[556] | 1 | /****************************************************************************
|
---|
| 2 | **
|
---|
[651] | 3 | ** Copyright (C) 2010 Nokia Corporation and/or its subsidiary(-ies).
|
---|
[556] | 4 | ** All rights reserved.
|
---|
| 5 | ** Contact: Nokia Corporation ([email protected])
|
---|
| 6 | **
|
---|
| 7 | ** This file is part of the QtGui module of the Qt Toolkit.
|
---|
| 8 | **
|
---|
| 9 | ** $QT_BEGIN_LICENSE:LGPL$
|
---|
| 10 | ** Commercial Usage
|
---|
| 11 | ** Licensees holding valid Qt Commercial licenses may use this file in
|
---|
| 12 | ** accordance with the Qt Commercial License Agreement provided with the
|
---|
| 13 | ** Software or, alternatively, in accordance with the terms contained in
|
---|
| 14 | ** a written agreement between you and Nokia.
|
---|
| 15 | **
|
---|
| 16 | ** GNU Lesser General Public License Usage
|
---|
| 17 | ** Alternatively, this file may be used under the terms of the GNU Lesser
|
---|
| 18 | ** General Public License version 2.1 as published by the Free Software
|
---|
| 19 | ** Foundation and appearing in the file LICENSE.LGPL included in the
|
---|
| 20 | ** packaging of this file. Please review the following information to
|
---|
| 21 | ** ensure the GNU Lesser General Public License version 2.1 requirements
|
---|
| 22 | ** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
|
---|
| 23 | **
|
---|
| 24 | ** In addition, as a special exception, Nokia gives you certain additional
|
---|
| 25 | ** rights. These rights are described in the Nokia Qt LGPL Exception
|
---|
| 26 | ** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
|
---|
| 27 | **
|
---|
| 28 | ** GNU General Public License Usage
|
---|
| 29 | ** Alternatively, this file may be used under the terms of the GNU
|
---|
| 30 | ** General Public License version 3.0 as published by the Free Software
|
---|
| 31 | ** Foundation and appearing in the file LICENSE.GPL included in the
|
---|
| 32 | ** packaging of this file. Please review the following information to
|
---|
| 33 | ** ensure the GNU General Public License version 3.0 requirements will be
|
---|
| 34 | ** met: http://www.gnu.org/copyleft/gpl.html.
|
---|
| 35 | **
|
---|
| 36 | ** If you have questions regarding the use of this file, please contact
|
---|
| 37 | ** Nokia at [email protected].
|
---|
| 38 | ** $QT_END_LICENSE$
|
---|
| 39 | **
|
---|
| 40 | ****************************************************************************/
|
---|
| 41 |
|
---|
| 42 | #include "qquaternion.h"
|
---|
| 43 | #include <QtCore/qmath.h>
|
---|
| 44 | #include <QtCore/qvariant.h>
|
---|
| 45 | #include <QtCore/qdebug.h>
|
---|
| 46 |
|
---|
| 47 | QT_BEGIN_NAMESPACE
|
---|
| 48 |
|
---|
| 49 | #ifndef QT_NO_QUATERNION
|
---|
| 50 |
|
---|
| 51 | /*!
|
---|
| 52 | \class QQuaternion
|
---|
| 53 | \brief The QQuaternion class represents a quaternion consisting of a vector and scalar.
|
---|
| 54 | \since 4.6
|
---|
| 55 | \ingroup painting-3D
|
---|
| 56 |
|
---|
| 57 | Quaternions are used to represent rotations in 3D space, and
|
---|
| 58 | consist of a 3D rotation axis specified by the x, y, and z
|
---|
| 59 | coordinates, and a scalar representing the rotation angle.
|
---|
| 60 | */
|
---|
| 61 |
|
---|
| 62 | /*!
|
---|
| 63 | \fn QQuaternion::QQuaternion()
|
---|
| 64 |
|
---|
| 65 | Constructs an identity quaternion, i.e. with coordinates (1, 0, 0, 0).
|
---|
| 66 | */
|
---|
| 67 |
|
---|
| 68 | /*!
|
---|
| 69 | \fn QQuaternion::QQuaternion(qreal scalar, qreal xpos, qreal ypos, qreal zpos)
|
---|
| 70 |
|
---|
| 71 | Constructs a quaternion with the vector (\a xpos, \a ypos, \a zpos)
|
---|
| 72 | and \a scalar.
|
---|
| 73 | */
|
---|
| 74 |
|
---|
| 75 | #ifndef QT_NO_VECTOR3D
|
---|
| 76 |
|
---|
| 77 | /*!
|
---|
| 78 | \fn QQuaternion::QQuaternion(qreal scalar, const QVector3D& vector)
|
---|
| 79 |
|
---|
| 80 | Constructs a quaternion vector from the specified \a vector and
|
---|
| 81 | \a scalar.
|
---|
| 82 |
|
---|
| 83 | \sa vector(), scalar()
|
---|
| 84 | */
|
---|
| 85 |
|
---|
| 86 | /*!
|
---|
| 87 | \fn QVector3D QQuaternion::vector() const
|
---|
| 88 |
|
---|
| 89 | Returns the vector component of this quaternion.
|
---|
| 90 |
|
---|
| 91 | \sa setVector(), scalar()
|
---|
| 92 | */
|
---|
| 93 |
|
---|
| 94 | /*!
|
---|
| 95 | \fn void QQuaternion::setVector(const QVector3D& vector)
|
---|
| 96 |
|
---|
| 97 | Sets the vector component of this quaternion to \a vector.
|
---|
| 98 |
|
---|
| 99 | \sa vector(), setScalar()
|
---|
| 100 | */
|
---|
| 101 |
|
---|
| 102 | #endif
|
---|
| 103 |
|
---|
| 104 | /*!
|
---|
| 105 | \fn void QQuaternion::setVector(qreal x, qreal y, qreal z)
|
---|
| 106 |
|
---|
| 107 | Sets the vector component of this quaternion to (\a x, \a y, \a z).
|
---|
| 108 |
|
---|
| 109 | \sa vector(), setScalar()
|
---|
| 110 | */
|
---|
| 111 |
|
---|
| 112 | #ifndef QT_NO_VECTOR4D
|
---|
| 113 |
|
---|
| 114 | /*!
|
---|
| 115 | \fn QQuaternion::QQuaternion(const QVector4D& vector)
|
---|
| 116 |
|
---|
| 117 | Constructs a quaternion from the components of \a vector.
|
---|
| 118 | */
|
---|
| 119 |
|
---|
| 120 | /*!
|
---|
| 121 | \fn QVector4D QQuaternion::toVector4D() const
|
---|
| 122 |
|
---|
| 123 | Returns this quaternion as a 4D vector.
|
---|
| 124 | */
|
---|
| 125 |
|
---|
| 126 | #endif
|
---|
| 127 |
|
---|
| 128 | /*!
|
---|
| 129 | \fn bool QQuaternion::isNull() const
|
---|
| 130 |
|
---|
| 131 | Returns true if the x, y, z, and scalar components of this
|
---|
| 132 | quaternion are set to 0.0; otherwise returns false.
|
---|
| 133 | */
|
---|
| 134 |
|
---|
| 135 | /*!
|
---|
| 136 | \fn bool QQuaternion::isIdentity() const
|
---|
| 137 |
|
---|
| 138 | Returns true if the x, y, and z components of this
|
---|
| 139 | quaternion are set to 0.0, and the scalar component is set
|
---|
| 140 | to 1.0; otherwise returns false.
|
---|
| 141 | */
|
---|
| 142 |
|
---|
| 143 | /*!
|
---|
| 144 | \fn qreal QQuaternion::x() const
|
---|
| 145 |
|
---|
| 146 | Returns the x coordinate of this quaternion's vector.
|
---|
| 147 |
|
---|
| 148 | \sa setX(), y(), z(), scalar()
|
---|
| 149 | */
|
---|
| 150 |
|
---|
| 151 | /*!
|
---|
| 152 | \fn qreal QQuaternion::y() const
|
---|
| 153 |
|
---|
| 154 | Returns the y coordinate of this quaternion's vector.
|
---|
| 155 |
|
---|
| 156 | \sa setY(), x(), z(), scalar()
|
---|
| 157 | */
|
---|
| 158 |
|
---|
| 159 | /*!
|
---|
| 160 | \fn qreal QQuaternion::z() const
|
---|
| 161 |
|
---|
| 162 | Returns the z coordinate of this quaternion's vector.
|
---|
| 163 |
|
---|
| 164 | \sa setZ(), x(), y(), scalar()
|
---|
| 165 | */
|
---|
| 166 |
|
---|
| 167 | /*!
|
---|
| 168 | \fn qreal QQuaternion::scalar() const
|
---|
| 169 |
|
---|
| 170 | Returns the scalar component of this quaternion.
|
---|
| 171 |
|
---|
| 172 | \sa setScalar(), x(), y(), z()
|
---|
| 173 | */
|
---|
| 174 |
|
---|
| 175 | /*!
|
---|
| 176 | \fn void QQuaternion::setX(qreal x)
|
---|
| 177 |
|
---|
| 178 | Sets the x coordinate of this quaternion's vector to the given
|
---|
| 179 | \a x coordinate.
|
---|
| 180 |
|
---|
| 181 | \sa x(), setY(), setZ(), setScalar()
|
---|
| 182 | */
|
---|
| 183 |
|
---|
| 184 | /*!
|
---|
| 185 | \fn void QQuaternion::setY(qreal y)
|
---|
| 186 |
|
---|
| 187 | Sets the y coordinate of this quaternion's vector to the given
|
---|
| 188 | \a y coordinate.
|
---|
| 189 |
|
---|
| 190 | \sa y(), setX(), setZ(), setScalar()
|
---|
| 191 | */
|
---|
| 192 |
|
---|
| 193 | /*!
|
---|
| 194 | \fn void QQuaternion::setZ(qreal z)
|
---|
| 195 |
|
---|
| 196 | Sets the z coordinate of this quaternion's vector to the given
|
---|
| 197 | \a z coordinate.
|
---|
| 198 |
|
---|
| 199 | \sa z(), setX(), setY(), setScalar()
|
---|
| 200 | */
|
---|
| 201 |
|
---|
| 202 | /*!
|
---|
| 203 | \fn void QQuaternion::setScalar(qreal scalar)
|
---|
| 204 |
|
---|
| 205 | Sets the scalar component of this quaternion to \a scalar.
|
---|
| 206 |
|
---|
| 207 | \sa scalar(), setX(), setY(), setZ()
|
---|
| 208 | */
|
---|
| 209 |
|
---|
| 210 | /*!
|
---|
| 211 | Returns the length of the quaternion. This is also called the "norm".
|
---|
| 212 |
|
---|
| 213 | \sa lengthSquared(), normalized()
|
---|
| 214 | */
|
---|
| 215 | qreal QQuaternion::length() const
|
---|
| 216 | {
|
---|
| 217 | return qSqrt(xp * xp + yp * yp + zp * zp + wp * wp);
|
---|
| 218 | }
|
---|
| 219 |
|
---|
| 220 | /*!
|
---|
| 221 | Returns the squared length of the quaternion.
|
---|
| 222 |
|
---|
| 223 | \sa length()
|
---|
| 224 | */
|
---|
| 225 | qreal QQuaternion::lengthSquared() const
|
---|
| 226 | {
|
---|
| 227 | return xp * xp + yp * yp + zp * zp + wp * wp;
|
---|
| 228 | }
|
---|
| 229 |
|
---|
| 230 | /*!
|
---|
| 231 | Returns the normalized unit form of this quaternion.
|
---|
| 232 |
|
---|
| 233 | If this quaternion is null, then a null quaternion is returned.
|
---|
| 234 | If the length of the quaternion is very close to 1, then the quaternion
|
---|
| 235 | will be returned as-is. Otherwise the normalized form of the
|
---|
| 236 | quaternion of length 1 will be returned.
|
---|
| 237 |
|
---|
| 238 | \sa length(), normalize()
|
---|
| 239 | */
|
---|
| 240 | QQuaternion QQuaternion::normalized() const
|
---|
| 241 | {
|
---|
| 242 | // Need some extra precision if the length is very small.
|
---|
| 243 | double len = double(xp) * double(xp) +
|
---|
| 244 | double(yp) * double(yp) +
|
---|
| 245 | double(zp) * double(zp) +
|
---|
| 246 | double(wp) * double(wp);
|
---|
| 247 | if (qFuzzyIsNull(len - 1.0f))
|
---|
| 248 | return *this;
|
---|
| 249 | else if (!qFuzzyIsNull(len))
|
---|
| 250 | return *this / qSqrt(len);
|
---|
| 251 | else
|
---|
| 252 | return QQuaternion(0.0f, 0.0f, 0.0f, 0.0f);
|
---|
| 253 | }
|
---|
| 254 |
|
---|
| 255 | /*!
|
---|
| 256 | Normalizes the currect quaternion in place. Nothing happens if this
|
---|
| 257 | is a null quaternion or the length of the quaternion is very close to 1.
|
---|
| 258 |
|
---|
| 259 | \sa length(), normalized()
|
---|
| 260 | */
|
---|
| 261 | void QQuaternion::normalize()
|
---|
| 262 | {
|
---|
| 263 | // Need some extra precision if the length is very small.
|
---|
| 264 | double len = double(xp) * double(xp) +
|
---|
| 265 | double(yp) * double(yp) +
|
---|
| 266 | double(zp) * double(zp) +
|
---|
| 267 | double(wp) * double(wp);
|
---|
| 268 | if (qFuzzyIsNull(len - 1.0f) || qFuzzyIsNull(len))
|
---|
| 269 | return;
|
---|
| 270 |
|
---|
| 271 | len = qSqrt(len);
|
---|
| 272 |
|
---|
| 273 | xp /= len;
|
---|
| 274 | yp /= len;
|
---|
| 275 | zp /= len;
|
---|
| 276 | wp /= len;
|
---|
| 277 | }
|
---|
| 278 |
|
---|
| 279 | /*!
|
---|
| 280 | \fn QQuaternion QQuaternion::conjugate() const
|
---|
| 281 |
|
---|
| 282 | Returns the conjugate of this quaternion, which is
|
---|
| 283 | (-x, -y, -z, scalar).
|
---|
| 284 | */
|
---|
| 285 |
|
---|
| 286 | /*!
|
---|
| 287 | Rotates \a vector with this quaternion to produce a new vector
|
---|
| 288 | in 3D space. The following code:
|
---|
| 289 |
|
---|
| 290 | \code
|
---|
| 291 | QVector3D result = q.rotatedVector(vector);
|
---|
| 292 | \endcode
|
---|
| 293 |
|
---|
| 294 | is equivalent to the following:
|
---|
| 295 |
|
---|
| 296 | \code
|
---|
| 297 | QVector3D result = (q * QQuaternion(0, vector) * q.conjugate()).vector();
|
---|
| 298 | \endcode
|
---|
| 299 | */
|
---|
| 300 | QVector3D QQuaternion::rotatedVector(const QVector3D& vector) const
|
---|
| 301 | {
|
---|
| 302 | return (*this * QQuaternion(0, vector) * conjugate()).vector();
|
---|
| 303 | }
|
---|
| 304 |
|
---|
| 305 | /*!
|
---|
| 306 | \fn QQuaternion &QQuaternion::operator+=(const QQuaternion &quaternion)
|
---|
| 307 |
|
---|
| 308 | Adds the given \a quaternion to this quaternion and returns a reference to
|
---|
| 309 | this quaternion.
|
---|
| 310 |
|
---|
| 311 | \sa operator-=()
|
---|
| 312 | */
|
---|
| 313 |
|
---|
| 314 | /*!
|
---|
| 315 | \fn QQuaternion &QQuaternion::operator-=(const QQuaternion &quaternion)
|
---|
| 316 |
|
---|
| 317 | Subtracts the given \a quaternion from this quaternion and returns a
|
---|
| 318 | reference to this quaternion.
|
---|
| 319 |
|
---|
| 320 | \sa operator+=()
|
---|
| 321 | */
|
---|
| 322 |
|
---|
| 323 | /*!
|
---|
| 324 | \fn QQuaternion &QQuaternion::operator*=(qreal factor)
|
---|
| 325 |
|
---|
| 326 | Multiplies this quaternion's components by the given \a factor, and
|
---|
| 327 | returns a reference to this quaternion.
|
---|
| 328 |
|
---|
| 329 | \sa operator/=()
|
---|
| 330 | */
|
---|
| 331 |
|
---|
| 332 | /*!
|
---|
| 333 | \fn QQuaternion &QQuaternion::operator*=(const QQuaternion &quaternion)
|
---|
| 334 |
|
---|
| 335 | Multiplies this quaternion by \a quaternion and returns a reference
|
---|
| 336 | to this quaternion.
|
---|
| 337 | */
|
---|
| 338 |
|
---|
| 339 | /*!
|
---|
| 340 | \fn QQuaternion &QQuaternion::operator/=(qreal divisor)
|
---|
| 341 |
|
---|
| 342 | Divides this quaternion's components by the given \a divisor, and
|
---|
| 343 | returns a reference to this quaternion.
|
---|
| 344 |
|
---|
| 345 | \sa operator*=()
|
---|
| 346 | */
|
---|
| 347 |
|
---|
| 348 | #ifndef QT_NO_VECTOR3D
|
---|
| 349 |
|
---|
| 350 | /*!
|
---|
| 351 | Creates a normalized quaternion that corresponds to rotating through
|
---|
| 352 | \a angle degrees about the specified 3D \a axis.
|
---|
| 353 | */
|
---|
| 354 | QQuaternion QQuaternion::fromAxisAndAngle(const QVector3D& axis, qreal angle)
|
---|
| 355 | {
|
---|
| 356 | // Algorithm from:
|
---|
| 357 | // http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q56
|
---|
| 358 | // We normalize the result just in case the values are close
|
---|
| 359 | // to zero, as suggested in the above FAQ.
|
---|
| 360 | qreal a = (angle / 2.0f) * M_PI / 180.0f;
|
---|
| 361 | qreal s = qSin(a);
|
---|
| 362 | qreal c = qCos(a);
|
---|
| 363 | QVector3D ax = axis.normalized();
|
---|
| 364 | return QQuaternion(c, ax.x() * s, ax.y() * s, ax.z() * s).normalized();
|
---|
| 365 | }
|
---|
| 366 |
|
---|
| 367 | #endif
|
---|
| 368 |
|
---|
| 369 | /*!
|
---|
| 370 | Creates a normalized quaternion that corresponds to rotating through
|
---|
| 371 | \a angle degrees about the 3D axis (\a x, \a y, \a z).
|
---|
| 372 | */
|
---|
| 373 | QQuaternion QQuaternion::fromAxisAndAngle
|
---|
| 374 | (qreal x, qreal y, qreal z, qreal angle)
|
---|
| 375 | {
|
---|
| 376 | qreal length = qSqrt(x * x + y * y + z * z);
|
---|
| 377 | if (!qFuzzyIsNull(length - 1.0f) && !qFuzzyIsNull(length)) {
|
---|
| 378 | x /= length;
|
---|
| 379 | y /= length;
|
---|
| 380 | z /= length;
|
---|
| 381 | }
|
---|
| 382 | qreal a = (angle / 2.0f) * M_PI / 180.0f;
|
---|
| 383 | qreal s = qSin(a);
|
---|
| 384 | qreal c = qCos(a);
|
---|
| 385 | return QQuaternion(c, x * s, y * s, z * s).normalized();
|
---|
| 386 | }
|
---|
| 387 |
|
---|
| 388 | /*!
|
---|
| 389 | \fn bool operator==(const QQuaternion &q1, const QQuaternion &q2)
|
---|
| 390 | \relates QQuaternion
|
---|
| 391 |
|
---|
| 392 | Returns true if \a q1 is equal to \a q2; otherwise returns false.
|
---|
| 393 | This operator uses an exact floating-point comparison.
|
---|
| 394 | */
|
---|
| 395 |
|
---|
| 396 | /*!
|
---|
| 397 | \fn bool operator!=(const QQuaternion &q1, const QQuaternion &q2)
|
---|
| 398 | \relates QQuaternion
|
---|
| 399 |
|
---|
| 400 | Returns true if \a q1 is not equal to \a q2; otherwise returns false.
|
---|
| 401 | This operator uses an exact floating-point comparison.
|
---|
| 402 | */
|
---|
| 403 |
|
---|
| 404 | /*!
|
---|
| 405 | \fn const QQuaternion operator+(const QQuaternion &q1, const QQuaternion &q2)
|
---|
| 406 | \relates QQuaternion
|
---|
| 407 |
|
---|
| 408 | Returns a QQuaternion object that is the sum of the given quaternions,
|
---|
| 409 | \a q1 and \a q2; each component is added separately.
|
---|
| 410 |
|
---|
| 411 | \sa QQuaternion::operator+=()
|
---|
| 412 | */
|
---|
| 413 |
|
---|
| 414 | /*!
|
---|
| 415 | \fn const QQuaternion operator-(const QQuaternion &q1, const QQuaternion &q2)
|
---|
| 416 | \relates QQuaternion
|
---|
| 417 |
|
---|
| 418 | Returns a QQuaternion object that is formed by subtracting
|
---|
| 419 | \a q2 from \a q1; each component is subtracted separately.
|
---|
| 420 |
|
---|
| 421 | \sa QQuaternion::operator-=()
|
---|
| 422 | */
|
---|
| 423 |
|
---|
| 424 | /*!
|
---|
| 425 | \fn const QQuaternion operator*(qreal factor, const QQuaternion &quaternion)
|
---|
| 426 | \relates QQuaternion
|
---|
| 427 |
|
---|
| 428 | Returns a copy of the given \a quaternion, multiplied by the
|
---|
| 429 | given \a factor.
|
---|
| 430 |
|
---|
| 431 | \sa QQuaternion::operator*=()
|
---|
| 432 | */
|
---|
| 433 |
|
---|
| 434 | /*!
|
---|
| 435 | \fn const QQuaternion operator*(const QQuaternion &quaternion, qreal factor)
|
---|
| 436 | \relates QQuaternion
|
---|
| 437 |
|
---|
| 438 | Returns a copy of the given \a quaternion, multiplied by the
|
---|
| 439 | given \a factor.
|
---|
| 440 |
|
---|
| 441 | \sa QQuaternion::operator*=()
|
---|
| 442 | */
|
---|
| 443 |
|
---|
| 444 | /*!
|
---|
| 445 | \fn const QQuaternion operator*(const QQuaternion &q1, const QQuaternion& q2)
|
---|
| 446 | \relates QQuaternion
|
---|
| 447 |
|
---|
| 448 | Multiplies \a q1 and \a q2 using quaternion multiplication.
|
---|
| 449 | The result corresponds to applying both of the rotations specified
|
---|
| 450 | by \a q1 and \a q2.
|
---|
| 451 |
|
---|
| 452 | \sa QQuaternion::operator*=()
|
---|
| 453 | */
|
---|
| 454 |
|
---|
| 455 | /*!
|
---|
| 456 | \fn const QQuaternion operator-(const QQuaternion &quaternion)
|
---|
| 457 | \relates QQuaternion
|
---|
| 458 | \overload
|
---|
| 459 |
|
---|
| 460 | Returns a QQuaternion object that is formed by changing the sign of
|
---|
| 461 | all three components of the given \a quaternion.
|
---|
| 462 |
|
---|
| 463 | Equivalent to \c {QQuaternion(0,0,0,0) - quaternion}.
|
---|
| 464 | */
|
---|
| 465 |
|
---|
| 466 | /*!
|
---|
| 467 | \fn const QQuaternion operator/(const QQuaternion &quaternion, qreal divisor)
|
---|
| 468 | \relates QQuaternion
|
---|
| 469 |
|
---|
| 470 | Returns the QQuaternion object formed by dividing all components of
|
---|
| 471 | the given \a quaternion by the given \a divisor.
|
---|
| 472 |
|
---|
| 473 | \sa QQuaternion::operator/=()
|
---|
| 474 | */
|
---|
| 475 |
|
---|
| 476 | /*!
|
---|
| 477 | \fn bool qFuzzyCompare(const QQuaternion& q1, const QQuaternion& q2)
|
---|
| 478 | \relates QQuaternion
|
---|
| 479 |
|
---|
| 480 | Returns true if \a q1 and \a q2 are equal, allowing for a small
|
---|
| 481 | fuzziness factor for floating-point comparisons; false otherwise.
|
---|
| 482 | */
|
---|
| 483 |
|
---|
| 484 | /*!
|
---|
| 485 | Interpolates along the shortest spherical path between the
|
---|
| 486 | rotational positions \a q1 and \a q2. The value \a t should
|
---|
| 487 | be between 0 and 1, indicating the spherical distance to travel
|
---|
| 488 | between \a q1 and \a q2.
|
---|
| 489 |
|
---|
| 490 | If \a t is less than or equal to 0, then \a q1 will be returned.
|
---|
| 491 | If \a t is greater than or equal to 1, then \a q2 will be returned.
|
---|
| 492 |
|
---|
| 493 | \sa nlerp()
|
---|
| 494 | */
|
---|
| 495 | QQuaternion QQuaternion::slerp
|
---|
| 496 | (const QQuaternion& q1, const QQuaternion& q2, qreal t)
|
---|
| 497 | {
|
---|
| 498 | // Handle the easy cases first.
|
---|
| 499 | if (t <= 0.0f)
|
---|
| 500 | return q1;
|
---|
| 501 | else if (t >= 1.0f)
|
---|
| 502 | return q2;
|
---|
| 503 |
|
---|
| 504 | // Determine the angle between the two quaternions.
|
---|
| 505 | QQuaternion q2b;
|
---|
| 506 | qreal dot;
|
---|
| 507 | dot = q1.xp * q2.xp + q1.yp * q2.yp + q1.zp * q2.zp + q1.wp * q2.wp;
|
---|
| 508 | if (dot >= 0.0f) {
|
---|
| 509 | q2b = q2;
|
---|
| 510 | } else {
|
---|
| 511 | q2b = -q2;
|
---|
| 512 | dot = -dot;
|
---|
| 513 | }
|
---|
| 514 |
|
---|
| 515 | // Get the scale factors. If they are too small,
|
---|
| 516 | // then revert to simple linear interpolation.
|
---|
| 517 | qreal factor1 = 1.0f - t;
|
---|
| 518 | qreal factor2 = t;
|
---|
| 519 | if ((1.0f - dot) > 0.0000001) {
|
---|
| 520 | qreal angle = qreal(qAcos(dot));
|
---|
| 521 | qreal sinOfAngle = qreal(qSin(angle));
|
---|
| 522 | if (sinOfAngle > 0.0000001) {
|
---|
| 523 | factor1 = qreal(qSin((1.0f - t) * angle)) / sinOfAngle;
|
---|
| 524 | factor2 = qreal(qSin(t * angle)) / sinOfAngle;
|
---|
| 525 | }
|
---|
| 526 | }
|
---|
| 527 |
|
---|
| 528 | // Construct the result quaternion.
|
---|
| 529 | return q1 * factor1 + q2b * factor2;
|
---|
| 530 | }
|
---|
| 531 |
|
---|
| 532 | /*!
|
---|
| 533 | Interpolates along the shortest linear path between the rotational
|
---|
| 534 | positions \a q1 and \a q2. The value \a t should be between 0 and 1,
|
---|
| 535 | indicating the distance to travel between \a q1 and \a q2.
|
---|
| 536 | The result will be normalized().
|
---|
| 537 |
|
---|
| 538 | If \a t is less than or equal to 0, then \a q1 will be returned.
|
---|
| 539 | If \a t is greater than or equal to 1, then \a q2 will be returned.
|
---|
| 540 |
|
---|
| 541 | The nlerp() function is typically faster than slerp() and will
|
---|
| 542 | give approximate results to spherical interpolation that are
|
---|
| 543 | good enough for some applications.
|
---|
| 544 |
|
---|
| 545 | \sa slerp()
|
---|
| 546 | */
|
---|
| 547 | QQuaternion QQuaternion::nlerp
|
---|
| 548 | (const QQuaternion& q1, const QQuaternion& q2, qreal t)
|
---|
| 549 | {
|
---|
| 550 | // Handle the easy cases first.
|
---|
| 551 | if (t <= 0.0f)
|
---|
| 552 | return q1;
|
---|
| 553 | else if (t >= 1.0f)
|
---|
| 554 | return q2;
|
---|
| 555 |
|
---|
| 556 | // Determine the angle between the two quaternions.
|
---|
| 557 | QQuaternion q2b;
|
---|
| 558 | qreal dot;
|
---|
| 559 | dot = q1.xp * q2.xp + q1.yp * q2.yp + q1.zp * q2.zp + q1.wp * q2.wp;
|
---|
| 560 | if (dot >= 0.0f)
|
---|
| 561 | q2b = q2;
|
---|
| 562 | else
|
---|
| 563 | q2b = -q2;
|
---|
| 564 |
|
---|
| 565 | // Perform the linear interpolation.
|
---|
| 566 | return (q1 * (1.0f - t) + q2b * t).normalized();
|
---|
| 567 | }
|
---|
| 568 |
|
---|
| 569 | /*!
|
---|
| 570 | Returns the quaternion as a QVariant.
|
---|
| 571 | */
|
---|
| 572 | QQuaternion::operator QVariant() const
|
---|
| 573 | {
|
---|
| 574 | return QVariant(QVariant::Quaternion, this);
|
---|
| 575 | }
|
---|
| 576 |
|
---|
| 577 | #ifndef QT_NO_DEBUG_STREAM
|
---|
| 578 |
|
---|
| 579 | QDebug operator<<(QDebug dbg, const QQuaternion &q)
|
---|
| 580 | {
|
---|
| 581 | dbg.nospace() << "QQuaternion(scalar:" << q.scalar()
|
---|
| 582 | << ", vector:(" << q.x() << ", "
|
---|
| 583 | << q.y() << ", " << q.z() << "))";
|
---|
| 584 | return dbg.space();
|
---|
| 585 | }
|
---|
| 586 |
|
---|
| 587 | #endif
|
---|
| 588 |
|
---|
| 589 | #ifndef QT_NO_DATASTREAM
|
---|
| 590 |
|
---|
| 591 | /*!
|
---|
| 592 | \fn QDataStream &operator<<(QDataStream &stream, const QQuaternion &quaternion)
|
---|
| 593 | \relates QQuaternion
|
---|
| 594 |
|
---|
| 595 | Writes the given \a quaternion to the given \a stream and returns a
|
---|
| 596 | reference to the stream.
|
---|
| 597 |
|
---|
| 598 | \sa {Format of the QDataStream Operators}
|
---|
| 599 | */
|
---|
| 600 |
|
---|
| 601 | QDataStream &operator<<(QDataStream &stream, const QQuaternion &quaternion)
|
---|
| 602 | {
|
---|
| 603 | stream << double(quaternion.scalar()) << double(quaternion.x())
|
---|
| 604 | << double(quaternion.y()) << double(quaternion.z());
|
---|
| 605 | return stream;
|
---|
| 606 | }
|
---|
| 607 |
|
---|
| 608 | /*!
|
---|
| 609 | \fn QDataStream &operator>>(QDataStream &stream, QQuaternion &quaternion)
|
---|
| 610 | \relates QQuaternion
|
---|
| 611 |
|
---|
| 612 | Reads a quaternion from the given \a stream into the given \a quaternion
|
---|
| 613 | and returns a reference to the stream.
|
---|
| 614 |
|
---|
| 615 | \sa {Format of the QDataStream Operators}
|
---|
| 616 | */
|
---|
| 617 |
|
---|
| 618 | QDataStream &operator>>(QDataStream &stream, QQuaternion &quaternion)
|
---|
| 619 | {
|
---|
| 620 | double scalar, x, y, z;
|
---|
| 621 | stream >> scalar;
|
---|
| 622 | stream >> x;
|
---|
| 623 | stream >> y;
|
---|
| 624 | stream >> z;
|
---|
| 625 | quaternion.setScalar(qreal(scalar));
|
---|
| 626 | quaternion.setX(qreal(x));
|
---|
| 627 | quaternion.setY(qreal(y));
|
---|
| 628 | quaternion.setZ(qreal(z));
|
---|
| 629 | return stream;
|
---|
| 630 | }
|
---|
| 631 |
|
---|
| 632 | #endif // QT_NO_DATASTREAM
|
---|
| 633 |
|
---|
| 634 | #endif
|
---|
| 635 |
|
---|
| 636 | QT_END_NAMESPACE
|
---|