Namespaces
Variants
Actions

SIMD library

From cppreference.com
 
 
Experimental
Technical Specification
Filesystem library (filesystem TS)
Library fundamentals (library fundamentals TS)
Library fundamentals 2 (library fundamentals TS v2)
Library fundamentals 3 (library fundamentals TS v3)
Extensions for parallelism (parallelism TS)
Extensions for parallelism 2 (parallelism TS v2)
Extensions for concurrency (concurrency TS)
Extensions for concurrency 2 (concurrency TS v2)
Concepts (concepts TS)
Ranges (ranges TS)
Reflection (reflection TS)
Mathematical special functions (special functions TR)
Experimental Non-TS
Pattern Matching
Linear Algebra
std::execution
Contracts
2D Graphics
 
 
 

The SIMD library provides portable types for explicitly stating data-parallelism and structuring data for more efficient SIMD access.

An object of type simd<T> behaves analogue to objects of type T. But while T stores and manipulates one value, simd<T> stores and manipulates multiple values (called width but identified as size for consistency with the rest of the standard library; cf. simd_size).

Every operator and operation on simd<T> acts element-wise (except for horizontal operations, which are clearly marked as such). This simple rule expresses data-parallelism and will be used by the compiler to generate SIMD instructions and/or independent execution streams.

The width of the types simd<T> and native_simd<T> is determined by the implementation at compile-time. In contrast, the width of the type fixed_size_simd<T, N> is fixed by the developer to a certain size.

A recommended pattern for using a mix of different SIMD types with high efficiency uses native_simd and rebind_simd:

#include <experimental/simd>
namespace stdx = std::experimental;
 
using floatv  = stdx::native_simd<float>;
using doublev = stdx::rebind_simd_t<double, floatv>;
using intv    = stdx::rebind_simd_t<int, floatv>;

This ensures that the set of types all have the same width and thus can be interconverted. A conversion with mismatching width is not defined because it would either drop values or have to invent values. For resizing operations, the SIMD library provides the split and concat functions.

Defined in header <experimental/simd>

Contents

[