1 | /****************************************************************************
|
---|
2 | **
|
---|
3 | ** Copyright (C) 2009 Nokia Corporation and/or its subsidiary(-ies).
|
---|
4 | ** All rights reserved.
|
---|
5 | ** Contact: Nokia Corporation ([email protected])
|
---|
6 | **
|
---|
7 | ** This file is part of the QtGui module of the Qt Toolkit.
|
---|
8 | **
|
---|
9 | ** $QT_BEGIN_LICENSE:LGPL$
|
---|
10 | ** Commercial Usage
|
---|
11 | ** Licensees holding valid Qt Commercial licenses may use this file in
|
---|
12 | ** accordance with the Qt Commercial License Agreement provided with the
|
---|
13 | ** Software or, alternatively, in accordance with the terms contained in
|
---|
14 | ** a written agreement between you and Nokia.
|
---|
15 | **
|
---|
16 | ** GNU Lesser General Public License Usage
|
---|
17 | ** Alternatively, this file may be used under the terms of the GNU Lesser
|
---|
18 | ** General Public License version 2.1 as published by the Free Software
|
---|
19 | ** Foundation and appearing in the file LICENSE.LGPL included in the
|
---|
20 | ** packaging of this file. Please review the following information to
|
---|
21 | ** ensure the GNU Lesser General Public License version 2.1 requirements
|
---|
22 | ** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
|
---|
23 | **
|
---|
24 | ** In addition, as a special exception, Nokia gives you certain additional
|
---|
25 | ** rights. These rights are described in the Nokia Qt LGPL Exception
|
---|
26 | ** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
|
---|
27 | **
|
---|
28 | ** GNU General Public License Usage
|
---|
29 | ** Alternatively, this file may be used under the terms of the GNU
|
---|
30 | ** General Public License version 3.0 as published by the Free Software
|
---|
31 | ** Foundation and appearing in the file LICENSE.GPL included in the
|
---|
32 | ** packaging of this file. Please review the following information to
|
---|
33 | ** ensure the GNU General Public License version 3.0 requirements will be
|
---|
34 | ** met: http://www.gnu.org/copyleft/gpl.html.
|
---|
35 | **
|
---|
36 | ** If you have questions regarding the use of this file, please contact
|
---|
37 | ** Nokia at [email protected].
|
---|
38 | ** $QT_END_LICENSE$
|
---|
39 | **
|
---|
40 | ****************************************************************************/
|
---|
41 |
|
---|
42 | #include "qquaternion.h"
|
---|
43 | #include <QtCore/qmath.h>
|
---|
44 | #include <QtCore/qvariant.h>
|
---|
45 | #include <QtCore/qdebug.h>
|
---|
46 |
|
---|
47 | QT_BEGIN_NAMESPACE
|
---|
48 |
|
---|
49 | #ifndef QT_NO_QUATERNION
|
---|
50 |
|
---|
51 | /*!
|
---|
52 | \class QQuaternion
|
---|
53 | \brief The QQuaternion class represents a quaternion consisting of a vector and scalar.
|
---|
54 | \since 4.6
|
---|
55 | \ingroup painting-3D
|
---|
56 |
|
---|
57 | Quaternions are used to represent rotations in 3D space, and
|
---|
58 | consist of a 3D rotation axis specified by the x, y, and z
|
---|
59 | coordinates, and a scalar representing the rotation angle.
|
---|
60 | */
|
---|
61 |
|
---|
62 | /*!
|
---|
63 | \fn QQuaternion::QQuaternion()
|
---|
64 |
|
---|
65 | Constructs an identity quaternion, i.e. with coordinates (1, 0, 0, 0).
|
---|
66 | */
|
---|
67 |
|
---|
68 | /*!
|
---|
69 | \fn QQuaternion::QQuaternion(qreal scalar, qreal xpos, qreal ypos, qreal zpos)
|
---|
70 |
|
---|
71 | Constructs a quaternion with the vector (\a xpos, \a ypos, \a zpos)
|
---|
72 | and \a scalar.
|
---|
73 | */
|
---|
74 |
|
---|
75 | #ifndef QT_NO_VECTOR3D
|
---|
76 |
|
---|
77 | /*!
|
---|
78 | \fn QQuaternion::QQuaternion(qreal scalar, const QVector3D& vector)
|
---|
79 |
|
---|
80 | Constructs a quaternion vector from the specified \a vector and
|
---|
81 | \a scalar.
|
---|
82 |
|
---|
83 | \sa vector(), scalar()
|
---|
84 | */
|
---|
85 |
|
---|
86 | /*!
|
---|
87 | \fn QVector3D QQuaternion::vector() const
|
---|
88 |
|
---|
89 | Returns the vector component of this quaternion.
|
---|
90 |
|
---|
91 | \sa setVector(), scalar()
|
---|
92 | */
|
---|
93 |
|
---|
94 | /*!
|
---|
95 | \fn void QQuaternion::setVector(const QVector3D& vector)
|
---|
96 |
|
---|
97 | Sets the vector component of this quaternion to \a vector.
|
---|
98 |
|
---|
99 | \sa vector(), setScalar()
|
---|
100 | */
|
---|
101 |
|
---|
102 | #endif
|
---|
103 |
|
---|
104 | /*!
|
---|
105 | \fn void QQuaternion::setVector(qreal x, qreal y, qreal z)
|
---|
106 |
|
---|
107 | Sets the vector component of this quaternion to (\a x, \a y, \a z).
|
---|
108 |
|
---|
109 | \sa vector(), setScalar()
|
---|
110 | */
|
---|
111 |
|
---|
112 | #ifndef QT_NO_VECTOR4D
|
---|
113 |
|
---|
114 | /*!
|
---|
115 | \fn QQuaternion::QQuaternion(const QVector4D& vector)
|
---|
116 |
|
---|
117 | Constructs a quaternion from the components of \a vector.
|
---|
118 | */
|
---|
119 |
|
---|
120 | /*!
|
---|
121 | \fn QVector4D QQuaternion::toVector4D() const
|
---|
122 |
|
---|
123 | Returns this quaternion as a 4D vector.
|
---|
124 | */
|
---|
125 |
|
---|
126 | #endif
|
---|
127 |
|
---|
128 | /*!
|
---|
129 | \fn bool QQuaternion::isNull() const
|
---|
130 |
|
---|
131 | Returns true if the x, y, z, and scalar components of this
|
---|
132 | quaternion are set to 0.0; otherwise returns false.
|
---|
133 | */
|
---|
134 |
|
---|
135 | /*!
|
---|
136 | \fn bool QQuaternion::isIdentity() const
|
---|
137 |
|
---|
138 | Returns true if the x, y, and z components of this
|
---|
139 | quaternion are set to 0.0, and the scalar component is set
|
---|
140 | to 1.0; otherwise returns false.
|
---|
141 | */
|
---|
142 |
|
---|
143 | /*!
|
---|
144 | \fn qreal QQuaternion::x() const
|
---|
145 |
|
---|
146 | Returns the x coordinate of this quaternion's vector.
|
---|
147 |
|
---|
148 | \sa setX(), y(), z(), scalar()
|
---|
149 | */
|
---|
150 |
|
---|
151 | /*!
|
---|
152 | \fn qreal QQuaternion::y() const
|
---|
153 |
|
---|
154 | Returns the y coordinate of this quaternion's vector.
|
---|
155 |
|
---|
156 | \sa setY(), x(), z(), scalar()
|
---|
157 | */
|
---|
158 |
|
---|
159 | /*!
|
---|
160 | \fn qreal QQuaternion::z() const
|
---|
161 |
|
---|
162 | Returns the z coordinate of this quaternion's vector.
|
---|
163 |
|
---|
164 | \sa setZ(), x(), y(), scalar()
|
---|
165 | */
|
---|
166 |
|
---|
167 | /*!
|
---|
168 | \fn qreal QQuaternion::scalar() const
|
---|
169 |
|
---|
170 | Returns the scalar component of this quaternion.
|
---|
171 |
|
---|
172 | \sa setScalar(), x(), y(), z()
|
---|
173 | */
|
---|
174 |
|
---|
175 | /*!
|
---|
176 | \fn void QQuaternion::setX(qreal x)
|
---|
177 |
|
---|
178 | Sets the x coordinate of this quaternion's vector to the given
|
---|
179 | \a x coordinate.
|
---|
180 |
|
---|
181 | \sa x(), setY(), setZ(), setScalar()
|
---|
182 | */
|
---|
183 |
|
---|
184 | /*!
|
---|
185 | \fn void QQuaternion::setY(qreal y)
|
---|
186 |
|
---|
187 | Sets the y coordinate of this quaternion's vector to the given
|
---|
188 | \a y coordinate.
|
---|
189 |
|
---|
190 | \sa y(), setX(), setZ(), setScalar()
|
---|
191 | */
|
---|
192 |
|
---|
193 | /*!
|
---|
194 | \fn void QQuaternion::setZ(qreal z)
|
---|
195 |
|
---|
196 | Sets the z coordinate of this quaternion's vector to the given
|
---|
197 | \a z coordinate.
|
---|
198 |
|
---|
199 | \sa z(), setX(), setY(), setScalar()
|
---|
200 | */
|
---|
201 |
|
---|
202 | /*!
|
---|
203 | \fn void QQuaternion::setScalar(qreal scalar)
|
---|
204 |
|
---|
205 | Sets the scalar component of this quaternion to \a scalar.
|
---|
206 |
|
---|
207 | \sa scalar(), setX(), setY(), setZ()
|
---|
208 | */
|
---|
209 |
|
---|
210 | /*!
|
---|
211 | Returns the length of the quaternion. This is also called the "norm".
|
---|
212 |
|
---|
213 | \sa lengthSquared(), normalized()
|
---|
214 | */
|
---|
215 | qreal QQuaternion::length() const
|
---|
216 | {
|
---|
217 | return qSqrt(xp * xp + yp * yp + zp * zp + wp * wp);
|
---|
218 | }
|
---|
219 |
|
---|
220 | /*!
|
---|
221 | Returns the squared length of the quaternion.
|
---|
222 |
|
---|
223 | \sa length()
|
---|
224 | */
|
---|
225 | qreal QQuaternion::lengthSquared() const
|
---|
226 | {
|
---|
227 | return xp * xp + yp * yp + zp * zp + wp * wp;
|
---|
228 | }
|
---|
229 |
|
---|
230 | /*!
|
---|
231 | Returns the normalized unit form of this quaternion.
|
---|
232 |
|
---|
233 | If this quaternion is null, then a null quaternion is returned.
|
---|
234 | If the length of the quaternion is very close to 1, then the quaternion
|
---|
235 | will be returned as-is. Otherwise the normalized form of the
|
---|
236 | quaternion of length 1 will be returned.
|
---|
237 |
|
---|
238 | \sa length(), normalize()
|
---|
239 | */
|
---|
240 | QQuaternion QQuaternion::normalized() const
|
---|
241 | {
|
---|
242 | // Need some extra precision if the length is very small.
|
---|
243 | double len = double(xp) * double(xp) +
|
---|
244 | double(yp) * double(yp) +
|
---|
245 | double(zp) * double(zp) +
|
---|
246 | double(wp) * double(wp);
|
---|
247 | if (qFuzzyIsNull(len - 1.0f))
|
---|
248 | return *this;
|
---|
249 | else if (!qFuzzyIsNull(len))
|
---|
250 | return *this / qSqrt(len);
|
---|
251 | else
|
---|
252 | return QQuaternion(0.0f, 0.0f, 0.0f, 0.0f);
|
---|
253 | }
|
---|
254 |
|
---|
255 | /*!
|
---|
256 | Normalizes the currect quaternion in place. Nothing happens if this
|
---|
257 | is a null quaternion or the length of the quaternion is very close to 1.
|
---|
258 |
|
---|
259 | \sa length(), normalized()
|
---|
260 | */
|
---|
261 | void QQuaternion::normalize()
|
---|
262 | {
|
---|
263 | // Need some extra precision if the length is very small.
|
---|
264 | double len = double(xp) * double(xp) +
|
---|
265 | double(yp) * double(yp) +
|
---|
266 | double(zp) * double(zp) +
|
---|
267 | double(wp) * double(wp);
|
---|
268 | if (qFuzzyIsNull(len - 1.0f) || qFuzzyIsNull(len))
|
---|
269 | return;
|
---|
270 |
|
---|
271 | len = qSqrt(len);
|
---|
272 |
|
---|
273 | xp /= len;
|
---|
274 | yp /= len;
|
---|
275 | zp /= len;
|
---|
276 | wp /= len;
|
---|
277 | }
|
---|
278 |
|
---|
279 | /*!
|
---|
280 | \fn QQuaternion QQuaternion::conjugate() const
|
---|
281 |
|
---|
282 | Returns the conjugate of this quaternion, which is
|
---|
283 | (-x, -y, -z, scalar).
|
---|
284 | */
|
---|
285 |
|
---|
286 | /*!
|
---|
287 | Rotates \a vector with this quaternion to produce a new vector
|
---|
288 | in 3D space. The following code:
|
---|
289 |
|
---|
290 | \code
|
---|
291 | QVector3D result = q.rotatedVector(vector);
|
---|
292 | \endcode
|
---|
293 |
|
---|
294 | is equivalent to the following:
|
---|
295 |
|
---|
296 | \code
|
---|
297 | QVector3D result = (q * QQuaternion(0, vector) * q.conjugate()).vector();
|
---|
298 | \endcode
|
---|
299 | */
|
---|
300 | QVector3D QQuaternion::rotatedVector(const QVector3D& vector) const
|
---|
301 | {
|
---|
302 | return (*this * QQuaternion(0, vector) * conjugate()).vector();
|
---|
303 | }
|
---|
304 |
|
---|
305 | /*!
|
---|
306 | \fn QQuaternion &QQuaternion::operator+=(const QQuaternion &quaternion)
|
---|
307 |
|
---|
308 | Adds the given \a quaternion to this quaternion and returns a reference to
|
---|
309 | this quaternion.
|
---|
310 |
|
---|
311 | \sa operator-=()
|
---|
312 | */
|
---|
313 |
|
---|
314 | /*!
|
---|
315 | \fn QQuaternion &QQuaternion::operator-=(const QQuaternion &quaternion)
|
---|
316 |
|
---|
317 | Subtracts the given \a quaternion from this quaternion and returns a
|
---|
318 | reference to this quaternion.
|
---|
319 |
|
---|
320 | \sa operator+=()
|
---|
321 | */
|
---|
322 |
|
---|
323 | /*!
|
---|
324 | \fn QQuaternion &QQuaternion::operator*=(qreal factor)
|
---|
325 |
|
---|
326 | Multiplies this quaternion's components by the given \a factor, and
|
---|
327 | returns a reference to this quaternion.
|
---|
328 |
|
---|
329 | \sa operator/=()
|
---|
330 | */
|
---|
331 |
|
---|
332 | /*!
|
---|
333 | \fn QQuaternion &QQuaternion::operator*=(const QQuaternion &quaternion)
|
---|
334 |
|
---|
335 | Multiplies this quaternion by \a quaternion and returns a reference
|
---|
336 | to this quaternion.
|
---|
337 | */
|
---|
338 |
|
---|
339 | /*!
|
---|
340 | \fn QQuaternion &QQuaternion::operator/=(qreal divisor)
|
---|
341 |
|
---|
342 | Divides this quaternion's components by the given \a divisor, and
|
---|
343 | returns a reference to this quaternion.
|
---|
344 |
|
---|
345 | \sa operator*=()
|
---|
346 | */
|
---|
347 |
|
---|
348 | #ifndef QT_NO_VECTOR3D
|
---|
349 |
|
---|
350 | /*!
|
---|
351 | Creates a normalized quaternion that corresponds to rotating through
|
---|
352 | \a angle degrees about the specified 3D \a axis.
|
---|
353 | */
|
---|
354 | QQuaternion QQuaternion::fromAxisAndAngle(const QVector3D& axis, qreal angle)
|
---|
355 | {
|
---|
356 | // Algorithm from:
|
---|
357 | // http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q56
|
---|
358 | // We normalize the result just in case the values are close
|
---|
359 | // to zero, as suggested in the above FAQ.
|
---|
360 | qreal a = (angle / 2.0f) * M_PI / 180.0f;
|
---|
361 | qreal s = qSin(a);
|
---|
362 | qreal c = qCos(a);
|
---|
363 | QVector3D ax = axis.normalized();
|
---|
364 | return QQuaternion(c, ax.x() * s, ax.y() * s, ax.z() * s).normalized();
|
---|
365 | }
|
---|
366 |
|
---|
367 | #endif
|
---|
368 |
|
---|
369 | /*!
|
---|
370 | Creates a normalized quaternion that corresponds to rotating through
|
---|
371 | \a angle degrees about the 3D axis (\a x, \a y, \a z).
|
---|
372 | */
|
---|
373 | QQuaternion QQuaternion::fromAxisAndAngle
|
---|
374 | (qreal x, qreal y, qreal z, qreal angle)
|
---|
375 | {
|
---|
376 | qreal length = qSqrt(x * x + y * y + z * z);
|
---|
377 | if (!qFuzzyIsNull(length - 1.0f) && !qFuzzyIsNull(length)) {
|
---|
378 | x /= length;
|
---|
379 | y /= length;
|
---|
380 | z /= length;
|
---|
381 | }
|
---|
382 | qreal a = (angle / 2.0f) * M_PI / 180.0f;
|
---|
383 | qreal s = qSin(a);
|
---|
384 | qreal c = qCos(a);
|
---|
385 | return QQuaternion(c, x * s, y * s, z * s).normalized();
|
---|
386 | }
|
---|
387 |
|
---|
388 | /*!
|
---|
389 | \fn bool operator==(const QQuaternion &q1, const QQuaternion &q2)
|
---|
390 | \relates QQuaternion
|
---|
391 |
|
---|
392 | Returns true if \a q1 is equal to \a q2; otherwise returns false.
|
---|
393 | This operator uses an exact floating-point comparison.
|
---|
394 | */
|
---|
395 |
|
---|
396 | /*!
|
---|
397 | \fn bool operator!=(const QQuaternion &q1, const QQuaternion &q2)
|
---|
398 | \relates QQuaternion
|
---|
399 |
|
---|
400 | Returns true if \a q1 is not equal to \a q2; otherwise returns false.
|
---|
401 | This operator uses an exact floating-point comparison.
|
---|
402 | */
|
---|
403 |
|
---|
404 | /*!
|
---|
405 | \fn const QQuaternion operator+(const QQuaternion &q1, const QQuaternion &q2)
|
---|
406 | \relates QQuaternion
|
---|
407 |
|
---|
408 | Returns a QQuaternion object that is the sum of the given quaternions,
|
---|
409 | \a q1 and \a q2; each component is added separately.
|
---|
410 |
|
---|
411 | \sa QQuaternion::operator+=()
|
---|
412 | */
|
---|
413 |
|
---|
414 | /*!
|
---|
415 | \fn const QQuaternion operator-(const QQuaternion &q1, const QQuaternion &q2)
|
---|
416 | \relates QQuaternion
|
---|
417 |
|
---|
418 | Returns a QQuaternion object that is formed by subtracting
|
---|
419 | \a q2 from \a q1; each component is subtracted separately.
|
---|
420 |
|
---|
421 | \sa QQuaternion::operator-=()
|
---|
422 | */
|
---|
423 |
|
---|
424 | /*!
|
---|
425 | \fn const QQuaternion operator*(qreal factor, const QQuaternion &quaternion)
|
---|
426 | \relates QQuaternion
|
---|
427 |
|
---|
428 | Returns a copy of the given \a quaternion, multiplied by the
|
---|
429 | given \a factor.
|
---|
430 |
|
---|
431 | \sa QQuaternion::operator*=()
|
---|
432 | */
|
---|
433 |
|
---|
434 | /*!
|
---|
435 | \fn const QQuaternion operator*(const QQuaternion &quaternion, qreal factor)
|
---|
436 | \relates QQuaternion
|
---|
437 |
|
---|
438 | Returns a copy of the given \a quaternion, multiplied by the
|
---|
439 | given \a factor.
|
---|
440 |
|
---|
441 | \sa QQuaternion::operator*=()
|
---|
442 | */
|
---|
443 |
|
---|
444 | /*!
|
---|
445 | \fn const QQuaternion operator*(const QQuaternion &q1, const QQuaternion& q2)
|
---|
446 | \relates QQuaternion
|
---|
447 |
|
---|
448 | Multiplies \a q1 and \a q2 using quaternion multiplication.
|
---|
449 | The result corresponds to applying both of the rotations specified
|
---|
450 | by \a q1 and \a q2.
|
---|
451 |
|
---|
452 | \sa QQuaternion::operator*=()
|
---|
453 | */
|
---|
454 |
|
---|
455 | /*!
|
---|
456 | \fn const QQuaternion operator-(const QQuaternion &quaternion)
|
---|
457 | \relates QQuaternion
|
---|
458 | \overload
|
---|
459 |
|
---|
460 | Returns a QQuaternion object that is formed by changing the sign of
|
---|
461 | all three components of the given \a quaternion.
|
---|
462 |
|
---|
463 | Equivalent to \c {QQuaternion(0,0,0,0) - quaternion}.
|
---|
464 | */
|
---|
465 |
|
---|
466 | /*!
|
---|
467 | \fn const QQuaternion operator/(const QQuaternion &quaternion, qreal divisor)
|
---|
468 | \relates QQuaternion
|
---|
469 |
|
---|
470 | Returns the QQuaternion object formed by dividing all components of
|
---|
471 | the given \a quaternion by the given \a divisor.
|
---|
472 |
|
---|
473 | \sa QQuaternion::operator/=()
|
---|
474 | */
|
---|
475 |
|
---|
476 | /*!
|
---|
477 | \fn bool qFuzzyCompare(const QQuaternion& q1, const QQuaternion& q2)
|
---|
478 | \relates QQuaternion
|
---|
479 |
|
---|
480 | Returns true if \a q1 and \a q2 are equal, allowing for a small
|
---|
481 | fuzziness factor for floating-point comparisons; false otherwise.
|
---|
482 | */
|
---|
483 |
|
---|
484 | /*!
|
---|
485 | Interpolates along the shortest spherical path between the
|
---|
486 | rotational positions \a q1 and \a q2. The value \a t should
|
---|
487 | be between 0 and 1, indicating the spherical distance to travel
|
---|
488 | between \a q1 and \a q2.
|
---|
489 |
|
---|
490 | If \a t is less than or equal to 0, then \a q1 will be returned.
|
---|
491 | If \a t is greater than or equal to 1, then \a q2 will be returned.
|
---|
492 |
|
---|
493 | \sa nlerp()
|
---|
494 | */
|
---|
495 | QQuaternion QQuaternion::slerp
|
---|
496 | (const QQuaternion& q1, const QQuaternion& q2, qreal t)
|
---|
497 | {
|
---|
498 | // Handle the easy cases first.
|
---|
499 | if (t <= 0.0f)
|
---|
500 | return q1;
|
---|
501 | else if (t >= 1.0f)
|
---|
502 | return q2;
|
---|
503 |
|
---|
504 | // Determine the angle between the two quaternions.
|
---|
505 | QQuaternion q2b;
|
---|
506 | qreal dot;
|
---|
507 | dot = q1.xp * q2.xp + q1.yp * q2.yp + q1.zp * q2.zp + q1.wp * q2.wp;
|
---|
508 | if (dot >= 0.0f) {
|
---|
509 | q2b = q2;
|
---|
510 | } else {
|
---|
511 | q2b = -q2;
|
---|
512 | dot = -dot;
|
---|
513 | }
|
---|
514 |
|
---|
515 | // Get the scale factors. If they are too small,
|
---|
516 | // then revert to simple linear interpolation.
|
---|
517 | qreal factor1 = 1.0f - t;
|
---|
518 | qreal factor2 = t;
|
---|
519 | if ((1.0f - dot) > 0.0000001) {
|
---|
520 | qreal angle = qreal(qAcos(dot));
|
---|
521 | qreal sinOfAngle = qreal(qSin(angle));
|
---|
522 | if (sinOfAngle > 0.0000001) {
|
---|
523 | factor1 = qreal(qSin((1.0f - t) * angle)) / sinOfAngle;
|
---|
524 | factor2 = qreal(qSin(t * angle)) / sinOfAngle;
|
---|
525 | }
|
---|
526 | }
|
---|
527 |
|
---|
528 | // Construct the result quaternion.
|
---|
529 | return q1 * factor1 + q2b * factor2;
|
---|
530 | }
|
---|
531 |
|
---|
532 | /*!
|
---|
533 | Interpolates along the shortest linear path between the rotational
|
---|
534 | positions \a q1 and \a q2. The value \a t should be between 0 and 1,
|
---|
535 | indicating the distance to travel between \a q1 and \a q2.
|
---|
536 | The result will be normalized().
|
---|
537 |
|
---|
538 | If \a t is less than or equal to 0, then \a q1 will be returned.
|
---|
539 | If \a t is greater than or equal to 1, then \a q2 will be returned.
|
---|
540 |
|
---|
541 | The nlerp() function is typically faster than slerp() and will
|
---|
542 | give approximate results to spherical interpolation that are
|
---|
543 | good enough for some applications.
|
---|
544 |
|
---|
545 | \sa slerp()
|
---|
546 | */
|
---|
547 | QQuaternion QQuaternion::nlerp
|
---|
548 | (const QQuaternion& q1, const QQuaternion& q2, qreal t)
|
---|
549 | {
|
---|
550 | // Handle the easy cases first.
|
---|
551 | if (t <= 0.0f)
|
---|
552 | return q1;
|
---|
553 | else if (t >= 1.0f)
|
---|
554 | return q2;
|
---|
555 |
|
---|
556 | // Determine the angle between the two quaternions.
|
---|
557 | QQuaternion q2b;
|
---|
558 | qreal dot;
|
---|
559 | dot = q1.xp * q2.xp + q1.yp * q2.yp + q1.zp * q2.zp + q1.wp * q2.wp;
|
---|
560 | if (dot >= 0.0f)
|
---|
561 | q2b = q2;
|
---|
562 | else
|
---|
563 | q2b = -q2;
|
---|
564 |
|
---|
565 | // Perform the linear interpolation.
|
---|
566 | return (q1 * (1.0f - t) + q2b * t).normalized();
|
---|
567 | }
|
---|
568 |
|
---|
569 | /*!
|
---|
570 | Returns the quaternion as a QVariant.
|
---|
571 | */
|
---|
572 | QQuaternion::operator QVariant() const
|
---|
573 | {
|
---|
574 | return QVariant(QVariant::Quaternion, this);
|
---|
575 | }
|
---|
576 |
|
---|
577 | #ifndef QT_NO_DEBUG_STREAM
|
---|
578 |
|
---|
579 | QDebug operator<<(QDebug dbg, const QQuaternion &q)
|
---|
580 | {
|
---|
581 | dbg.nospace() << "QQuaternion(scalar:" << q.scalar()
|
---|
582 | << ", vector:(" << q.x() << ", "
|
---|
583 | << q.y() << ", " << q.z() << "))";
|
---|
584 | return dbg.space();
|
---|
585 | }
|
---|
586 |
|
---|
587 | #endif
|
---|
588 |
|
---|
589 | #ifndef QT_NO_DATASTREAM
|
---|
590 |
|
---|
591 | /*!
|
---|
592 | \fn QDataStream &operator<<(QDataStream &stream, const QQuaternion &quaternion)
|
---|
593 | \relates QQuaternion
|
---|
594 |
|
---|
595 | Writes the given \a quaternion to the given \a stream and returns a
|
---|
596 | reference to the stream.
|
---|
597 |
|
---|
598 | \sa {Format of the QDataStream Operators}
|
---|
599 | */
|
---|
600 |
|
---|
601 | QDataStream &operator<<(QDataStream &stream, const QQuaternion &quaternion)
|
---|
602 | {
|
---|
603 | stream << double(quaternion.scalar()) << double(quaternion.x())
|
---|
604 | << double(quaternion.y()) << double(quaternion.z());
|
---|
605 | return stream;
|
---|
606 | }
|
---|
607 |
|
---|
608 | /*!
|
---|
609 | \fn QDataStream &operator>>(QDataStream &stream, QQuaternion &quaternion)
|
---|
610 | \relates QQuaternion
|
---|
611 |
|
---|
612 | Reads a quaternion from the given \a stream into the given \a quaternion
|
---|
613 | and returns a reference to the stream.
|
---|
614 |
|
---|
615 | \sa {Format of the QDataStream Operators}
|
---|
616 | */
|
---|
617 |
|
---|
618 | QDataStream &operator>>(QDataStream &stream, QQuaternion &quaternion)
|
---|
619 | {
|
---|
620 | double scalar, x, y, z;
|
---|
621 | stream >> scalar;
|
---|
622 | stream >> x;
|
---|
623 | stream >> y;
|
---|
624 | stream >> z;
|
---|
625 | quaternion.setScalar(qreal(scalar));
|
---|
626 | quaternion.setX(qreal(x));
|
---|
627 | quaternion.setY(qreal(y));
|
---|
628 | quaternion.setZ(qreal(z));
|
---|
629 | return stream;
|
---|
630 | }
|
---|
631 |
|
---|
632 | #endif // QT_NO_DATASTREAM
|
---|
633 |
|
---|
634 | #endif
|
---|
635 |
|
---|
636 | QT_END_NAMESPACE
|
---|