NumPy gradient()

The numpy.gradient() function computes the gradient of an N-dimensional array using finite differences. It returns an array (or tuple of arrays) representing the derivatives along each dimension.

Syntax

</>
Copy
numpy.gradient(f, *varargs, axis=None, edge_order=1)

Parameters

ParameterTypeDescription
farray_likeAn N-dimensional array containing samples of a function.
varargslist of scalar or array, optionalSpecifies spacing between f values. Can be a single scalar, multiple scalars (one per dimension), or coordinate arrays.
axisNone, int, or tuple of ints, optionalSpecifies the axis or axes along which to compute the gradient. Default is None, meaning all axes are used.
edge_order{1, 2}, optionalSpecifies the accuracy of gradient calculation at the edges. Default is 1.

Return Value

Returns a single ndarray if f is 1D, or a tuple of ndarrays (one for each dimension) if f is multi-dimensional.


Examples

1. Computing Gradient for a 1D Array

Here, we compute the gradient of a simple 1D array.

</>
Copy
import numpy as np

# Define a 1D array
f = np.array([1, 2, 4, 7, 11])

# Compute the gradient
gradient = np.gradient(f)

# Print the result
print("Gradient of 1D array:", gradient)

Output:

Gradient of 1D array: [1.  1.5 2.5 3.5 4. ]