[ruby/strscan] jruby: Check if len++ walked off the end
[ruby.git] / signal.c
blob42edc9071b21ca8e6dcb7b26bd8027da29c26908
1 /**********************************************************************
3 signal.c -
5 $Author$
6 created at: Tue Dec 20 10:13:44 JST 1994
8 Copyright (C) 1993-2007 Yukihiro Matsumoto
9 Copyright (C) 2000 Network Applied Communication Laboratory, Inc.
10 Copyright (C) 2000 Information-technology Promotion Agency, Japan
12 **********************************************************************/
14 #include "ruby/internal/config.h"
16 #include <errno.h>
17 #include <signal.h>
18 #include <stdio.h>
20 #ifdef HAVE_UNISTD_H
21 # include <unistd.h>
22 #endif
24 #ifdef HAVE_SYS_UIO_H
25 # include <sys/uio.h>
26 #endif
28 #ifdef HAVE_UCONTEXT_H
29 # include <ucontext.h>
30 #endif
32 #ifdef HAVE_PTHREAD_H
33 # include <pthread.h>
34 #endif
36 #include "debug_counter.h"
37 #include "eval_intern.h"
38 #include "internal.h"
39 #include "internal/error.h"
40 #include "internal/eval.h"
41 #include "internal/sanitizers.h"
42 #include "internal/signal.h"
43 #include "internal/string.h"
44 #include "internal/thread.h"
45 #include "ruby_atomic.h"
46 #include "vm_core.h"
47 #include "ractor_core.h"
48 #include "ruby/internal/attr/nonstring.h"
50 #ifdef NEED_RUBY_ATOMIC_OPS
51 rb_atomic_t
52 ruby_atomic_exchange(rb_atomic_t *ptr, rb_atomic_t val)
54 rb_atomic_t old = *ptr;
55 *ptr = val;
56 return old;
59 rb_atomic_t
60 ruby_atomic_compare_and_swap(rb_atomic_t *ptr, rb_atomic_t cmp,
61 rb_atomic_t newval)
63 rb_atomic_t old = *ptr;
64 if (old == cmp) {
65 *ptr = newval;
67 return old;
69 #endif
71 #define FOREACH_SIGNAL(sig, offset) \
72 for (sig = siglist + (offset); sig < siglist + numberof(siglist); ++sig)
73 enum { LONGEST_SIGNAME = 7 }; /* MIGRATE and RETRACT */
74 static const struct signals {
75 char signm[LONGEST_SIGNAME + 1];
76 int signo;
77 } siglist [] = {
78 {"EXIT", 0},
79 #ifdef SIGHUP
80 {"HUP", SIGHUP},
81 #endif
82 {"INT", SIGINT},
83 #ifdef SIGQUIT
84 {"QUIT", SIGQUIT},
85 #endif
86 #ifdef SIGILL
87 {"ILL", SIGILL},
88 #endif
89 #ifdef SIGTRAP
90 {"TRAP", SIGTRAP},
91 #endif
92 #ifdef SIGABRT
93 {"ABRT", SIGABRT},
94 #endif
95 #ifdef SIGIOT
96 {"IOT", SIGIOT},
97 #endif
98 #ifdef SIGEMT
99 {"EMT", SIGEMT},
100 #endif
101 #ifdef SIGFPE
102 {"FPE", SIGFPE},
103 #endif
104 #ifdef SIGKILL
105 {"KILL", SIGKILL},
106 #endif
107 #ifdef SIGBUS
108 {"BUS", SIGBUS},
109 #endif
110 #ifdef SIGSEGV
111 {"SEGV", SIGSEGV},
112 #endif
113 #ifdef SIGSYS
114 {"SYS", SIGSYS},
115 #endif
116 #ifdef SIGPIPE
117 {"PIPE", SIGPIPE},
118 #endif
119 #ifdef SIGALRM
120 {"ALRM", SIGALRM},
121 #endif
122 #ifdef SIGTERM
123 {"TERM", SIGTERM},
124 #endif
125 #ifdef SIGURG
126 {"URG", SIGURG},
127 #endif
128 #ifdef SIGSTOP
129 {"STOP", SIGSTOP},
130 #endif
131 #ifdef SIGTSTP
132 {"TSTP", SIGTSTP},
133 #endif
134 #ifdef SIGCONT
135 {"CONT", SIGCONT},
136 #endif
137 #ifdef RUBY_SIGCHLD
138 {"CHLD", RUBY_SIGCHLD },
139 {"CLD", RUBY_SIGCHLD },
140 #endif
141 #ifdef SIGTTIN
142 {"TTIN", SIGTTIN},
143 #endif
144 #ifdef SIGTTOU
145 {"TTOU", SIGTTOU},
146 #endif
147 #ifdef SIGIO
148 {"IO", SIGIO},
149 #endif
150 #ifdef SIGXCPU
151 {"XCPU", SIGXCPU},
152 #endif
153 #ifdef SIGXFSZ
154 {"XFSZ", SIGXFSZ},
155 #endif
156 #ifdef SIGVTALRM
157 {"VTALRM", SIGVTALRM},
158 #endif
159 #ifdef SIGPROF
160 {"PROF", SIGPROF},
161 #endif
162 #ifdef SIGWINCH
163 {"WINCH", SIGWINCH},
164 #endif
165 #ifdef SIGUSR1
166 {"USR1", SIGUSR1},
167 #endif
168 #ifdef SIGUSR2
169 {"USR2", SIGUSR2},
170 #endif
171 #ifdef SIGLOST
172 {"LOST", SIGLOST},
173 #endif
174 #ifdef SIGMSG
175 {"MSG", SIGMSG},
176 #endif
177 #ifdef SIGPWR
178 {"PWR", SIGPWR},
179 #endif
180 #ifdef SIGPOLL
181 {"POLL", SIGPOLL},
182 #endif
183 #ifdef SIGDANGER
184 {"DANGER", SIGDANGER},
185 #endif
186 #ifdef SIGMIGRATE
187 {"MIGRATE", SIGMIGRATE},
188 #endif
189 #ifdef SIGPRE
190 {"PRE", SIGPRE},
191 #endif
192 #ifdef SIGGRANT
193 {"GRANT", SIGGRANT},
194 #endif
195 #ifdef SIGRETRACT
196 {"RETRACT", SIGRETRACT},
197 #endif
198 #ifdef SIGSOUND
199 {"SOUND", SIGSOUND},
200 #endif
201 #ifdef SIGINFO
202 {"INFO", SIGINFO},
203 #endif
206 static const char signame_prefix[] = "SIG";
207 static const int signame_prefix_len = 3;
209 static int
210 signm2signo(VALUE *sig_ptr, int negative, int exit, int *prefix_ptr)
212 const struct signals *sigs;
213 VALUE vsig = *sig_ptr;
214 const char *nm;
215 long len, nmlen;
216 int prefix = 0;
218 if (RB_SYMBOL_P(vsig)) {
219 *sig_ptr = vsig = rb_sym2str(vsig);
221 else if (!RB_TYPE_P(vsig, T_STRING)) {
222 VALUE str = rb_check_string_type(vsig);
223 if (NIL_P(str)) {
224 rb_raise(rb_eArgError, "bad signal type %s",
225 rb_obj_classname(vsig));
227 *sig_ptr = vsig = str;
230 rb_must_asciicompat(vsig);
231 RSTRING_GETMEM(vsig, nm, len);
232 if (memchr(nm, '\0', len)) {
233 rb_raise(rb_eArgError, "signal name with null byte");
236 if (len > 0 && nm[0] == '-') {
237 if (!negative)
238 rb_raise(rb_eArgError, "negative signal name: % "PRIsVALUE, vsig);
239 prefix = 1;
241 else {
242 negative = 0;
244 if (len >= prefix + signame_prefix_len) {
245 if (memcmp(nm + prefix, signame_prefix, signame_prefix_len) == 0)
246 prefix += signame_prefix_len;
248 if (len <= (long)prefix) {
249 goto unsupported;
252 if (prefix_ptr) *prefix_ptr = prefix;
253 nmlen = len - prefix;
254 nm += prefix;
255 if (nmlen > LONGEST_SIGNAME) goto unsupported;
256 FOREACH_SIGNAL(sigs, !exit) {
257 if (memcmp(sigs->signm, nm, nmlen) == 0 &&
258 sigs->signm[nmlen] == '\0') {
259 return negative ? -sigs->signo : sigs->signo;
263 unsupported:
264 if (prefix == signame_prefix_len) {
265 prefix = 0;
267 else if (prefix > signame_prefix_len) {
268 prefix -= signame_prefix_len;
269 len -= prefix;
270 vsig = rb_str_subseq(vsig, prefix, len);
271 prefix = 0;
273 else {
274 len -= prefix;
275 vsig = rb_str_subseq(vsig, prefix, len);
276 prefix = signame_prefix_len;
278 rb_raise(rb_eArgError, "unsupported signal '%.*s%"PRIsVALUE"'",
279 prefix, signame_prefix, vsig);
280 UNREACHABLE_RETURN(0);
283 static const char*
284 signo2signm(int no)
286 const struct signals *sigs;
288 FOREACH_SIGNAL(sigs, 0) {
289 if (sigs->signo == no)
290 return sigs->signm;
292 return 0;
296 * call-seq:
297 * Signal.signame(signo) -> string or nil
299 * Convert signal number to signal name.
300 * Returns +nil+ if the signo is an invalid signal number.
302 * Signal.trap("INT") { |signo| puts Signal.signame(signo) }
303 * Process.kill("INT", 0)
305 * <em>produces:</em>
307 * INT
309 static VALUE
310 sig_signame(VALUE recv, VALUE signo)
312 const char *signame = signo2signm(NUM2INT(signo));
313 if (!signame) return Qnil;
314 return rb_str_new_cstr(signame);
317 const char *
318 ruby_signal_name(int no)
320 return signo2signm(no);
323 static VALUE
324 rb_signo2signm(int signo)
326 const char *const signm = signo2signm(signo);
327 if (signm) {
328 return rb_sprintf("SIG%s", signm);
330 else {
331 return rb_sprintf("SIG%u", signo);
336 * call-seq:
337 * SignalException.new(sig_name) -> signal_exception
338 * SignalException.new(sig_number [, name]) -> signal_exception
340 * Construct a new SignalException object. +sig_name+ should be a known
341 * signal name.
344 static VALUE
345 esignal_init(int argc, VALUE *argv, VALUE self)
347 int argnum = 1;
348 VALUE sig = Qnil;
349 int signo;
351 if (argc > 0) {
352 sig = rb_check_to_integer(argv[0], "to_int");
353 if (!NIL_P(sig)) argnum = 2;
354 else sig = argv[0];
356 rb_check_arity(argc, 1, argnum);
357 if (argnum == 2) {
358 signo = NUM2INT(sig);
359 if (signo < 0 || signo > NSIG) {
360 rb_raise(rb_eArgError, "invalid signal number (%d)", signo);
362 if (argc > 1) {
363 sig = argv[1];
365 else {
366 sig = rb_signo2signm(signo);
369 else {
370 int prefix;
371 signo = signm2signo(&sig, FALSE, FALSE, &prefix);
372 if (prefix != signame_prefix_len) {
373 sig = rb_str_append(rb_str_new_cstr("SIG"), sig);
376 rb_call_super(1, &sig);
377 rb_ivar_set(self, id_signo, INT2NUM(signo));
379 return self;
383 * call-seq:
384 * signal_exception.signo -> num
386 * Returns a signal number.
389 static VALUE
390 esignal_signo(VALUE self)
392 return rb_ivar_get(self, id_signo);
395 /* :nodoc: */
396 static VALUE
397 interrupt_init(int argc, VALUE *argv, VALUE self)
399 VALUE args[2];
401 args[0] = INT2FIX(SIGINT);
402 args[1] = rb_check_arity(argc, 0, 1) ? argv[0] : Qnil;
403 return rb_call_super(2, args);
406 void rb_malloc_info_show_results(void); /* gc.c */
407 #if defined(USE_SIGALTSTACK) || defined(_WIN32)
408 static void reset_sigmask(int sig);
409 #endif
411 void
412 ruby_default_signal(int sig)
414 #if USE_DEBUG_COUNTER
415 rb_debug_counter_show_results("killed by signal.");
416 #endif
417 rb_malloc_info_show_results();
419 signal(sig, SIG_DFL);
420 #if defined(USE_SIGALTSTACK) || defined(_WIN32)
421 reset_sigmask(sig);
422 #endif
423 raise(sig);
426 static void sighandler(int sig);
427 static int signal_ignored(int sig);
428 static void signal_enque(int sig);
430 VALUE
431 rb_f_kill(int argc, const VALUE *argv)
433 #ifndef HAVE_KILLPG
434 #define killpg(pg, sig) kill(-(pg), (sig))
435 #endif
436 int sig;
437 int i;
438 VALUE str;
440 rb_check_arity(argc, 2, UNLIMITED_ARGUMENTS);
442 if (FIXNUM_P(argv[0])) {
443 sig = FIX2INT(argv[0]);
445 else {
446 str = argv[0];
447 sig = signm2signo(&str, TRUE, FALSE, NULL);
450 if (argc <= 1) return INT2FIX(0);
452 if (sig < 0) {
453 sig = -sig;
454 for (i=1; i<argc; i++) {
455 if (killpg(NUM2PIDT(argv[i]), sig) < 0)
456 rb_sys_fail(0);
459 else {
460 const rb_pid_t self = (GET_THREAD() == GET_VM()->ractor.main_thread) ? getpid() : -1;
461 int wakeup = 0;
463 for (i=1; i<argc; i++) {
464 rb_pid_t pid = NUM2PIDT(argv[i]);
466 if ((sig != 0) && (self != -1) && (pid == self)) {
467 int t;
469 * When target pid is self, many caller assume signal will be
470 * delivered immediately and synchronously.
472 switch (sig) {
473 case SIGSEGV:
474 #ifdef SIGBUS
475 case SIGBUS:
476 #endif
477 #ifdef SIGKILL
478 case SIGKILL:
479 #endif
480 #ifdef SIGILL
481 case SIGILL:
482 #endif
483 #ifdef SIGFPE
484 case SIGFPE:
485 #endif
486 #ifdef SIGSTOP
487 case SIGSTOP:
488 #endif
489 kill(pid, sig);
490 break;
491 default:
492 t = signal_ignored(sig);
493 if (t) {
494 if (t < 0 && kill(pid, sig))
495 rb_sys_fail(0);
496 break;
498 signal_enque(sig);
499 wakeup = 1;
502 else if (kill(pid, sig) < 0) {
503 rb_sys_fail(0);
506 if (wakeup) {
507 rb_threadptr_check_signal(GET_VM()->ractor.main_thread);
510 rb_thread_execute_interrupts(rb_thread_current());
512 return INT2FIX(i-1);
515 static struct {
516 rb_atomic_t cnt[RUBY_NSIG];
517 rb_atomic_t size;
518 } signal_buff;
520 #define sighandler_t ruby_sighandler_t
522 #ifdef USE_SIGALTSTACK
523 typedef void ruby_sigaction_t(int, siginfo_t*, void*);
524 #define SIGINFO_ARG , siginfo_t *info, void *ctx
525 #define SIGINFO_CTX ctx
526 #else
527 typedef void ruby_sigaction_t(int);
528 #define SIGINFO_ARG
529 #define SIGINFO_CTX 0
530 #endif
532 #ifdef USE_SIGALTSTACK
533 /* XXX: BSD_vfprintf() uses >1500B stack and x86-64 need >5KiB stack. */
534 #define RUBY_SIGALTSTACK_SIZE (16*1024)
536 static int
537 rb_sigaltstack_size(void)
539 int size = RUBY_SIGALTSTACK_SIZE;
541 #ifdef MINSIGSTKSZ
543 int minsigstksz = (int)MINSIGSTKSZ;
544 if (size < minsigstksz)
545 size = minsigstksz;
547 #endif
548 #if defined(HAVE_SYSCONF) && defined(_SC_PAGE_SIZE)
550 int pagesize;
551 pagesize = (int)sysconf(_SC_PAGE_SIZE);
552 if (size < pagesize)
553 size = pagesize;
555 #endif
557 return size;
560 static int rb_sigaltstack_size_value = 0;
562 void *
563 rb_allocate_sigaltstack(void)
565 void *altstack;
566 if (!rb_sigaltstack_size_value) {
567 rb_sigaltstack_size_value = rb_sigaltstack_size();
569 altstack = malloc(rb_sigaltstack_size_value);
570 if (!altstack) rb_memerror();
571 return altstack;
574 /* alternate stack for SIGSEGV */
575 void *
576 rb_register_sigaltstack(void *altstack)
578 stack_t newSS, oldSS;
580 newSS.ss_size = rb_sigaltstack_size_value;
581 newSS.ss_sp = altstack;
582 newSS.ss_flags = 0;
584 sigaltstack(&newSS, &oldSS); /* ignore error. */
586 return newSS.ss_sp;
588 #endif /* USE_SIGALTSTACK */
590 #ifdef POSIX_SIGNAL
591 static sighandler_t
592 ruby_signal(int signum, sighandler_t handler)
594 struct sigaction sigact, old;
596 #if 0
597 rb_trap_accept_nativethreads[signum] = 0;
598 #endif
600 sigemptyset(&sigact.sa_mask);
601 #if defined(USE_SIGALTSTACK) && !defined(__wasm__)
602 if (handler == SIG_IGN || handler == SIG_DFL) {
603 sigact.sa_handler = handler;
604 sigact.sa_flags = 0;
606 else {
607 sigact.sa_sigaction = (ruby_sigaction_t*)handler;
608 sigact.sa_flags = SA_SIGINFO;
610 #else
611 sigact.sa_handler = handler;
612 sigact.sa_flags = 0;
613 #endif
615 switch (signum) {
616 #if defined(SA_ONSTACK) && defined(USE_SIGALTSTACK)
617 case SIGSEGV:
618 #ifdef SIGBUS
619 case SIGBUS:
620 #endif
621 sigact.sa_flags |= SA_ONSTACK;
622 break;
623 #endif
625 (void)VALGRIND_MAKE_MEM_DEFINED(&old, sizeof(old));
626 if (sigaction(signum, &sigact, &old) < 0) {
627 return SIG_ERR;
629 if (old.sa_flags & SA_SIGINFO)
630 handler = (sighandler_t)old.sa_sigaction;
631 else
632 handler = old.sa_handler;
633 ASSUME(handler != SIG_ERR);
634 return handler;
637 sighandler_t
638 ruby_posix_signal(int signum, sighandler_t handler)
640 return ruby_signal(signum, handler);
643 #elif defined _WIN32
644 static inline sighandler_t
645 ruby_signal(int signum, sighandler_t handler)
647 if (signum == SIGKILL) {
648 errno = EINVAL;
649 return SIG_ERR;
651 return signal(signum, handler);
654 #else /* !POSIX_SIGNAL */
655 #define ruby_signal(sig,handler) (/* rb_trap_accept_nativethreads[(sig)] = 0,*/ signal((sig),(handler)))
656 #if 0 /* def HAVE_NATIVETHREAD */
657 static sighandler_t
658 ruby_nativethread_signal(int signum, sighandler_t handler)
660 sighandler_t old;
662 old = signal(signum, handler);
663 rb_trap_accept_nativethreads[signum] = 1;
664 return old;
666 #endif
667 #endif
669 static int
670 signal_ignored(int sig)
672 sighandler_t func;
673 #ifdef POSIX_SIGNAL
674 struct sigaction old;
675 (void)VALGRIND_MAKE_MEM_DEFINED(&old, sizeof(old));
676 if (sigaction(sig, NULL, &old) < 0) return FALSE;
677 func = old.sa_handler;
678 #else
679 sighandler_t old = signal(sig, SIG_DFL);
680 signal(sig, old);
681 func = old;
682 #endif
683 if (func == SIG_IGN) return 1;
684 return func == sighandler ? 0 : -1;
687 static void
688 signal_enque(int sig)
690 ATOMIC_INC(signal_buff.cnt[sig]);
691 ATOMIC_INC(signal_buff.size);
694 static void
695 sighandler(int sig)
697 int old_errnum = errno;
699 signal_enque(sig);
700 rb_thread_wakeup_timer_thread(sig);
702 #if !defined(BSD_SIGNAL) && !defined(POSIX_SIGNAL)
703 ruby_signal(sig, sighandler);
704 #endif
706 errno = old_errnum;
710 rb_signal_buff_size(void)
712 return signal_buff.size;
715 static void
716 rb_disable_interrupt(void)
718 #ifdef HAVE_PTHREAD_SIGMASK
719 sigset_t mask;
720 sigfillset(&mask);
721 pthread_sigmask(SIG_SETMASK, &mask, NULL);
722 #endif
725 static void
726 rb_enable_interrupt(void)
728 #ifdef HAVE_PTHREAD_SIGMASK
729 sigset_t mask;
730 sigemptyset(&mask);
731 pthread_sigmask(SIG_SETMASK, &mask, NULL);
732 #endif
736 rb_get_next_signal(void)
738 int i, sig = 0;
740 if (signal_buff.size != 0) {
741 for (i=1; i<RUBY_NSIG; i++) {
742 if (signal_buff.cnt[i] > 0) {
743 ATOMIC_DEC(signal_buff.cnt[i]);
744 ATOMIC_DEC(signal_buff.size);
745 sig = i;
746 break;
750 return sig;
753 #if defined SIGSEGV || defined SIGBUS || defined SIGILL || defined SIGFPE
754 static const char *received_signal;
755 # define clear_received_signal() do { \
756 if (GET_VM() != NULL) rb_gc_enable(); \
757 received_signal = 0; \
758 } while (0)
759 #else
760 # define clear_received_signal() ((void)0)
761 #endif
763 #if defined(USE_SIGALTSTACK) || defined(_WIN32)
764 NORETURN(void rb_ec_stack_overflow(rb_execution_context_t *ec, int crit));
765 # if defined __HAIKU__
766 # define USE_UCONTEXT_REG 1
767 # elif !(defined(HAVE_UCONTEXT_H) && (defined __i386__ || defined __x86_64__ || defined __amd64__))
768 # elif defined __linux__
769 # define USE_UCONTEXT_REG 1
770 # elif defined __APPLE__
771 # define USE_UCONTEXT_REG 1
772 # elif defined __FreeBSD__
773 # define USE_UCONTEXT_REG 1
774 # endif
775 #if defined(HAVE_PTHREAD_SIGMASK)
776 # define ruby_sigunmask pthread_sigmask
777 #elif defined(HAVE_SIGPROCMASK)
778 # define ruby_sigunmask sigprocmask
779 #endif
780 static void
781 reset_sigmask(int sig)
783 #if defined(ruby_sigunmask)
784 sigset_t mask;
785 #endif
786 clear_received_signal();
787 #if defined(ruby_sigunmask)
788 sigemptyset(&mask);
789 sigaddset(&mask, sig);
790 if (ruby_sigunmask(SIG_UNBLOCK, &mask, NULL)) {
791 rb_bug_errno(STRINGIZE(ruby_sigunmask)":unblock", errno);
793 #endif
796 # ifdef USE_UCONTEXT_REG
797 static void
798 check_stack_overflow(int sig, const uintptr_t addr, const ucontext_t *ctx)
800 const DEFINE_MCONTEXT_PTR(mctx, ctx);
801 # if defined __linux__
802 # if defined REG_RSP
803 const greg_t sp = mctx->gregs[REG_RSP];
804 const greg_t bp = mctx->gregs[REG_RBP];
805 # else
806 const greg_t sp = mctx->gregs[REG_ESP];
807 const greg_t bp = mctx->gregs[REG_EBP];
808 # endif
809 # elif defined __APPLE__
810 # include <AvailabilityMacros.h>
811 # if defined(MAC_OS_X_VERSION_10_5) && MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_5
812 # define MCTX_SS_REG(reg) __ss.__##reg
813 # else
814 # define MCTX_SS_REG(reg) ss.reg
815 # endif
816 # if defined(__LP64__)
817 const uintptr_t sp = mctx->MCTX_SS_REG(rsp);
818 const uintptr_t bp = mctx->MCTX_SS_REG(rbp);
819 # else
820 const uintptr_t sp = mctx->MCTX_SS_REG(esp);
821 const uintptr_t bp = mctx->MCTX_SS_REG(ebp);
822 # endif
823 # elif defined __FreeBSD__
824 # if defined(__amd64__)
825 const __register_t sp = mctx->mc_rsp;
826 const __register_t bp = mctx->mc_rbp;
827 # else
828 const __register_t sp = mctx->mc_esp;
829 const __register_t bp = mctx->mc_ebp;
830 # endif
831 # elif defined __HAIKU__
832 # if defined(__amd64__)
833 const unsigned long sp = mctx->rsp;
834 const unsigned long bp = mctx->rbp;
835 # else
836 const unsigned long sp = mctx->esp;
837 const unsigned long bp = mctx->ebp;
838 # endif
839 # endif
840 enum {pagesize = 4096};
841 const uintptr_t sp_page = (uintptr_t)sp / pagesize;
842 const uintptr_t bp_page = (uintptr_t)bp / pagesize;
843 const uintptr_t fault_page = addr / pagesize;
845 /* SP in ucontext is not decremented yet when `push` failed, so
846 * the fault page can be the next. */
847 if (sp_page == fault_page || sp_page == fault_page + 1 ||
848 (sp_page <= fault_page && fault_page <= bp_page)) {
849 rb_execution_context_t *ec = GET_EC();
850 int crit = FALSE;
851 int uplevel = roomof(pagesize, sizeof(*ec->tag)) / 2; /* XXX: heuristic */
852 while ((uintptr_t)ec->tag->buf / pagesize <= fault_page + 1) {
853 /* drop the last tag if it is close to the fault,
854 * otherwise it can cause stack overflow again at the same
855 * place. */
856 if ((crit = (!ec->tag->prev || !--uplevel)) != FALSE) break;
857 rb_vm_tag_jmpbuf_deinit(&ec->tag->buf);
858 ec->tag = ec->tag->prev;
860 reset_sigmask(sig);
861 rb_ec_stack_overflow(ec, crit + 1);
864 # else
865 static void
866 check_stack_overflow(int sig, const void *addr)
868 int ruby_stack_overflowed_p(const rb_thread_t *, const void *);
869 rb_thread_t *th = GET_THREAD();
870 if (ruby_stack_overflowed_p(th, addr)) {
871 reset_sigmask(sig);
872 rb_ec_stack_overflow(th->ec, 1);
875 # endif
877 # ifdef _WIN32
878 # define CHECK_STACK_OVERFLOW() check_stack_overflow(sig, 0)
879 # else
880 # define FAULT_ADDRESS info->si_addr
881 # ifdef USE_UCONTEXT_REG
882 # define CHECK_STACK_OVERFLOW_() check_stack_overflow(sig, (uintptr_t)FAULT_ADDRESS, ctx)
883 # else
884 # define CHECK_STACK_OVERFLOW_() check_stack_overflow(sig, FAULT_ADDRESS)
885 # endif
886 # define MESSAGE_FAULT_ADDRESS " at %p", FAULT_ADDRESS
887 # define SIGNAL_FROM_USER_P() ((info)->si_code == SI_USER)
888 # define CHECK_STACK_OVERFLOW() (SIGNAL_FROM_USER_P() ? (void)0 : CHECK_STACK_OVERFLOW_())
889 # endif
890 #else
891 # define CHECK_STACK_OVERFLOW() (void)0
892 #endif
893 #ifndef MESSAGE_FAULT_ADDRESS
894 # define MESSAGE_FAULT_ADDRESS
895 #endif
897 #if defined SIGSEGV || defined SIGBUS || defined SIGILL || defined SIGFPE
898 NOINLINE(static void check_reserved_signal_(const char *name, size_t name_len, int signo));
899 /* noinine to reduce stack usage in signal handers */
901 #define check_reserved_signal(name) check_reserved_signal_(name, sizeof(name)-1, sig)
903 #ifdef SIGBUS
905 static sighandler_t default_sigbus_handler;
906 NORETURN(static ruby_sigaction_t sigbus);
908 static void
909 sigbus(int sig SIGINFO_ARG)
911 check_reserved_signal("BUS");
913 * Mac OS X makes KERN_PROTECTION_FAILURE when thread touch guard page.
914 * and it's delivered as SIGBUS instead of SIGSEGV to userland. It's crazy
915 * wrong IMHO. but anyway we have to care it. Sigh.
917 /* Seems Linux also delivers SIGBUS. */
918 #if defined __APPLE__ || defined __linux__
919 CHECK_STACK_OVERFLOW();
920 #endif
921 rb_bug_for_fatal_signal(default_sigbus_handler, sig, SIGINFO_CTX, "Bus Error" MESSAGE_FAULT_ADDRESS);
923 #endif
925 #ifdef SIGSEGV
927 static sighandler_t default_sigsegv_handler;
928 NORETURN(static ruby_sigaction_t sigsegv);
930 static void
931 sigsegv(int sig SIGINFO_ARG)
933 check_reserved_signal("SEGV");
934 CHECK_STACK_OVERFLOW();
935 rb_bug_for_fatal_signal(default_sigsegv_handler, sig, SIGINFO_CTX, "Segmentation fault" MESSAGE_FAULT_ADDRESS);
937 #endif
939 #ifdef SIGILL
941 static sighandler_t default_sigill_handler;
942 NORETURN(static ruby_sigaction_t sigill);
944 static void
945 sigill(int sig SIGINFO_ARG)
947 check_reserved_signal("ILL");
948 #if defined __APPLE__ || defined __linux__
949 CHECK_STACK_OVERFLOW();
950 #endif
951 rb_bug_for_fatal_signal(default_sigill_handler, sig, SIGINFO_CTX, "Illegal instruction" MESSAGE_FAULT_ADDRESS);
953 #endif
955 #ifndef __sun
956 NORETURN(static void ruby_abort(void));
957 #endif
959 static void
960 ruby_abort(void)
962 #ifdef __sun
963 /* Solaris's abort() is async signal unsafe. Of course, it is not
964 * POSIX compliant.
966 raise(SIGABRT);
967 #else
968 abort();
969 #endif
972 static void
973 check_reserved_signal_(const char *name, size_t name_len, int signo)
975 const char *prev = ATOMIC_PTR_EXCHANGE(received_signal, name);
977 if (prev) {
978 ssize_t RB_UNUSED_VAR(err);
979 static const int stderr_fd = 2;
980 #define NOZ(name, str) RBIMPL_ATTR_NONSTRING() name[sizeof(str)-1] = str
981 static const char NOZ(msg1, " received in ");
982 static const char NOZ(msg2, " handler\n");
984 #ifdef HAVE_WRITEV
985 struct iovec iov[4];
986 int i = 0;
987 # define W(str, len) \
988 iov[i++] = (struct iovec){.iov_base = (void *)(str), .iov_len = (len)}
989 #else
990 # define W(str, len) err = write(stderr_fd, (str), (len))
991 #endif
993 #if __has_feature(address_sanitizer) || \
994 __has_feature(memory_sanitizer) || \
995 defined(HAVE_VALGRIND_MEMCHECK_H)
996 ruby_posix_signal(signo, SIG_DFL);
997 #endif
998 W(name, name_len);
999 W(msg1, sizeof(msg1));
1000 W(prev, strlen(prev));
1001 W(msg2, sizeof(msg2));
1002 # undef W
1003 #ifdef HAVE_WRITEV
1004 err = writev(stderr_fd, iov, i);
1005 #endif
1006 ruby_abort();
1009 if (GET_VM() != NULL) {
1010 rb_gc_disable_no_rest();
1013 #endif
1015 #if defined SIGPIPE || defined SIGSYS
1016 static void
1017 sig_do_nothing(int sig)
1020 #endif
1022 static int
1023 signal_exec(VALUE cmd, int sig)
1025 rb_execution_context_t *ec = GET_EC();
1026 volatile rb_atomic_t old_interrupt_mask = ec->interrupt_mask;
1027 enum ruby_tag_type state;
1030 * workaround the following race:
1031 * 1. signal_enque queues signal for execution
1032 * 2. user calls trap(sig, "IGNORE"), setting SIG_IGN
1033 * 3. rb_signal_exec runs on queued signal
1035 if (IMMEDIATE_P(cmd))
1036 return FALSE;
1038 ec->interrupt_mask |= TRAP_INTERRUPT_MASK;
1039 EC_PUSH_TAG(ec);
1040 if ((state = EC_EXEC_TAG()) == TAG_NONE) {
1041 VALUE signum = INT2NUM(sig);
1042 rb_eval_cmd_kw(cmd, rb_ary_new3(1, signum), RB_NO_KEYWORDS);
1044 EC_POP_TAG();
1045 ec = GET_EC();
1046 ec->interrupt_mask = old_interrupt_mask;
1048 if (state) {
1049 /* XXX: should be replaced with rb_threadptr_pending_interrupt_enque() */
1050 EC_JUMP_TAG(ec, state);
1052 return TRUE;
1055 void
1056 rb_vm_trap_exit(rb_vm_t *vm)
1058 VALUE trap_exit = vm->trap_list.cmd[0];
1060 if (trap_exit) {
1061 vm->trap_list.cmd[0] = 0;
1062 signal_exec(trap_exit, 0);
1066 /* returns true if a trap handler was run, false otherwise */
1068 rb_signal_exec(rb_thread_t *th, int sig)
1070 rb_vm_t *vm = GET_VM();
1071 VALUE cmd = vm->trap_list.cmd[sig];
1073 if (cmd == 0) {
1074 switch (sig) {
1075 case SIGINT:
1076 rb_interrupt();
1077 break;
1078 #ifdef SIGHUP
1079 case SIGHUP:
1080 #endif
1081 #ifdef SIGQUIT
1082 case SIGQUIT:
1083 #endif
1084 #ifdef SIGTERM
1085 case SIGTERM:
1086 #endif
1087 #ifdef SIGALRM
1088 case SIGALRM:
1089 #endif
1090 #ifdef SIGUSR1
1091 case SIGUSR1:
1092 #endif
1093 #ifdef SIGUSR2
1094 case SIGUSR2:
1095 #endif
1096 rb_threadptr_signal_raise(th, sig);
1097 break;
1100 else if (UNDEF_P(cmd)) {
1101 rb_threadptr_signal_exit(th);
1103 else {
1104 return signal_exec(cmd, sig);
1106 return FALSE;
1109 static sighandler_t
1110 default_handler(int sig)
1112 sighandler_t func;
1113 switch (sig) {
1114 case SIGINT:
1115 #ifdef SIGHUP
1116 case SIGHUP:
1117 #endif
1118 #ifdef SIGQUIT
1119 case SIGQUIT:
1120 #endif
1121 #ifdef SIGTERM
1122 case SIGTERM:
1123 #endif
1124 #ifdef SIGALRM
1125 case SIGALRM:
1126 #endif
1127 #ifdef SIGUSR1
1128 case SIGUSR1:
1129 #endif
1130 #ifdef SIGUSR2
1131 case SIGUSR2:
1132 #endif
1133 #ifdef RUBY_SIGCHLD
1134 case RUBY_SIGCHLD:
1135 #endif
1136 func = sighandler;
1137 break;
1138 #ifdef SIGBUS
1139 case SIGBUS:
1140 func = (sighandler_t)sigbus;
1141 break;
1142 #endif
1143 #ifdef SIGSEGV
1144 case SIGSEGV:
1145 func = (sighandler_t)sigsegv;
1146 break;
1147 #endif
1148 #ifdef SIGPIPE
1149 case SIGPIPE:
1150 func = sig_do_nothing;
1151 break;
1152 #endif
1153 #ifdef SIGSYS
1154 case SIGSYS:
1155 func = sig_do_nothing;
1156 break;
1157 #endif
1158 default:
1159 func = SIG_DFL;
1160 break;
1163 return func;
1166 static sighandler_t
1167 trap_handler(VALUE *cmd, int sig)
1169 sighandler_t func = sighandler;
1170 VALUE command;
1172 if (NIL_P(*cmd)) {
1173 func = SIG_IGN;
1175 else {
1176 command = rb_check_string_type(*cmd);
1177 if (NIL_P(command) && SYMBOL_P(*cmd)) {
1178 command = rb_sym2str(*cmd);
1179 if (!command) rb_raise(rb_eArgError, "bad handler");
1181 if (!NIL_P(command)) {
1182 const char *cptr;
1183 long len;
1184 StringValue(command);
1185 *cmd = command;
1186 RSTRING_GETMEM(command, cptr, len);
1187 switch (len) {
1188 sig_ign:
1189 func = SIG_IGN;
1190 *cmd = Qtrue;
1191 break;
1192 sig_dfl:
1193 func = default_handler(sig);
1194 *cmd = 0;
1195 break;
1196 case 0:
1197 goto sig_ign;
1198 break;
1199 case 14:
1200 if (memcmp(cptr, "SYSTEM_DEFAULT", 14) == 0) {
1201 func = SIG_DFL;
1202 *cmd = 0;
1204 break;
1205 case 7:
1206 if (memcmp(cptr, "SIG_IGN", 7) == 0) {
1207 goto sig_ign;
1209 else if (memcmp(cptr, "SIG_DFL", 7) == 0) {
1210 goto sig_dfl;
1212 else if (memcmp(cptr, "DEFAULT", 7) == 0) {
1213 goto sig_dfl;
1215 break;
1216 case 6:
1217 if (memcmp(cptr, "IGNORE", 6) == 0) {
1218 goto sig_ign;
1220 break;
1221 case 4:
1222 if (memcmp(cptr, "EXIT", 4) == 0) {
1223 *cmd = Qundef;
1225 break;
1228 else {
1229 rb_proc_t *proc;
1230 GetProcPtr(*cmd, proc);
1231 (void)proc;
1235 return func;
1238 static int
1239 trap_signm(VALUE vsig)
1241 int sig = -1;
1243 if (FIXNUM_P(vsig)) {
1244 sig = FIX2INT(vsig);
1245 if (sig < 0 || sig >= NSIG) {
1246 rb_raise(rb_eArgError, "invalid signal number (%d)", sig);
1249 else {
1250 sig = signm2signo(&vsig, FALSE, TRUE, NULL);
1252 return sig;
1255 static VALUE
1256 trap(int sig, sighandler_t func, VALUE command)
1258 sighandler_t oldfunc;
1259 VALUE oldcmd;
1260 rb_vm_t *vm = GET_VM();
1263 * Be careful. ruby_signal() and trap_list.cmd[sig] must be changed
1264 * atomically. In current implementation, we only need to don't call
1265 * RUBY_VM_CHECK_INTS().
1267 if (sig == 0) {
1268 oldfunc = SIG_ERR;
1270 else {
1271 oldfunc = ruby_signal(sig, func);
1272 if (oldfunc == SIG_ERR) rb_sys_fail_str(rb_signo2signm(sig));
1274 oldcmd = vm->trap_list.cmd[sig];
1275 switch (oldcmd) {
1276 case 0:
1277 case Qtrue:
1278 if (oldfunc == SIG_IGN) oldcmd = rb_str_new2("IGNORE");
1279 else if (oldfunc == SIG_DFL) oldcmd = rb_str_new2("SYSTEM_DEFAULT");
1280 else if (oldfunc == sighandler) oldcmd = rb_str_new2("DEFAULT");
1281 else oldcmd = Qnil;
1282 break;
1283 case Qnil:
1284 break;
1285 case Qundef:
1286 oldcmd = rb_str_new2("EXIT");
1287 break;
1290 ACCESS_ONCE(VALUE, vm->trap_list.cmd[sig]) = command;
1292 return oldcmd;
1295 static int
1296 reserved_signal_p(int signo)
1298 /* Synchronous signal can't deliver to main thread */
1299 #ifdef SIGSEGV
1300 if (signo == SIGSEGV)
1301 return 1;
1302 #endif
1303 #ifdef SIGBUS
1304 if (signo == SIGBUS)
1305 return 1;
1306 #endif
1307 #ifdef SIGILL
1308 if (signo == SIGILL)
1309 return 1;
1310 #endif
1311 #ifdef SIGFPE
1312 if (signo == SIGFPE)
1313 return 1;
1314 #endif
1316 /* used ubf internal see thread_pthread.c. */
1317 #ifdef SIGVTALRM
1318 if (signo == SIGVTALRM)
1319 return 1;
1320 #endif
1322 return 0;
1326 * call-seq:
1327 * Signal.trap( signal, command ) -> obj
1328 * Signal.trap( signal ) {| | block } -> obj
1330 * Specifies the handling of signals. The first parameter is a signal
1331 * name (a string such as ``SIGALRM'', ``SIGUSR1'', and so on) or a
1332 * signal number. The characters ``SIG'' may be omitted from the
1333 * signal name. The command or block specifies code to be run when the
1334 * signal is raised.
1335 * If the command is the string ``IGNORE'' or ``SIG_IGN'', the signal
1336 * will be ignored.
1337 * If the command is ``DEFAULT'' or ``SIG_DFL'', the Ruby's default handler
1338 * will be invoked.
1339 * If the command is ``EXIT'', the script will be terminated by the signal.
1340 * If the command is ``SYSTEM_DEFAULT'', the operating system's default
1341 * handler will be invoked.
1342 * Otherwise, the given command or block will be run.
1343 * The special signal name ``EXIT'' or signal number zero will be
1344 * invoked just prior to program termination.
1345 * trap returns the previous handler for the given signal.
1347 * Signal.trap(0, proc { puts "Terminating: #{$$}" })
1348 * Signal.trap("CLD") { puts "Child died" }
1349 * fork && Process.wait
1351 * <em>produces:</em>
1352 * Terminating: 27461
1353 * Child died
1354 * Terminating: 27460
1356 static VALUE
1357 sig_trap(int argc, VALUE *argv, VALUE _)
1359 int sig;
1360 sighandler_t func;
1361 VALUE cmd;
1363 rb_check_arity(argc, 1, 2);
1365 sig = trap_signm(argv[0]);
1366 if (reserved_signal_p(sig)) {
1367 const char *name = signo2signm(sig);
1368 if (name)
1369 rb_raise(rb_eArgError, "can't trap reserved signal: SIG%s", name);
1370 else
1371 rb_raise(rb_eArgError, "can't trap reserved signal: %d", sig);
1374 if (argc == 1) {
1375 cmd = rb_block_proc();
1376 func = sighandler;
1378 else {
1379 cmd = argv[1];
1380 func = trap_handler(&cmd, sig);
1383 if (rb_obj_is_proc(cmd) &&
1384 !rb_ractor_main_p() && !rb_ractor_shareable_p(cmd)) {
1385 cmd = rb_proc_isolate(cmd);
1388 return trap(sig, func, cmd);
1392 * call-seq:
1393 * Signal.list -> a_hash
1395 * Returns a list of signal names mapped to the corresponding
1396 * underlying signal numbers.
1398 * Signal.list #=> {"EXIT"=>0, "HUP"=>1, "INT"=>2, "QUIT"=>3, "ILL"=>4, "TRAP"=>5, "IOT"=>6, "ABRT"=>6, "FPE"=>8, "KILL"=>9, "BUS"=>7, "SEGV"=>11, "SYS"=>31, "PIPE"=>13, "ALRM"=>14, "TERM"=>15, "URG"=>23, "STOP"=>19, "TSTP"=>20, "CONT"=>18, "CHLD"=>17, "CLD"=>17, "TTIN"=>21, "TTOU"=>22, "IO"=>29, "XCPU"=>24, "XFSZ"=>25, "VTALRM"=>26, "PROF"=>27, "WINCH"=>28, "USR1"=>10, "USR2"=>12, "PWR"=>30, "POLL"=>29}
1400 static VALUE
1401 sig_list(VALUE _)
1403 VALUE h = rb_hash_new();
1404 const struct signals *sigs;
1406 FOREACH_SIGNAL(sigs, 0) {
1407 rb_hash_aset(h, rb_fstring_cstr(sigs->signm), INT2FIX(sigs->signo));
1409 return h;
1412 #define INSTALL_SIGHANDLER(cond, signame, signum) do { \
1413 static const char failed[] = "failed to install "signame" handler"; \
1414 if (!(cond)) break; \
1415 if (reserved_signal_p(signum)) rb_bug(failed); \
1416 perror(failed); \
1417 } while (0)
1419 static int
1420 install_sighandler_core(int signum, sighandler_t handler, sighandler_t *old_handler)
1422 sighandler_t old;
1424 old = ruby_signal(signum, handler);
1425 if (old == SIG_ERR) return -1;
1426 if (old_handler) {
1427 *old_handler = (old == SIG_DFL || old == SIG_IGN) ? 0 : old;
1429 else {
1430 /* signal handler should be inherited during exec. */
1431 if (old != SIG_DFL) {
1432 ruby_signal(signum, old);
1435 return 0;
1438 # define install_sighandler(signum, handler) \
1439 INSTALL_SIGHANDLER(install_sighandler_core(signum, handler, NULL), #signum, signum)
1440 # define force_install_sighandler(signum, handler, old_handler) \
1441 INSTALL_SIGHANDLER(install_sighandler_core(signum, handler, old_handler), #signum, signum)
1443 void
1444 ruby_sig_finalize(void)
1446 sighandler_t oldfunc;
1448 oldfunc = ruby_signal(SIGINT, SIG_IGN);
1449 if (oldfunc == sighandler) {
1450 ruby_signal(SIGINT, SIG_DFL);
1454 int ruby_enable_coredump = 0;
1457 * Many operating systems allow signals to be sent to running
1458 * processes. Some signals have a defined effect on the process, while
1459 * others may be trapped at the code level and acted upon. For
1460 * example, your process may trap the USR1 signal and use it to toggle
1461 * debugging, and may use TERM to initiate a controlled shutdown.
1463 * pid = fork do
1464 * Signal.trap("USR1") do
1465 * $debug = !$debug
1466 * puts "Debug now: #$debug"
1467 * end
1468 * Signal.trap("TERM") do
1469 * puts "Terminating..."
1470 * shutdown()
1471 * end
1472 * # . . . do some work . . .
1473 * end
1475 * Process.detach(pid)
1477 * # Controlling program:
1478 * Process.kill("USR1", pid)
1479 * # ...
1480 * Process.kill("USR1", pid)
1481 * # ...
1482 * Process.kill("TERM", pid)
1484 * <em>produces:</em>
1485 * Debug now: true
1486 * Debug now: false
1487 * Terminating...
1489 * The list of available signal names and their interpretation is
1490 * system dependent. Signal delivery semantics may also vary between
1491 * systems; in particular signal delivery may not always be reliable.
1493 void
1494 Init_signal(void)
1496 VALUE mSignal = rb_define_module("Signal");
1498 rb_define_global_function("trap", sig_trap, -1);
1499 rb_define_module_function(mSignal, "trap", sig_trap, -1);
1500 rb_define_module_function(mSignal, "list", sig_list, 0);
1501 rb_define_module_function(mSignal, "signame", sig_signame, 1);
1503 rb_define_method(rb_eSignal, "initialize", esignal_init, -1);
1504 rb_define_method(rb_eSignal, "signo", esignal_signo, 0);
1505 rb_alias(rb_eSignal, rb_intern_const("signm"), rb_intern_const("message"));
1506 rb_define_method(rb_eInterrupt, "initialize", interrupt_init, -1);
1508 // It should be ready to call rb_signal_exec()
1509 VM_ASSERT(GET_THREAD()->pending_interrupt_queue);
1511 /* At this time, there is no subthread. Then sigmask guarantee atomics. */
1512 rb_disable_interrupt();
1514 install_sighandler(SIGINT, sighandler);
1515 #ifdef SIGHUP
1516 install_sighandler(SIGHUP, sighandler);
1517 #endif
1518 #ifdef SIGQUIT
1519 install_sighandler(SIGQUIT, sighandler);
1520 #endif
1521 #ifdef SIGTERM
1522 install_sighandler(SIGTERM, sighandler);
1523 #endif
1524 #ifdef SIGALRM
1525 install_sighandler(SIGALRM, sighandler);
1526 #endif
1527 #ifdef SIGUSR1
1528 install_sighandler(SIGUSR1, sighandler);
1529 #endif
1530 #ifdef SIGUSR2
1531 install_sighandler(SIGUSR2, sighandler);
1532 #endif
1534 if (!ruby_enable_coredump) {
1535 #ifdef SIGBUS
1536 force_install_sighandler(SIGBUS, (sighandler_t)sigbus, &default_sigbus_handler);
1537 #endif
1538 #ifdef SIGILL
1539 force_install_sighandler(SIGILL, (sighandler_t)sigill, &default_sigill_handler);
1540 #endif
1541 #ifdef SIGSEGV
1542 RB_ALTSTACK_INIT(GET_VM()->main_altstack, rb_allocate_sigaltstack());
1543 force_install_sighandler(SIGSEGV, (sighandler_t)sigsegv, &default_sigsegv_handler);
1544 #endif
1546 #ifdef SIGPIPE
1547 install_sighandler(SIGPIPE, sig_do_nothing);
1548 #endif
1549 #ifdef SIGSYS
1550 install_sighandler(SIGSYS, sig_do_nothing);
1551 #endif
1553 #ifdef RUBY_SIGCHLD
1554 install_sighandler(RUBY_SIGCHLD, sighandler);
1555 #endif
1557 rb_enable_interrupt();