














































http://haskell.org







































































































10

10















aa















i
























10


























































































[]




















































































































































































L





































































































http://www.unicode.org/























































































































































































































































































































































































http://unicode.org/standard/standard.html




]
h g o B
[ [ Lol
0 B . mmmm mmm mm - Ng -
00 o 5 m mm UU=lsd"o
0o &
L]
i ]
- OppHObn i O
02 oo oo U =0 UOogs OC
g0 o540 L5005 iy 000000
[] O [ On O O [] OOoOog 0
e BRI



. a mm O O
_ 0 O

0 o, ! 0o o

mm mmm nmmmmu = mmm mmmmm Dmm mmmmm oo
q 0
. 0 O O

[] O O O i
057 oo 0 g U DD o4 O mmmmmm
00 = 59700 qood o mm U7 o - oo 0 mmmm



i i i .
o U O O 0 O - 0 O
0o 0o g - 0°000008 o
Y O 3= m DDDD DDD U DDDM [
ul O OUHOG m_u_u_ 0O O I
[]
_H__H_ D
00 ]
] 1 mmm _H__u_um N o s m
O i 0 -~ OO0 i
00 0 0OpgkC i
] o g 0 0 el oo



[ O 0 o [] []
m L iy = .- 08 0 0o 0
0o00s o o g-te O

N N I | | |



i
] 0
H
%0y oL 0 mE 0 o
0 O 008 Hof8 O
0 00 0 - 007005 =0 O 00 g oo
gy g oo O 0o 06 00 i
Angigt 0 0o o mm i 1
]
=
N0p0 Ue gmggy O i 10 0O



i
il mmmm 00
[] mmm mm :
0o i o
] [] _H__u_u_u_ _u
g 08 007 (& I
U 0 o mmmmm

h i In
e L]
L]






(-

1
O

O [
HL Dmmmmm -
B=L0O

[l
il
" b

[]

0 mgmmm
_H__H__H_ L]

L]

mm

O
O

O o]
0ot
o O

Dmm

Ul o

U [e
o0

i
O

i

mmgmmm - 0000g0003

0 0
08000508

[]
© 0
0

]






0
i 0

]
B ooy oo o O 0 oonono
000, D0 il
0™ o ool 000 oooon
]
: ]
Dmm Dm
S0 5 oo Oo o
T mm g o 0 O5-0Hs  H00 O00--0oooo






	Title page
	Contents
	Preface
	I The Haskell 2010 Language
	Introduction
	Program Structure
	The Haskell Kernel
	Values and Types
	Namespaces

	Lexical Structure
	Notational Conventions
	Lexical Program Structure
	Comments
	Identifiers and Operators
	Numeric Literals
	Character and String Literals
	Layout

	Expressions
	Errors
	Variables, Constructors, Operators, and Literals
	Curried Applications and Lambda Abstractions
	Operator Applications
	Sections
	Conditionals
	Lists
	Tuples
	Unit Expressions and Parenthesized Expressions
	Arithmetic Sequences
	List Comprehensions
	Let Expressions
	Case Expressions
	Do Expressions
	Datatypes with Field Labels
	Field Selection
	Construction Using Field Labels
	Updates Using Field Labels

	Expression Type-Signatures
	Pattern Matching
	Patterns
	Informal Semantics of Pattern Matching
	Formal Semantics of Pattern Matching


	Declarations and Bindings
	Overview of Types and Classes
	Kinds
	Syntax of Types
	Syntax of Class Assertions and Contexts
	Semantics of Types and Classes

	User-Defined Datatypes
	Algebraic Datatype Declarations
	Type Synonym Declarations
	Datatype Renamings

	Type Classes and Overloading
	Class Declarations
	Instance Declarations
	Derived Instances
	Ambiguous Types, and Defaults for Overloaded Numeric Operations

	Nested Declarations
	Type Signatures
	Fixity Declarations
	Function and Pattern Bindings
	Function bindings
	Pattern bindings


	Static Semantics of Function and Pattern Bindings
	Dependency Analysis
	Generalization
	Context Reduction Errors
	Monomorphism
	The Monomorphism Restriction

	Kind Inference

	Modules
	Module Structure
	Export Lists
	Import Declarations
	What is imported
	Qualified import
	Local aliases
	Examples

	Importing and Exporting Instance Declarations
	Name Clashes and Closure
	Qualified names
	Name clashes
	Closure

	Standard Prelude
	The Prelude Module
	Shadowing Prelude Names

	Separate Compilation
	Abstract Datatypes

	Predefined Types and Classes
	Standard Haskell Types
	Booleans
	Characters and Strings
	Lists
	Tuples
	The Unit Datatype
	Function Types
	The IO and IOError Types
	Other Types

	Strict Evaluation
	Standard Haskell Classes
	The Eq Class
	The Ord Class
	The Read and Show Classes
	The Enum Class
	The Functor Class
	The Monad Class
	The Bounded Class

	Numbers
	Numeric Literals
	Arithmetic and Number-Theoretic Operations
	Exponentiation and Logarithms
	Magnitude and Sign
	Trigonometric Functions
	Coercions and Component Extraction


	Basic Input/Output
	Standard I/O Functions
	Sequencing I/O Operations
	Exception Handling in the I/O Monad

	Foreign Function Interface
	Foreign Languages
	Contexts
	Cross Language Type Consistency

	Lexical Structure
	Foreign Declarations
	Calling Conventions
	Foreign Types
	Import Declarations
	Export Declarations

	Specification of External Entities
	Standard C Calls
	Win32 API Calls

	Marshalling
	The External C Interface

	Standard Prelude
	Prelude PreludeList
	Prelude PreludeText
	Prelude PreludeIO

	Syntax Reference
	Notational Conventions
	Lexical Syntax
	Layout
	Literate comments
	Context-Free Syntax
	Fixity Resolution

	Specification of Derived Instances
	Derived instances of Eq and Ord
	Derived instances of Enum
	Derived instances of Bounded
	Derived instances of Read and Show
	An Example

	Compiler Pragmas
	Inlining
	Specialization
	Language extensions


	II The Haskell 2010 Libraries
	Control.Monad
	Functor and monad classes 
	Functions 
	Naming conventions 
	Basic Monad functions 
	Generalisations of list functions 
	Conditional execution of monadic expressions 
	Monadic lifting operators 


	Data.Array
	Immutable non-strict arrays 
	Array construction 
	Accessing arrays 
	Incremental array updates 
	Derived arrays 
	Specification 

	Data.Bits
	Data.Char
	Characters and strings 
	Character classification 
	Subranges 
	Unicode general categories 

	Case conversion 
	Single digit characters 
	Numeric representations 
	String representations 

	Data.Complex
	Rectangular form 
	Polar form 
	Conjugate 
	Specification 

	Data.Int
	Signed integer types 

	Data.Ix
	The Ix class 
	Deriving Instances of Ix 

	Data.List
	Basic functions 
	List transformations 
	Reducing lists (folds) 
	Special folds 

	Building lists 
	Scans 
	Accumulating maps 
	Infinite lists 
	Unfolding 

	Sublists 
	Extracting sublists 
	Predicates 

	Searching lists 
	Searching by equality 
	Searching with a predicate 

	Indexing lists 
	Zipping and unzipping lists 
	Special lists 
	Functions on strings 
	"Set" operations 
	Ordered lists 

	Generalized functions 
	The "By" operations 
	User-supplied equality (replacing an Eq context) 
	User-supplied comparison (replacing an Ord context) 

	The "generic" operations 


	Data.Maybe
	The Maybe type and operations 
	Specification 

	Data.Ratio
	Specification 

	Data.Word
	Unsigned integral types 

	Foreign
	Foreign.C
	Foreign.C.Error
	Haskell representations of errno values 
	Common errno symbols 
	Errno functions 
	Guards for IO operations that may fail 


	Foreign.C.String
	C strings 
	Using a locale-dependent encoding 
	Using 8-bit characters 

	C wide strings 

	Foreign.C.Types
	Representations of C types 
	Integral types 
	Numeric types 
	Floating types 
	Other types 


	Foreign.ForeignPtr
	Finalised data pointers 
	Basic operations 
	Low-level operations 
	Allocating managed memory 


	Foreign.Marshal
	Foreign.Marshal.Alloc
	Memory allocation 
	Local allocation 
	Dynamic allocation 


	Foreign.Marshal.Array
	Marshalling arrays 
	Allocation 
	Marshalling 
	Combined allocation and marshalling 
	Copying 
	Finding the length 
	Indexing 


	Foreign.Marshal.Error
	Foreign.Marshal.Utils
	General marshalling utilities 
	Combined allocation and marshalling 
	Marshalling of Boolean values (non-zero corresponds to True) 
	Marshalling of Maybe values 
	Marshalling lists of storable objects 
	Haskellish interface to memcpy and memmove 


	Foreign.Ptr
	Data pointers 
	Function pointers 
	Integral types with lossless conversion to and from pointers 

	Foreign.StablePtr
	Stable references to Haskell values 
	The C-side interface 


	Foreign.Storable
	Numeric
	Showing 
	Reading 
	Miscellaneous 

	System.Environment
	System.Exit
	System.IO
	The IO monad 
	Files and handles 
	Standard handles 

	Opening and closing files 
	Opening files 
	Closing files 
	Special cases 
	File locking 

	Operations on handles 
	Determining and changing the size of a file 
	Detecting the end of input 
	Buffering operations 
	Repositioning handles 
	Handle properties 
	Terminal operations 
	Showing handle state 

	Text input and output 
	Text input 
	Text output 
	Special cases for standard input and output 


	System.IO.Error
	I/O errors 
	Classifying I/O errors 
	Attributes of I/O errors 

	Types of I/O error 
	Throwing and catching I/O errors 


	References
	Index

