| // return UNSAFE_TODO(Func(input, end)); |
| // ``` |
| #define UNSAFE_TODO(...) UNSAFE_BUFFERS(__VA_ARGS__) |
| |
| // Annotates a function restricting its availability based on compile-time |
| // information in the evaluated context. Useful to convert runtime errors to |
| // compile-time errors if functions' arguments are always known at compile time. |
| // |
| // SFINAE and `requires` clauses can restrict function availability based on the |
| // unevaluated context (type information and syntactic correctness). This |
| // provides a similar capability based on the evaluated context (variable |
| // values). If the condition fails, or cannot be determined at compile time, the |
| // function is excluded from the overload set. |
| // |
| // Some use cases could be satisfied without this by marking the function |
| // `consteval` and breaking compile when the condition fails (e.g. via |
| // `CHECK()`/`assert()`). However, `ENABLE_IF_ATTR()` is generally superior: |
| // - Not all desired functions can be made `consteval`; e.g. most |
| // constructors. |
| // - The error message in the macro case is clearer and more actionable. |
| // - `ENABLE_IF_ATTR()` interacts better with template metaprogramming. |
| // |
| // See also: |
| // https://clang.llvm.org/docs/AttributeReference.html#enable-if |
| // https://github.com/chromium/subspace/issues/266 |
| // |
| // Usage: |
| // ``` |
| // void NotConsteval(int a) { |
| // assert(a > 0); |
| // } |
| // consteval void WithoutEnableIf(int a) { |
| // assert(a > 0); |
| // } |
| // void WithEnableIf(int a) ENABLE_IF_ATTR(a > 0, "arg must be positive") {} |
| // void Func(int i) { |
| // // Compiles; assertion fails at runtime. |
| // NotConsteval(-1); |
| // |
| // // Will not compile; diagnosed as not a constant expression. |
| // WithoutEnableIf(-1); |
| // |
| // // Will not compile; diagnosed as no matching function call with |
| // // "note: candidate disabled: arg must be positive". |
| // WithEnableIf(-1); |
| // |
| // // Will not compile (same reason). Marking `Func()` as |
| // // `ENABLE_IF_ATTR(i > 0, ...)` will not help; the compiler's analysis is |
| // // not sufficiently sophisticated to propagate this constraint. |
| // WithEnableIf(i); |
| // } |
| // ``` |
| #if HAS_ATTRIBUTE(enable_if) |
| #define ENABLE_IF_ATTR(cond, msg) __attribute__((enable_if(cond, msg))) |
| #else |
| #define ENABLE_IF_ATTR(cond, msg) |
| #endif |
| |
| #endif // BASE_COMPILER_SPECIFIC_H_ |