Loading...
Searching...
No Matches
v8-internal.h
Go to the documentation of this file.
1// Copyright 2018 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#ifndef INCLUDE_V8_INTERNAL_H_
6#define INCLUDE_V8_INTERNAL_H_
7
8#include <stddef.h>
9#include <stdint.h>
10#include <string.h>
11
12#include <atomic>
13#include <iterator>
14#include <limits>
15#include <memory>
16#include <optional>
17#include <type_traits>
18
19#include "v8config.h" // NOLINT(build/include_directory)
20
21// TODO(pkasting): Use <compare>/spaceship unconditionally after dropping
22// support for old libstdc++ versions.
23#if __has_include(<version>)
24#include <version>
25#endif
26#if defined(__cpp_lib_three_way_comparison) && \
27 __cpp_lib_three_way_comparison >= 201711L && \
28 defined(__cpp_lib_concepts) && __cpp_lib_concepts >= 202002L
29#include <compare>
30#include <concepts>
31
32#define V8_HAVE_SPACESHIP_OPERATOR 1
33#else
34#define V8_HAVE_SPACESHIP_OPERATOR 0
35#endif
36
37namespace v8 {
38
39class Array;
40class Context;
41class Data;
42class Isolate;
43
44namespace internal {
45
46class Heap;
47class LocalHeap;
48class Isolate;
49class IsolateGroup;
50class LocalIsolate;
51
52typedef uintptr_t Address;
53static constexpr Address kNullAddress = 0;
54
55constexpr int KB = 1024;
56constexpr int MB = KB * 1024;
57constexpr int GB = MB * 1024;
58#ifdef V8_TARGET_ARCH_X64
59constexpr size_t TB = size_t{GB} * 1024;
60#endif
61
65const int kApiSystemPointerSize = sizeof(void*);
66const int kApiDoubleSize = sizeof(double);
67const int kApiInt32Size = sizeof(int32_t);
68const int kApiInt64Size = sizeof(int64_t);
69const int kApiSizetSize = sizeof(size_t);
70
71// Tag information for HeapObject.
72const int kHeapObjectTag = 1;
73const int kWeakHeapObjectTag = 3;
74const int kHeapObjectTagSize = 2;
75const intptr_t kHeapObjectTagMask = (1 << kHeapObjectTagSize) - 1;
77
78// Tag information for fowarding pointers stored in object headers.
79// 0b00 at the lowest 2 bits in the header indicates that the map word is a
80// forwarding pointer.
81const int kForwardingTag = 0;
82const int kForwardingTagSize = 2;
83const intptr_t kForwardingTagMask = (1 << kForwardingTagSize) - 1;
84
85// Tag information for Smi.
86const int kSmiTag = 0;
87const int kSmiTagSize = 1;
88const intptr_t kSmiTagMask = (1 << kSmiTagSize) - 1;
89
90template <size_t tagged_ptr_size>
92
93constexpr intptr_t kIntptrAllBitsSet = intptr_t{-1};
94constexpr uintptr_t kUintptrAllBitsSet =
95 static_cast<uintptr_t>(kIntptrAllBitsSet);
96
97// Smi constants for systems where tagged pointer is a 32-bit value.
98template <>
99struct SmiTagging<4> {
100 enum { kSmiShiftSize = 0, kSmiValueSize = 31 };
101
102 static constexpr intptr_t kSmiMinValue =
103 static_cast<intptr_t>(kUintptrAllBitsSet << (kSmiValueSize - 1));
104 static constexpr intptr_t kSmiMaxValue = -(kSmiMinValue + 1);
105
106 V8_INLINE static constexpr int SmiToInt(Address value) {
107 int shift_bits = kSmiTagSize + kSmiShiftSize;
108 // Truncate and shift down (requires >> to be sign extending).
109 return static_cast<int32_t>(static_cast<uint32_t>(value)) >> shift_bits;
110 }
111
112 template <class T, typename std::enable_if_t<std::is_integral_v<T> &&
113 std::is_signed_v<T>>* = nullptr>
114 V8_INLINE static constexpr bool IsValidSmi(T value) {
115 // Is value in range [kSmiMinValue, kSmiMaxValue].
116 // Use unsigned operations in order to avoid undefined behaviour in case of
117 // signed integer overflow.
118 return (static_cast<uintptr_t>(value) -
119 static_cast<uintptr_t>(kSmiMinValue)) <=
120 (static_cast<uintptr_t>(kSmiMaxValue) -
121 static_cast<uintptr_t>(kSmiMinValue));
122 }
123
124 template <class T,
125 typename std::enable_if_t<std::is_integral_v<T> &&
126 std::is_unsigned_v<T>>* = nullptr>
127 V8_INLINE static constexpr bool IsValidSmi(T value) {
128 static_assert(kSmiMaxValue <= std::numeric_limits<uintptr_t>::max());
129 return value <= static_cast<uintptr_t>(kSmiMaxValue);
130 }
131
132 // Same as the `intptr_t` version but works with int64_t on 32-bit builds
133 // without slowing down anything else.
134 V8_INLINE static constexpr bool IsValidSmi(int64_t value) {
135 return (static_cast<uint64_t>(value) -
136 static_cast<uint64_t>(kSmiMinValue)) <=
137 (static_cast<uint64_t>(kSmiMaxValue) -
138 static_cast<uint64_t>(kSmiMinValue));
139 }
140
141 V8_INLINE static constexpr bool IsValidSmi(uint64_t value) {
142 static_assert(kSmiMaxValue <= std::numeric_limits<uint64_t>::max());
143 return value <= static_cast<uint64_t>(kSmiMaxValue);
144 }
145};
146
147// Smi constants for systems where tagged pointer is a 64-bit value.
148template <>
149struct SmiTagging<8> {
150 enum { kSmiShiftSize = 31, kSmiValueSize = 32 };
151
152 static constexpr intptr_t kSmiMinValue =
153 static_cast<intptr_t>(kUintptrAllBitsSet << (kSmiValueSize - 1));
154 static constexpr intptr_t kSmiMaxValue = -(kSmiMinValue + 1);
155
156 V8_INLINE static constexpr int SmiToInt(Address value) {
157 int shift_bits = kSmiTagSize + kSmiShiftSize;
158 // Shift down and throw away top 32 bits.
159 return static_cast<int>(static_cast<intptr_t>(value) >> shift_bits);
160 }
161
162 template <class T, typename std::enable_if_t<std::is_integral_v<T> &&
163 std::is_signed_v<T>>* = nullptr>
164 V8_INLINE static constexpr bool IsValidSmi(T value) {
165 // To be representable as a long smi, the value must be a 32-bit integer.
166 return std::numeric_limits<int32_t>::min() <= value &&
167 value <= std::numeric_limits<int32_t>::max();
168 }
169
170 template <class T,
171 typename std::enable_if_t<std::is_integral_v<T> &&
172 std::is_unsigned_v<T>>* = nullptr>
173 V8_INLINE static constexpr bool IsValidSmi(T value) {
174 return value <= std::numeric_limits<int32_t>::max();
175 }
176};
177
178#ifdef V8_COMPRESS_POINTERS
179// See v8:7703 or src/common/ptr-compr-inl.h for details about pointer
180// compression.
181constexpr size_t kPtrComprCageReservationSize = size_t{1} << 32;
182constexpr size_t kPtrComprCageBaseAlignment = size_t{1} << 32;
183
184static_assert(
186 "Pointer compression can be enabled only for 64-bit architectures");
187const int kApiTaggedSize = kApiInt32Size;
188#else
190#endif
191
194}
195
196#ifdef V8_31BIT_SMIS_ON_64BIT_ARCH
197using PlatformSmiTagging = SmiTagging<kApiInt32Size>;
198#else
200#endif
201
202// TODO(ishell): Consinder adding kSmiShiftBits = kSmiShiftSize + kSmiTagSize
203// since it's used much more often than the inividual constants.
204const int kSmiShiftSize = PlatformSmiTagging::kSmiShiftSize;
205const int kSmiValueSize = PlatformSmiTagging::kSmiValueSize;
206const int kSmiMinValue = static_cast<int>(PlatformSmiTagging::kSmiMinValue);
207const int kSmiMaxValue = static_cast<int>(PlatformSmiTagging::kSmiMaxValue);
208constexpr bool SmiValuesAre31Bits() { return kSmiValueSize == 31; }
209constexpr bool SmiValuesAre32Bits() { return kSmiValueSize == 32; }
210constexpr bool Is64() { return kApiSystemPointerSize == sizeof(int64_t); }
211
212V8_INLINE static constexpr Address IntToSmi(int value) {
213 return (static_cast<Address>(value) << (kSmiTagSize + kSmiShiftSize)) |
214 kSmiTag;
215}
216
217/*
218 * Sandbox related types, constants, and functions.
219 */
220constexpr bool SandboxIsEnabled() {
221#ifdef V8_ENABLE_SANDBOX
222 return true;
223#else
224 return false;
225#endif
226}
227
228// SandboxedPointers are guaranteed to point into the sandbox. This is achieved
229// for example by storing them as offset rather than as raw pointers.
231
232#ifdef V8_ENABLE_SANDBOX
233
234// Size of the sandbox, excluding the guard regions surrounding it.
235#if defined(V8_TARGET_OS_ANDROID)
236// On Android, most 64-bit devices seem to be configured with only 39 bits of
237// virtual address space for userspace. As such, limit the sandbox to 128GB (a
238// quarter of the total available address space).
239constexpr size_t kSandboxSizeLog2 = 37; // 128 GB
240#elif defined(V8_TARGET_OS_IOS)
241// On iOS, we only get 64 GB of usable virtual address space even with the
242// "jumbo" extended virtual addressing entitlement. Limit the sandbox size to
243// 16 GB so that the base address + size for the emulated virtual address space
244// lies within the 64 GB total virtual address space.
245constexpr size_t kSandboxSizeLog2 = 34; // 16 GB
246#else
247// Everywhere else use a 1TB sandbox.
248constexpr size_t kSandboxSizeLog2 = 40; // 1 TB
249#endif // V8_TARGET_OS_ANDROID
250constexpr size_t kSandboxSize = 1ULL << kSandboxSizeLog2;
251
252// Required alignment of the sandbox. For simplicity, we require the
253// size of the guard regions to be a multiple of this, so that this specifies
254// the alignment of the sandbox including and excluding surrounding guard
255// regions. The alignment requirement is due to the pointer compression cage
256// being located at the start of the sandbox.
257constexpr size_t kSandboxAlignment = kPtrComprCageBaseAlignment;
258
259// Sandboxed pointers are stored inside the heap as offset from the sandbox
260// base shifted to the left. This way, it is guaranteed that the offset is
261// smaller than the sandbox size after shifting it to the right again. This
262// constant specifies the shift amount.
263constexpr uint64_t kSandboxedPointerShift = 64 - kSandboxSizeLog2;
264
265// Size of the guard regions surrounding the sandbox. This assumes a worst-case
266// scenario of a 32-bit unsigned index used to access an array of 64-bit values
267// with an additional 4GB (compressed pointer) offset. In particular, accesses
268// to TypedArrays are effectively computed as
269// `entry_pointer = array->base + array->offset + index * array->element_size`.
270// See also https://crbug.com/40070746 for more details.
271constexpr size_t kSandboxGuardRegionSize = 32ULL * GB + 4ULL * GB;
272
273static_assert((kSandboxGuardRegionSize % kSandboxAlignment) == 0,
274 "The size of the guard regions around the sandbox must be a "
275 "multiple of its required alignment.");
276
277// On OSes where reserving virtual memory is too expensive to reserve the
278// entire address space backing the sandbox, notably Windows pre 8.1, we create
279// a partially reserved sandbox that doesn't actually reserve most of the
280// memory, and so doesn't have the desired security properties as unrelated
281// memory allocations could end up inside of it, but which still ensures that
282// objects that should be located inside the sandbox are allocated within
283// kSandboxSize bytes from the start of the sandbox. The minimum size of the
284// region that is actually reserved for such a sandbox is specified by this
285// constant and should be big enough to contain the pointer compression cage as
286// well as the ArrayBuffer partition.
287constexpr size_t kSandboxMinimumReservationSize = 8ULL * GB;
288
289static_assert(kSandboxMinimumReservationSize > kPtrComprCageReservationSize,
290 "The minimum reservation size for a sandbox must be larger than "
291 "the pointer compression cage contained within it.");
292
293// The maximum buffer size allowed inside the sandbox. This is mostly dependent
294// on the size of the guard regions around the sandbox: an attacker must not be
295// able to construct a buffer that appears larger than the guard regions and
296// thereby "reach out of" the sandbox.
297constexpr size_t kMaxSafeBufferSizeForSandbox = 32ULL * GB - 1;
298static_assert(kMaxSafeBufferSizeForSandbox <= kSandboxGuardRegionSize,
299 "The maximum allowed buffer size must not be larger than the "
300 "sandbox's guard regions");
301
302constexpr size_t kBoundedSizeShift = 29;
303static_assert(1ULL << (64 - kBoundedSizeShift) ==
304 kMaxSafeBufferSizeForSandbox + 1,
305 "The maximum size of a BoundedSize must be synchronized with the "
306 "kMaxSafeBufferSizeForSandbox");
307
308#endif // V8_ENABLE_SANDBOX
309
310#ifdef V8_COMPRESS_POINTERS
311
312#ifdef V8_TARGET_OS_ANDROID
313// The size of the virtual memory reservation for an external pointer table.
314// This determines the maximum number of entries in a table. Using a maximum
315// size allows omitting bounds checks on table accesses if the indices are
316// guaranteed (e.g. through shifting) to be below the maximum index. This
317// value must be a power of two.
318constexpr size_t kExternalPointerTableReservationSize = 256 * MB;
319
320// The external pointer table indices stored in HeapObjects as external
321// pointers are shifted to the left by this amount to guarantee that they are
322// smaller than the maximum table size even after the C++ compiler multiplies
323// them by 8 to be used as indexes into a table of 64 bit pointers.
324constexpr uint32_t kExternalPointerIndexShift = 7;
325#else
326constexpr size_t kExternalPointerTableReservationSize = 512 * MB;
327constexpr uint32_t kExternalPointerIndexShift = 6;
328#endif // V8_TARGET_OS_ANDROID
329
330// The maximum number of entries in an external pointer table.
331constexpr int kExternalPointerTableEntrySize = 8;
332constexpr int kExternalPointerTableEntrySizeLog2 = 3;
333constexpr size_t kMaxExternalPointers =
334 kExternalPointerTableReservationSize / kExternalPointerTableEntrySize;
335static_assert((1 << (32 - kExternalPointerIndexShift)) == kMaxExternalPointers,
336 "kExternalPointerTableReservationSize and "
337 "kExternalPointerIndexShift don't match");
338
339#else // !V8_COMPRESS_POINTERS
340
341// Needed for the V8.SandboxedExternalPointersCount histogram.
342constexpr size_t kMaxExternalPointers = 0;
343
344#endif // V8_COMPRESS_POINTERS
345
346constexpr uint64_t kExternalPointerMarkBit = 1ULL << 48;
347constexpr uint64_t kExternalPointerTagShift = 49;
348constexpr uint64_t kExternalPointerTagMask = 0x00fe000000000000ULL;
353constexpr uint64_t kExternalPointerTagAndMarkbitMask = 0x00ff000000000000ULL;
354constexpr uint64_t kExternalPointerPayloadMask = 0xff00ffffffffffffULL;
355
356// A ExternalPointerHandle represents a (opaque) reference to an external
357// pointer that can be stored inside the sandbox. A ExternalPointerHandle has
358// meaning only in combination with an (active) Isolate as it references an
359// external pointer stored in the currently active Isolate's
360// ExternalPointerTable. Internally, an ExternalPointerHandles is simply an
361// index into an ExternalPointerTable that is shifted to the left to guarantee
362// that it is smaller than the size of the table.
363using ExternalPointerHandle = uint32_t;
364
365// ExternalPointers point to objects located outside the sandbox. When the V8
366// sandbox is enabled, these are stored on heap as ExternalPointerHandles,
367// otherwise they are simply raw pointers.
368#ifdef V8_ENABLE_SANDBOX
370#else
372#endif
373
376
377// See `ExternalPointerHandle` for the main documentation. The difference to
378// `ExternalPointerHandle` is that the handle does not represent an arbitrary
379// external pointer but always refers to an object managed by `CppHeap`. The
380// handles are using in combination with a dedicated table for `CppHeap`
381// references.
382using CppHeapPointerHandle = uint32_t;
383
384// The actual pointer to objects located on the `CppHeap`. When pointer
385// compression is enabled these pointers are stored as `CppHeapPointerHandle`.
386// In non-compressed configurations the pointers are simply stored as raw
387// pointers.
388#ifdef V8_COMPRESS_POINTERS
390#else
392#endif
393
396
397constexpr uint64_t kCppHeapPointerMarkBit = 1ULL;
398constexpr uint64_t kCppHeapPointerTagShift = 1;
399constexpr uint64_t kCppHeapPointerPayloadShift = 16;
400
401#ifdef V8_COMPRESS_POINTERS
402// CppHeapPointers use a dedicated pointer table. These constants control the
403// size and layout of the table. See the corresponding constants for the
404// external pointer table for further details.
405constexpr size_t kCppHeapPointerTableReservationSize =
406 kExternalPointerTableReservationSize;
407constexpr uint32_t kCppHeapPointerIndexShift = kExternalPointerIndexShift;
408
409constexpr int kCppHeapPointerTableEntrySize = 8;
410constexpr int kCppHeapPointerTableEntrySizeLog2 = 3;
411constexpr size_t kMaxCppHeapPointers =
412 kCppHeapPointerTableReservationSize / kCppHeapPointerTableEntrySize;
413static_assert((1 << (32 - kCppHeapPointerIndexShift)) == kMaxCppHeapPointers,
414 "kCppHeapPointerTableReservationSize and "
415 "kCppHeapPointerIndexShift don't match");
416
417#else // !V8_COMPRESS_POINTERS
418
419// Needed for the V8.SandboxedCppHeapPointersCount histogram.
420constexpr size_t kMaxCppHeapPointers = 0;
421
422#endif // V8_COMPRESS_POINTERS
423
424// Generic tag range struct to represent ranges of type tags.
425//
426// When referencing external objects via pointer tables, type tags are
427// frequently necessary to guarantee type safety for the external objects. When
428// support for subtyping is necessary, range-based type checks are used in
429// which all subtypes of a given supertype use contiguous tags. This struct can
430// then be used to represent such a type range.
431//
432// As an example, consider the following type hierarchy:
433//
434// A F
435// / \
436// B E
437// / \
438// C D
439//
440// A potential type id assignment for range-based type checks is
441// {A: 0, B: 1, C: 2, D: 3, E: 4, F: 5}. With that, the type check for type A
442// would check for the range [A, E], while the check for B would check range
443// [B, D], and for F it would simply check [F, F].
444//
445// In addition, there is an option for performance tweaks: if the size of the
446// type range corresponding to a supertype is a power of two and starts at a
447// power of two (e.g. [0x100, 0x13f]), then the compiler can often optimize
448// the type check to use even fewer instructions (essentially replace a AND +
449// SUB with a single AND).
450//
451template <typename Tag>
452struct TagRange {
453 static_assert(std::is_enum_v<Tag> &&
454 std::is_same_v<std::underlying_type_t<Tag>, uint16_t>,
455 "Tag parameter must be an enum with base type uint16_t");
456
457 // Construct the inclusive tag range [first, last].
458 constexpr TagRange(Tag first, Tag last) : first(first), last(last) {}
459
460 // Construct a tag range consisting of a single tag.
461 //
462 // A single tag is always implicitly convertible to a tag range. This greatly
463 // increases readability as most of the time, the exact tag of a field is
464 // known and so no tag range needs to explicitly be created for it.
465 constexpr TagRange(Tag tag) // NOLINT(runtime/explicit)
466 : first(tag), last(tag) {}
467
468 // Construct an empty tag range.
469 constexpr TagRange() : TagRange(static_cast<Tag>(0)) {}
470
471 // A tag range is considered empty if it only contains the null tag.
472 constexpr bool IsEmpty() const { return first == 0 && last == 0; }
473
474 constexpr size_t Size() const {
475 if (IsEmpty()) {
476 return 0;
477 } else {
478 return last - first + 1;
479 }
480 }
481
482 constexpr bool Contains(Tag tag) const {
483 // Need to perform the math with uint32_t. Otherwise, the uint16_ts would
484 // be promoted to (signed) int, allowing the compiler to (wrongly) assume
485 // that an underflow cannot happen as that would be undefined behavior.
486 return static_cast<uint32_t>(tag) - first <=
487 static_cast<uint32_t>(last) - first;
488 }
489
490 constexpr bool Contains(TagRange tag_range) const {
491 return tag_range.first >= first && tag_range.last <= last;
492 }
493
494 constexpr bool operator==(const TagRange other) const {
495 return first == other.first && last == other.last;
496 }
497
498 constexpr size_t hash_value() const {
499 static_assert(std::is_same_v<std::underlying_type_t<Tag>, uint16_t>);
500 return (static_cast<size_t>(first) << 16) | last;
501 }
502
503 // Internally we represent tag ranges as half-open ranges [first, last).
504 const Tag first;
505 const Tag last;
506};
507
508//
509// External Pointers.
510//
511// When the sandbox is enabled, external pointers are stored in an external
512// pointer table and are referenced from HeapObjects through an index (a
513// "handle"). When stored in the table, the pointers are tagged with per-type
514// tags to prevent type confusion attacks between different external objects.
515//
516// When loading an external pointer, a range of allowed tags can be specified.
517// This way, type hierarchies can be supported. The main requirement for that
518// is that all (transitive) child classes of a given parent class have type ids
519// in the same range, and that there are no unrelated types in that range. For
520// more details about how to assign type tags to types, see the TagRange class.
521//
522// The external pointer sandboxing mechanism ensures that every access to an
523// external pointer field will result in a valid pointer of the expected type
524// even in the presence of an attacker able to corrupt memory inside the
525// sandbox. However, if any data related to the external object is stored
526// inside the sandbox it may still be corrupted and so must be validated before
527// use or moved into the external object. Further, an attacker will always be
528// able to substitute different external pointers of the same type for each
529// other. Therefore, code using external pointers must be written in a
530// "substitution-safe" way, i.e. it must always be possible to substitute
531// external pointers of the same type without causing memory corruption outside
532// of the sandbox. Generally this is achieved by referencing any group of
533// related external objects through a single external pointer.
534//
535// Currently we use bit 62 for the marking bit which should always be unused as
536// it's part of the non-canonical address range. When Arm's top-byte ignore
537// (TBI) is enabled, this bit will be part of the ignored byte, and we assume
538// that the Embedder is not using this byte (really only this one bit) for any
539// other purpose. This bit also does not collide with the memory tagging
540// extension (MTE) which would use bits [56, 60).
541//
542// External pointer tables are also available even when the sandbox is off but
543// pointer compression is on. In that case, the mechanism can be used to ease
544// alignment requirements as it turns unaligned 64-bit raw pointers into
545// aligned 32-bit indices. To "opt-in" to the external pointer table mechanism
546// for this purpose, instead of using the ExternalPointer accessors one needs to
547// use ExternalPointerHandles directly and use them to access the pointers in an
548// ExternalPointerTable.
549//
550// The tag is currently in practice limited to 15 bits since it needs to fit
551// together with a marking bit into the unused parts of a pointer.
552enum ExternalPointerTag : uint16_t {
555
556 // When adding new tags, please ensure that the code using these tags is
557 // "substitution-safe", i.e. still operate safely if external pointers of the
558 // same type are swapped by an attacker. See comment above for more details.
559
560 // Shared external pointers are owned by the shared Isolate and stored in the
561 // shared external pointer table associated with that Isolate, where they can
562 // be accessed from multiple threads at the same time. The objects referenced
563 // in this way must therefore always be thread-safe.
569
570 // External pointers using these tags are kept in a per-Isolate external
571 // pointer table and can only be accessed when this Isolate is active.
574 // This tag essentially stands for a `void*` pointer in the V8 API, and it is
575 // the Embedder's responsibility to ensure type safety (against substitution)
576 // and lifetime validity of these objects.
582
583 // InterceptorInfo external pointers.
601
603
605
606 // Foreigns
609
619
620 // Managed
644 // External resources whose lifetime is tied to their entry in the external
645 // pointer table but which are not referenced via a Managed
648
652 // The tags are limited to 7 bits, so the last tag is 0x7f.
654};
655
657
674
675// True if the external pointer must be accessed from the shared isolate's
676// external pointer table.
677V8_INLINE static constexpr bool IsSharedExternalPointerType(
678 ExternalPointerTagRange tag_range) {
680}
681
682// True if the external pointer may live in a read-only object, in which case
683// the table entry will be in the shared read-only segment of the external
684// pointer table.
685V8_INLINE static constexpr bool IsMaybeReadOnlyExternalPointerType(
686 ExternalPointerTagRange tag_range) {
688}
689
690// True if the external pointer references an external object whose lifetime is
691// tied to the entry in the external pointer table.
692// In this case, the entry in the ExternalPointerTable always points to an
693// object derived from ExternalPointerTable::ManagedResource.
694V8_INLINE static constexpr bool IsManagedExternalPointerType(
695 ExternalPointerTagRange tag_range) {
697}
698
699// When an external poiner field can contain the null external pointer handle,
700// the type checking mechanism needs to also check for null.
701// TODO(saelo): this is mostly a temporary workaround to introduce range-based
702// type checks. In the future, we should either (a) change the type tagging
703// scheme so that null always passes or (b) (more likely) introduce dedicated
704// null entries for those tags that need them (similar to other well-known
705// empty value constants such as the empty fixed array).
706V8_INLINE static constexpr bool ExternalPointerCanBeEmpty(
707 ExternalPointerTagRange tag_range) {
708 return tag_range.Contains(kArrayBufferExtensionTag) ||
709 tag_range.Contains(kEmbedderDataSlotPayloadTag) ||
711}
712
713// Indirect Pointers.
714//
715// When the sandbox is enabled, indirect pointers are used to reference
716// HeapObjects that live outside of the sandbox (but are still managed by V8's
717// garbage collector). When object A references an object B through an indirect
718// pointer, object A will contain a IndirectPointerHandle, i.e. a shifted
719// 32-bit index, which identifies an entry in a pointer table (either the
720// trusted pointer table for TrustedObjects, or the code pointer table if it is
721// a Code object). This table entry then contains the actual pointer to object
722// B. Further, object B owns this pointer table entry, and it is responsible
723// for updating the "self-pointer" in the entry when it is relocated in memory.
724// This way, in contrast to "normal" pointers, indirect pointers never need to
725// be tracked by the GC (i.e. there is no remembered set for them).
726// These pointers do not exist when the sandbox is disabled.
727
728// An IndirectPointerHandle represents a 32-bit index into a pointer table.
729using IndirectPointerHandle = uint32_t;
730
731// A null handle always references an entry that contains nullptr.
733
734// When the sandbox is enabled, indirect pointers are used to implement:
735// - TrustedPointers: an indirect pointer using the trusted pointer table (TPT)
736// and referencing a TrustedObject in one of the trusted heap spaces.
737// - CodePointers, an indirect pointer using the code pointer table (CPT) and
738// referencing a Code object together with its instruction stream.
739
740//
741// Trusted Pointers.
742//
743// A pointer to a TrustedObject.
744// When the sandbox is enabled, these are indirect pointers using the trusted
745// pointer table (TPT). They are used to reference trusted objects (located in
746// one of V8's trusted heap spaces, outside of the sandbox) from inside the
747// sandbox in a memory-safe way. When the sandbox is disabled, these are
748// regular tagged pointers.
750
751// The size of the virtual memory reservation for the trusted pointer table.
752// As with the external pointer table, a maximum table size in combination with
753// shifted indices allows omitting bounds checks.
755
756// The trusted pointer handles are stored shifted to the left by this amount
757// to guarantee that they are smaller than the maximum table size.
758constexpr uint32_t kTrustedPointerHandleShift = 9;
759
760// A null handle always references an entry that contains nullptr.
763
764// The maximum number of entries in an trusted pointer table.
767constexpr size_t kMaxTrustedPointers =
769static_assert((1 << (32 - kTrustedPointerHandleShift)) == kMaxTrustedPointers,
770 "kTrustedPointerTableReservationSize and "
771 "kTrustedPointerHandleShift don't match");
772
773//
774// Code Pointers.
775//
776// A pointer to a Code object.
777// Essentially a specialized version of a trusted pointer that (when the
778// sandbox is enabled) uses the code pointer table (CPT) instead of the TPT.
779// Each entry in the CPT contains both a pointer to a Code object as well as a
780// pointer to the Code's entrypoint. This allows calling/jumping into Code with
781// one fewer memory access (compared to the case where the entrypoint pointer
782// first needs to be loaded from the Code object). As such, a CodePointerHandle
783// can be used both to obtain the referenced Code object and to directly load
784// its entrypoint.
785//
786// When the sandbox is disabled, these are regular tagged pointers.
788
789// The size of the virtual memory reservation for the code pointer table.
790// As with the other tables, a maximum table size in combination with shifted
791// indices allows omitting bounds checks.
792constexpr size_t kCodePointerTableReservationSize = 128 * MB;
793
794// Code pointer handles are shifted by a different amount than indirect pointer
795// handles as the tables have a different maximum size.
796constexpr uint32_t kCodePointerHandleShift = 9;
797
798// A null handle always references an entry that contains nullptr.
800
801// It can sometimes be necessary to distinguish a code pointer handle from a
802// trusted pointer handle. A typical example would be a union trusted pointer
803// field that can refer to both Code objects and other trusted objects. To
804// support these use-cases, we use a simple marking scheme where some of the
805// low bits of a code pointer handle are set, while they will be unset on a
806// trusted pointer handle. This way, the correct table to resolve the handle
807// can be determined even in the absence of a type tag.
808constexpr uint32_t kCodePointerHandleMarker = 0x1;
809static_assert(kCodePointerHandleShift > 0);
810static_assert(kTrustedPointerHandleShift > 0);
811
812// The maximum number of entries in a code pointer table.
813constexpr int kCodePointerTableEntrySize = 16;
815constexpr size_t kMaxCodePointers =
817static_assert(
819 "kCodePointerTableReservationSize and kCodePointerHandleShift don't match");
820
823
824// Constants that can be used to mark places that should be modified once
825// certain types of objects are moved out of the sandbox and into trusted space.
831
832// {obj} must be the raw tagged pointer representation of a HeapObject
833// that's guaranteed to never be in ReadOnlySpace.
835 "Use GetCurrentIsolate() instead, which is guaranteed to return the same "
836 "isolate since https://crrev.com/c/6458560.")
838
839// Returns if we need to throw when an error occurs. This infers the language
840// mode based on the current context and the closure. This returns true if the
841// language mode is strict.
842V8_EXPORT bool ShouldThrowOnError(internal::Isolate* isolate);
849#ifdef V8_MAP_PACKING
850 V8_INLINE static constexpr Address UnpackMapWord(Address mapword) {
851 // TODO(wenyuzhao): Clear header metadata.
852 return mapword ^ kMapWordXorMask;
853 }
854#endif
855
856 public:
857 // These values match non-compiler-dependent values defined within
858 // the implementation of v8.
859 static const int kHeapObjectMapOffset = 0;
860 static const int kMapInstanceTypeOffset = 1 * kApiTaggedSize + kApiInt32Size;
861 static const int kStringResourceOffset =
863
864 static const int kOddballKindOffset = 4 * kApiTaggedSize + kApiDoubleSize;
865 static const int kJSObjectHeaderSize = 3 * kApiTaggedSize;
866#ifdef V8_COMPRESS_POINTERS
867 static const int kJSAPIObjectWithEmbedderSlotsHeaderSize =
868 kJSObjectHeaderSize + kApiInt32Size;
869#else // !V8_COMPRESS_POINTERS
870 static const int kJSAPIObjectWithEmbedderSlotsHeaderSize =
871 kJSObjectHeaderSize + kApiTaggedSize;
872#endif // !V8_COMPRESS_POINTERS
873 static const int kFixedArrayHeaderSize = 2 * kApiTaggedSize;
874 static const int kEmbedderDataArrayHeaderSize = 2 * kApiTaggedSize;
875 static const int kEmbedderDataSlotSize = kApiSystemPointerSize;
876#ifdef V8_ENABLE_SANDBOX
877 static const int kEmbedderDataSlotExternalPointerOffset = kApiTaggedSize;
878#else
879 static const int kEmbedderDataSlotExternalPointerOffset = 0;
880#endif
881 static const int kNativeContextEmbedderDataOffset = 6 * kApiTaggedSize;
882 static const int kStringRepresentationAndEncodingMask = 0x0f;
883 static const int kStringEncodingMask = 0x8;
884 static const int kExternalTwoByteRepresentationTag = 0x02;
885 static const int kExternalOneByteRepresentationTag = 0x0a;
886
887 static const uint32_t kNumIsolateDataSlots = 4;
888 static const int kStackGuardSize = 8 * kApiSystemPointerSize;
889 static const int kNumberOfBooleanFlags = 6;
890 static const int kErrorMessageParamSize = 1;
891 static const int kTablesAlignmentPaddingSize = 1;
892 static const int kRegExpStaticResultOffsetsVectorSize = kApiSystemPointerSize;
893 static const int kBuiltinTier0EntryTableSize = 7 * kApiSystemPointerSize;
894 static const int kBuiltinTier0TableSize = 7 * kApiSystemPointerSize;
895 static const int kLinearAllocationAreaSize = 3 * kApiSystemPointerSize;
896 static const int kThreadLocalTopSize = 30 * kApiSystemPointerSize;
897 static const int kHandleScopeDataSize =
899
900 // ExternalPointerTable and TrustedPointerTable layout guarantees.
901 static const int kExternalPointerTableBasePointerOffset = 0;
902 static const int kSegmentedTableSegmentPoolSize = 4;
903 static const int kExternalPointerTableSize =
905 kSegmentedTableSegmentPoolSize * sizeof(uint32_t);
906 static const int kTrustedPointerTableSize =
908 kSegmentedTableSegmentPoolSize * sizeof(uint32_t);
909 static const int kTrustedPointerTableBasePointerOffset = 0;
910
911 // IsolateData layout guarantees.
912 static const int kIsolateCageBaseOffset = 0;
913 static const int kIsolateStackGuardOffset =
914 kIsolateCageBaseOffset + kApiSystemPointerSize;
915 static const int kVariousBooleanFlagsOffset =
916 kIsolateStackGuardOffset + kStackGuardSize;
917 static const int kErrorMessageParamOffset =
918 kVariousBooleanFlagsOffset + kNumberOfBooleanFlags;
919 static const int kBuiltinTier0EntryTableOffset =
920 kErrorMessageParamOffset + kErrorMessageParamSize +
921 kTablesAlignmentPaddingSize + kRegExpStaticResultOffsetsVectorSize;
922 static const int kBuiltinTier0TableOffset =
923 kBuiltinTier0EntryTableOffset + kBuiltinTier0EntryTableSize;
924 static const int kNewAllocationInfoOffset =
925 kBuiltinTier0TableOffset + kBuiltinTier0TableSize;
926 static const int kOldAllocationInfoOffset =
927 kNewAllocationInfoOffset + kLinearAllocationAreaSize;
928
929 static const int kFastCCallAlignmentPaddingSize =
932 static const int kIsolateFastCCallCallerPcOffset =
933 kOldAllocationInfoOffset + kLinearAllocationAreaSize +
934 kFastCCallAlignmentPaddingSize;
935 static const int kIsolateFastCCallCallerFpOffset =
936 kIsolateFastCCallCallerPcOffset + kApiSystemPointerSize;
937 static const int kIsolateFastApiCallTargetOffset =
938 kIsolateFastCCallCallerFpOffset + kApiSystemPointerSize;
939 static const int kIsolateLongTaskStatsCounterOffset =
940 kIsolateFastApiCallTargetOffset + kApiSystemPointerSize;
941 static const int kIsolateThreadLocalTopOffset =
942 kIsolateLongTaskStatsCounterOffset + kApiSizetSize;
943 static const int kIsolateHandleScopeDataOffset =
944 kIsolateThreadLocalTopOffset + kThreadLocalTopSize;
945 static const int kIsolateEmbedderDataOffset =
946 kIsolateHandleScopeDataOffset + kHandleScopeDataSize;
947#ifdef V8_COMPRESS_POINTERS
948 static const int kIsolateExternalPointerTableOffset =
949 kIsolateEmbedderDataOffset + kNumIsolateDataSlots * kApiSystemPointerSize;
950 static const int kIsolateSharedExternalPointerTableAddressOffset =
951 kIsolateExternalPointerTableOffset + kExternalPointerTableSize;
952 static const int kIsolateCppHeapPointerTableOffset =
953 kIsolateSharedExternalPointerTableAddressOffset + kApiSystemPointerSize;
954#ifdef V8_ENABLE_SANDBOX
955 static const int kIsolateTrustedCageBaseOffset =
956 kIsolateCppHeapPointerTableOffset + kExternalPointerTableSize;
957 static const int kIsolateTrustedPointerTableOffset =
958 kIsolateTrustedCageBaseOffset + kApiSystemPointerSize;
959 static const int kIsolateSharedTrustedPointerTableAddressOffset =
960 kIsolateTrustedPointerTableOffset + kTrustedPointerTableSize;
961 static const int kIsolateTrustedPointerPublishingScopeOffset =
962 kIsolateSharedTrustedPointerTableAddressOffset + kApiSystemPointerSize;
963 static const int kIsolateCodePointerTableBaseAddressOffset =
964 kIsolateTrustedPointerPublishingScopeOffset + kApiSystemPointerSize;
965 static const int kIsolateApiCallbackThunkArgumentOffset =
966 kIsolateCodePointerTableBaseAddressOffset + kApiSystemPointerSize;
967#else
968 static const int kIsolateApiCallbackThunkArgumentOffset =
969 kIsolateCppHeapPointerTableOffset + kExternalPointerTableSize;
970#endif // V8_ENABLE_SANDBOX
971#else
972 static const int kIsolateApiCallbackThunkArgumentOffset =
973 kIsolateEmbedderDataOffset + kNumIsolateDataSlots * kApiSystemPointerSize;
974#endif // V8_COMPRESS_POINTERS
975 static const int kJSDispatchTableOffset =
976 kIsolateApiCallbackThunkArgumentOffset + kApiSystemPointerSize;
977 static const int kIsolateRegexpExecVectorArgumentOffset =
978 kJSDispatchTableOffset + kApiSystemPointerSize;
979 static const int kContinuationPreservedEmbedderDataOffset =
980 kIsolateRegexpExecVectorArgumentOffset + kApiSystemPointerSize;
981 static const int kIsolateRootsOffset =
982 kContinuationPreservedEmbedderDataOffset + kApiSystemPointerSize;
983
984 // Assert scopes
985 static const int kDisallowGarbageCollectionAlign = alignof(uint32_t);
986 static const int kDisallowGarbageCollectionSize = sizeof(uint32_t);
987
988#if V8_STATIC_ROOTS_BOOL
989
990// These constants are copied from static-roots.h and guarded by static asserts.
991#define EXPORTED_STATIC_ROOTS_PTR_LIST(V) \
992 V(UndefinedValue, 0x11) \
993 V(NullValue, 0x2d) \
994 V(TrueValue, 0x71) \
995 V(FalseValue, 0x55) \
996 V(EmptyString, 0x49) \
997 V(TheHoleValue, 0x761)
998
999 using Tagged_t = uint32_t;
1000 struct StaticReadOnlyRoot {
1001#define DEF_ROOT(name, value) static constexpr Tagged_t k##name = value;
1002 EXPORTED_STATIC_ROOTS_PTR_LIST(DEF_ROOT)
1003#undef DEF_ROOT
1004
1005 // Use 0 for kStringMapLowerBound since string maps are the first maps.
1006 static constexpr Tagged_t kStringMapLowerBound = 0;
1007 static constexpr Tagged_t kStringMapUpperBound = 0x425;
1008
1009#define PLUSONE(...) +1
1010 static constexpr size_t kNumberOfExportedStaticRoots =
1011 2 + EXPORTED_STATIC_ROOTS_PTR_LIST(PLUSONE);
1012#undef PLUSONE
1013 };
1014
1015#endif // V8_STATIC_ROOTS_BOOL
1016
1017 static const int kUndefinedValueRootIndex = 4;
1018 static const int kTheHoleValueRootIndex = 5;
1019 static const int kNullValueRootIndex = 6;
1020 static const int kTrueValueRootIndex = 7;
1021 static const int kFalseValueRootIndex = 8;
1022 static const int kEmptyStringRootIndex = 9;
1023
1024 static const int kNodeClassIdOffset = 1 * kApiSystemPointerSize;
1025 static const int kNodeFlagsOffset = 1 * kApiSystemPointerSize + 3;
1026 static const int kNodeStateMask = 0x3;
1027 static const int kNodeStateIsWeakValue = 2;
1028
1029 static const int kFirstNonstringType = 0x80;
1030 static const int kOddballType = 0x83;
1031 static const int kForeignType = 0xcc;
1032 static const int kJSSpecialApiObjectType = 0x410;
1033 static const int kJSObjectType = 0x421;
1034 static const int kFirstJSApiObjectType = 0x422;
1035 static const int kLastJSApiObjectType = 0x80A;
1036 // Defines a range [kFirstEmbedderJSApiObjectType, kJSApiObjectTypesCount]
1037 // of JSApiObject instance type values that an embedder can use.
1038 static const int kFirstEmbedderJSApiObjectType = 0;
1039 static const int kLastEmbedderJSApiObjectType =
1040 kLastJSApiObjectType - kFirstJSApiObjectType;
1041
1042 static const int kUndefinedOddballKind = 4;
1043 static const int kNullOddballKind = 3;
1044
1045 // Constants used by PropertyCallbackInfo to check if we should throw when an
1046 // error occurs.
1047 static const int kDontThrow = 0;
1048 static const int kThrowOnError = 1;
1049 static const int kInferShouldThrowMode = 2;
1050
1051 // Soft limit for AdjustAmountofExternalAllocatedMemory. Trigger an
1052 // incremental GC once the external memory reaches this limit.
1053 static constexpr size_t kExternalAllocationSoftLimit = 64 * 1024 * 1024;
1054
1055#ifdef V8_MAP_PACKING
1056 static const uintptr_t kMapWordMetadataMask = 0xffffULL << 48;
1057 // The lowest two bits of mapwords are always `0b10`
1058 static const uintptr_t kMapWordSignature = 0b10;
1059 // XORing a (non-compressed) map with this mask ensures that the two
1060 // low-order bits are 0b10. The 0 at the end makes this look like a Smi,
1061 // although real Smis have all lower 32 bits unset. We only rely on these
1062 // values passing as Smis in very few places.
1063 static const int kMapWordXorMask = 0b11;
1064#endif
1065
1068#ifdef V8_ENABLE_CHECKS
1069 CheckInitializedImpl(isolate);
1070#endif
1071 }
1072
1073 V8_INLINE static constexpr bool HasHeapObjectTag(Address value) {
1074 return (value & kHeapObjectTagMask) == static_cast<Address>(kHeapObjectTag);
1075 }
1076
1077 V8_INLINE static constexpr int SmiValue(Address value) {
1078 return PlatformSmiTagging::SmiToInt(value);
1079 }
1080
1081 V8_INLINE static constexpr Address AddressToSmi(Address value) {
1082 return (value << (kSmiTagSize + PlatformSmiTagging::kSmiShiftSize)) |
1083 kSmiTag;
1084 }
1085
1086 V8_INLINE static constexpr Address IntToSmi(int value) {
1087 return AddressToSmi(static_cast<Address>(value));
1088 }
1089
1090 template <typename T,
1091 typename std::enable_if_t<std::is_integral_v<T>>* = nullptr>
1092 V8_INLINE static constexpr Address IntegralToSmi(T value) {
1093 return AddressToSmi(static_cast<Address>(value));
1094 }
1095
1096 template <typename T,
1097 typename std::enable_if_t<std::is_integral_v<T>>* = nullptr>
1098 V8_INLINE static constexpr bool IsValidSmi(T value) {
1099 return PlatformSmiTagging::IsValidSmi(value);
1100 }
1101
1102 template <typename T,
1103 typename std::enable_if_t<std::is_integral_v<T>>* = nullptr>
1104 static constexpr std::optional<Address> TryIntegralToSmi(T value) {
1105 if (V8_LIKELY(PlatformSmiTagging::IsValidSmi(value))) {
1106 return {AddressToSmi(static_cast<Address>(value))};
1107 }
1108 return {};
1109 }
1110
1111#if V8_STATIC_ROOTS_BOOL
1112 V8_INLINE static bool is_identical(Address obj, Tagged_t constant) {
1113 return static_cast<Tagged_t>(obj) == constant;
1114 }
1115
1116 V8_INLINE static bool CheckInstanceMapRange(Address obj, Tagged_t first_map,
1117 Tagged_t last_map) {
1118 auto map = ReadRawField<Tagged_t>(obj, kHeapObjectMapOffset);
1119#ifdef V8_MAP_PACKING
1120 map = UnpackMapWord(map);
1121#endif
1122 return map >= first_map && map <= last_map;
1123 }
1124#endif
1125
1127 Address map = ReadTaggedPointerField(obj, kHeapObjectMapOffset);
1128#ifdef V8_MAP_PACKING
1129 map = UnpackMapWord(map);
1130#endif
1131 return ReadRawField<uint16_t>(map, kMapInstanceTypeOffset);
1132 }
1133
1135 if (!HasHeapObjectTag(obj)) return kNullAddress;
1136 Address map = ReadTaggedPointerField(obj, kHeapObjectMapOffset);
1137#ifdef V8_MAP_PACKING
1138 map = UnpackMapWord(map);
1139#endif
1140 return map;
1141 }
1142
1144 return SmiValue(ReadTaggedSignedField(obj, kOddballKindOffset));
1145 }
1146
1147 V8_INLINE static bool IsExternalTwoByteString(int instance_type) {
1148 int representation = (instance_type & kStringRepresentationAndEncodingMask);
1149 return representation == kExternalTwoByteRepresentationTag;
1150 }
1151
1152 V8_INLINE static constexpr bool CanHaveInternalField(int instance_type) {
1153 static_assert(kJSObjectType + 1 == kFirstJSApiObjectType);
1154 static_assert(kJSObjectType < kLastJSApiObjectType);
1155 static_assert(kFirstJSApiObjectType < kLastJSApiObjectType);
1156 // Check for IsJSObject() || IsJSSpecialApiObject() || IsJSApiObject()
1157 return instance_type == kJSSpecialApiObjectType ||
1158 // inlined version of base::IsInRange
1159 (static_cast<unsigned>(static_cast<unsigned>(instance_type) -
1160 static_cast<unsigned>(kJSObjectType)) <=
1161 static_cast<unsigned>(kLastJSApiObjectType - kJSObjectType));
1162 }
1163
1164 V8_INLINE static uint8_t GetNodeFlag(Address* obj, int shift) {
1165 uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
1166 return *addr & static_cast<uint8_t>(1U << shift);
1167 }
1168
1169 V8_INLINE static void UpdateNodeFlag(Address* obj, bool value, int shift) {
1170 uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
1171 uint8_t mask = static_cast<uint8_t>(1U << shift);
1172 *addr = static_cast<uint8_t>((*addr & ~mask) | (value << shift));
1173 }
1174
1175 V8_INLINE static uint8_t GetNodeState(Address* obj) {
1176 uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
1177 return *addr & kNodeStateMask;
1178 }
1179
1180 V8_INLINE static void UpdateNodeState(Address* obj, uint8_t value) {
1181 uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
1182 *addr = static_cast<uint8_t>((*addr & ~kNodeStateMask) | value);
1183 }
1184
1185 V8_INLINE static void SetEmbedderData(v8::Isolate* isolate, uint32_t slot,
1186 void* data) {
1187 Address addr = reinterpret_cast<Address>(isolate) +
1188 kIsolateEmbedderDataOffset + slot * kApiSystemPointerSize;
1189 *reinterpret_cast<void**>(addr) = data;
1190 }
1191
1192 V8_INLINE static void* GetEmbedderData(const v8::Isolate* isolate,
1193 uint32_t slot) {
1194 Address addr = reinterpret_cast<Address>(isolate) +
1195 kIsolateEmbedderDataOffset + slot * kApiSystemPointerSize;
1196 return *reinterpret_cast<void* const*>(addr);
1197 }
1198
1200 Address addr =
1201 reinterpret_cast<Address>(isolate) + kIsolateLongTaskStatsCounterOffset;
1202 ++(*reinterpret_cast<size_t*>(addr));
1203 }
1204
1205 V8_INLINE static Address* GetRootSlot(v8::Isolate* isolate, int index) {
1206 Address addr = reinterpret_cast<Address>(isolate) + kIsolateRootsOffset +
1207 index * kApiSystemPointerSize;
1208 return reinterpret_cast<Address*>(addr);
1209 }
1210
1211 V8_INLINE static Address GetRoot(v8::Isolate* isolate, int index) {
1212#if V8_STATIC_ROOTS_BOOL
1213 Address base = *reinterpret_cast<Address*>(
1214 reinterpret_cast<uintptr_t>(isolate) + kIsolateCageBaseOffset);
1215 switch (index) {
1216#define DECOMPRESS_ROOT(name, ...) \
1217 case k##name##RootIndex: \
1218 return base + StaticReadOnlyRoot::k##name;
1219 EXPORTED_STATIC_ROOTS_PTR_LIST(DECOMPRESS_ROOT)
1220#undef DECOMPRESS_ROOT
1221#undef EXPORTED_STATIC_ROOTS_PTR_LIST
1222 default:
1223 break;
1224 }
1225#endif // V8_STATIC_ROOTS_BOOL
1226 return *GetRootSlot(isolate, index);
1227 }
1228
1229#ifdef V8_ENABLE_SANDBOX
1230 V8_INLINE static Address* GetExternalPointerTableBase(v8::Isolate* isolate) {
1231 Address addr = reinterpret_cast<Address>(isolate) +
1232 kIsolateExternalPointerTableOffset +
1233 kExternalPointerTableBasePointerOffset;
1234 return *reinterpret_cast<Address**>(addr);
1235 }
1236
1237 V8_INLINE static Address* GetSharedExternalPointerTableBase(
1238 v8::Isolate* isolate) {
1239 Address addr = reinterpret_cast<Address>(isolate) +
1240 kIsolateSharedExternalPointerTableAddressOffset;
1241 addr = *reinterpret_cast<Address*>(addr);
1242 addr += kExternalPointerTableBasePointerOffset;
1243 return *reinterpret_cast<Address**>(addr);
1244 }
1245#endif
1246
1247 template <typename T>
1248 V8_INLINE static T ReadRawField(Address heap_object_ptr, int offset) {
1249 Address addr = heap_object_ptr + offset - kHeapObjectTag;
1250#ifdef V8_COMPRESS_POINTERS
1251 if (sizeof(T) > kApiTaggedSize) {
1252 // TODO(ishell, v8:8875): When pointer compression is enabled 8-byte size
1253 // fields (external pointers, doubles and BigInt data) are only
1254 // kTaggedSize aligned so we have to use unaligned pointer friendly way of
1255 // accessing them in order to avoid undefined behavior in C++ code.
1256 T r;
1257 memcpy(&r, reinterpret_cast<void*>(addr), sizeof(T));
1258 return r;
1259 }
1260#endif
1261 return *reinterpret_cast<const T*>(addr);
1262 }
1263
1265 int offset) {
1266#ifdef V8_COMPRESS_POINTERS
1267 uint32_t value = ReadRawField<uint32_t>(heap_object_ptr, offset);
1268 Address base = GetPtrComprCageBaseFromOnHeapAddress(heap_object_ptr);
1269 return base + static_cast<Address>(static_cast<uintptr_t>(value));
1270#else
1271 return ReadRawField<Address>(heap_object_ptr, offset);
1272#endif
1273 }
1274
1276 int offset) {
1277#ifdef V8_COMPRESS_POINTERS
1278 uint32_t value = ReadRawField<uint32_t>(heap_object_ptr, offset);
1279 return static_cast<Address>(static_cast<uintptr_t>(value));
1280#else
1281 return ReadRawField<Address>(heap_object_ptr, offset);
1282#endif
1283 }
1284
1286 "Use GetCurrentIsolateForSandbox() instead, which is guaranteed to "
1287 "return the same isolate since https://crrev.com/c/6458560.")
1288 V8_INLINE static v8::Isolate* GetIsolateForSandbox(Address obj) {
1289#ifdef V8_ENABLE_SANDBOX
1290 return GetCurrentIsolate();
1291#else
1292 // Not used in non-sandbox mode.
1293 return nullptr;
1294#endif
1295 }
1296
1297 // Returns v8::Isolate::Current(), but without needing to include the
1298 // v8-isolate.h header.
1300
1302#ifdef V8_ENABLE_SANDBOX
1303 return GetCurrentIsolate();
1304#else
1305 // Not used in non-sandbox mode.
1306 return nullptr;
1307#endif
1308 }
1309
1310 template <ExternalPointerTagRange tag_range>
1312 Address heap_object_ptr,
1313 int offset) {
1314#ifdef V8_ENABLE_SANDBOX
1315 static_assert(!tag_range.IsEmpty());
1316 // See src/sandbox/external-pointer-table.h. Logic duplicated here so
1317 // it can be inlined and doesn't require an additional call.
1318 Address* table = IsSharedExternalPointerType(tag_range)
1319 ? GetSharedExternalPointerTableBase(isolate)
1320 : GetExternalPointerTableBase(isolate);
1322 ReadRawField<ExternalPointerHandle>(heap_object_ptr, offset);
1323 uint32_t index = handle >> kExternalPointerIndexShift;
1324 std::atomic<Address>* ptr =
1325 reinterpret_cast<std::atomic<Address>*>(&table[index]);
1326 Address entry = std::atomic_load_explicit(ptr, std::memory_order_relaxed);
1327 ExternalPointerTag actual_tag = static_cast<ExternalPointerTag>(
1329 if (V8_LIKELY(tag_range.Contains(actual_tag))) {
1330 return entry & kExternalPointerPayloadMask;
1331 } else {
1332 return 0;
1333 }
1334 return entry;
1335#else
1336 return ReadRawField<Address>(heap_object_ptr, offset);
1337#endif // V8_ENABLE_SANDBOX
1338 }
1339
1340#ifdef V8_COMPRESS_POINTERS
1341 V8_INLINE static Address GetPtrComprCageBaseFromOnHeapAddress(Address addr) {
1342 return addr & -static_cast<intptr_t>(kPtrComprCageBaseAlignment);
1343 }
1344
1345 V8_INLINE static uint32_t CompressTagged(Address value) {
1346 return static_cast<uint32_t>(value);
1347 }
1348
1349 V8_INLINE static Address DecompressTaggedField(Address heap_object_ptr,
1350 uint32_t value) {
1351 Address base = GetPtrComprCageBaseFromOnHeapAddress(heap_object_ptr);
1352 return base + static_cast<Address>(static_cast<uintptr_t>(value));
1353 }
1354
1355#endif // V8_COMPRESS_POINTERS
1356};
1357
1358// Only perform cast check for types derived from v8::Data since
1359// other types do not implement the Cast method.
1360template <bool PerformCheck>
1362 template <class T>
1363 static void Perform(T* data);
1364};
1365
1366template <>
1367template <class T>
1369 T::Cast(data);
1370}
1371
1372template <>
1373template <class T>
1375
1376template <class T>
1379 !std::is_same_v<Data, std::remove_cv_t<T>>>::Perform(data);
1380}
1381
1382// A base class for backing stores, which is needed due to vagaries of
1383// how static casts work with std::shared_ptr.
1385
1386// The maximum value in enum GarbageCollectionReason, defined in heap.h.
1387// This is needed for histograms sampling garbage collection reasons.
1389
1390// Base class for the address block allocator compatible with standard
1391// containers, which registers its allocated range as strong roots.
1393 public:
1394 Heap* heap() const { return heap_; }
1395
1397 const StrongRootAllocatorBase& b) {
1398 // TODO(pkasting): Replace this body with `= default` after dropping support
1399 // for old gcc versions.
1400 return a.heap_ == b.heap_;
1401 }
1402
1403 protected:
1404 explicit StrongRootAllocatorBase(Heap* heap) : heap_(heap) {}
1405 explicit StrongRootAllocatorBase(LocalHeap* heap);
1408 explicit StrongRootAllocatorBase(LocalIsolate* isolate);
1409
1410 // Allocate/deallocate a range of n elements of type internal::Address.
1412 void deallocate_impl(Address* p, size_t n) noexcept;
1413
1414 private:
1415 Heap* heap_;
1416};
1417
1418// The general version of this template behaves just as std::allocator, with
1419// the exception that the constructor takes the isolate as parameter. Only
1420// specialized versions, e.g., internal::StrongRootAllocator<internal::Address>
1421// and internal::StrongRootAllocator<v8::Local<T>> register the allocated range
1422// as strong roots.
1423template <typename T>
1424class StrongRootAllocator : private std::allocator<T> {
1425 public:
1426 using value_type = T;
1427
1428 template <typename HeapOrIsolateT>
1429 explicit StrongRootAllocator(HeapOrIsolateT*) {}
1430 template <typename U>
1432
1433 using std::allocator<T>::allocate;
1434 using std::allocator<T>::deallocate;
1435};
1436
1437// TODO(pkasting): Replace with `requires` clauses after dropping support for
1438// old gcc versions.
1439template <typename Iterator, typename = void>
1440inline constexpr bool kHaveIteratorConcept = false;
1441template <typename Iterator>
1442inline constexpr bool kHaveIteratorConcept<
1443 Iterator, std::void_t<typename Iterator::iterator_concept>> = true;
1444
1445template <typename Iterator, typename = void>
1446inline constexpr bool kHaveIteratorCategory = false;
1447template <typename Iterator>
1448inline constexpr bool kHaveIteratorCategory<
1449 Iterator, std::void_t<typename Iterator::iterator_category>> = true;
1450
1451// Helper struct that contains an `iterator_concept` type alias only when either
1452// `Iterator` or `std::iterator_traits<Iterator>` do.
1453// Default: no alias.
1454template <typename Iterator, typename = void>
1456// Use `Iterator::iterator_concept` if available.
1457template <typename Iterator>
1459 Iterator, std::enable_if_t<kHaveIteratorConcept<Iterator>>> {
1460 using iterator_concept = typename Iterator::iterator_concept;
1461};
1462// Otherwise fall back to `std::iterator_traits<Iterator>` if possible.
1463template <typename Iterator>
1465 Iterator, std::enable_if_t<kHaveIteratorCategory<Iterator> &&
1466 !kHaveIteratorConcept<Iterator>>> {
1467 // There seems to be no feature-test macro covering this, so use the
1468 // presence of `<ranges>` as a crude proxy, since it was added to the
1469 // standard as part of the Ranges papers.
1470 // TODO(pkasting): Add this unconditionally after dropping support for old
1471 // libstdc++ versions.
1472#if __has_include(<ranges>)
1473 using iterator_concept =
1474 typename std::iterator_traits<Iterator>::iterator_concept;
1475#endif
1476};
1477
1478// A class of iterators that wrap some different iterator type.
1479// If specified, ElementType is the type of element accessed by the wrapper
1480// iterator; in this case, the actual reference and pointer types of Iterator
1481// must be convertible to ElementType& and ElementType*, respectively.
1482template <typename Iterator, typename ElementType = void>
1484 public:
1485 static_assert(
1486 std::is_void_v<ElementType> ||
1487 (std::is_convertible_v<typename std::iterator_traits<Iterator>::pointer,
1488 std::add_pointer_t<ElementType>> &&
1489 std::is_convertible_v<typename std::iterator_traits<Iterator>::reference,
1490 std::add_lvalue_reference_t<ElementType>>));
1491
1493 typename std::iterator_traits<Iterator>::difference_type;
1495 std::conditional_t<std::is_void_v<ElementType>,
1496 typename std::iterator_traits<Iterator>::value_type,
1497 ElementType>;
1498 using pointer =
1499 std::conditional_t<std::is_void_v<ElementType>,
1500 typename std::iterator_traits<Iterator>::pointer,
1501 std::add_pointer_t<ElementType>>;
1503 std::conditional_t<std::is_void_v<ElementType>,
1504 typename std::iterator_traits<Iterator>::reference,
1505 std::add_lvalue_reference_t<ElementType>>;
1507 typename std::iterator_traits<Iterator>::iterator_category;
1508
1509 constexpr WrappedIterator() noexcept = default;
1510 constexpr explicit WrappedIterator(Iterator it) noexcept : it_(it) {}
1511
1512 // TODO(pkasting): Switch to `requires` and concepts after dropping support
1513 // for old gcc and libstdc++ versions.
1514 template <typename OtherIterator, typename OtherElementType,
1515 typename = std::enable_if_t<
1516 std::is_convertible_v<OtherIterator, Iterator>>>
1519 : it_(other.base()) {}
1520
1521 [[nodiscard]] constexpr reference operator*() const noexcept { return *it_; }
1522 [[nodiscard]] constexpr pointer operator->() const noexcept {
1523 if constexpr (std::is_pointer_v<Iterator>) {
1524 return it_;
1525 } else {
1526 return it_.operator->();
1527 }
1528 }
1529
1530 template <typename OtherIterator, typename OtherElementType>
1531 [[nodiscard]] constexpr bool operator==(
1533 const noexcept {
1534 return it_ == other.base();
1535 }
1536#if V8_HAVE_SPACESHIP_OPERATOR
1537 template <typename OtherIterator, typename OtherElementType>
1538 [[nodiscard]] constexpr auto operator<=>(
1540 const noexcept {
1541 if constexpr (std::three_way_comparable_with<Iterator, OtherIterator>) {
1542 return it_ <=> other.base();
1543 } else if constexpr (std::totally_ordered_with<Iterator, OtherIterator>) {
1544 if (it_ < other.base()) {
1545 return std::strong_ordering::less;
1546 }
1547 return (it_ > other.base()) ? std::strong_ordering::greater
1548 : std::strong_ordering::equal;
1549 } else {
1550 if (it_ < other.base()) {
1551 return std::partial_ordering::less;
1552 }
1553 if (other.base() < it_) {
1554 return std::partial_ordering::greater;
1555 }
1556 return (it_ == other.base()) ? std::partial_ordering::equivalent
1557 : std::partial_ordering::unordered;
1558 }
1559 }
1560#else
1561 // Assume that if spaceship isn't present, operator rewriting might not be
1562 // either.
1563 template <typename OtherIterator, typename OtherElementType>
1564 [[nodiscard]] constexpr bool operator!=(
1566 const noexcept {
1567 return it_ != other.base();
1568 }
1569
1570 template <typename OtherIterator, typename OtherElementType>
1571 [[nodiscard]] constexpr bool operator<(
1573 const noexcept {
1574 return it_ < other.base();
1575 }
1576 template <typename OtherIterator, typename OtherElementType>
1577 [[nodiscard]] constexpr bool operator<=(
1579 const noexcept {
1580 return it_ <= other.base();
1581 }
1582 template <typename OtherIterator, typename OtherElementType>
1583 [[nodiscard]] constexpr bool operator>(
1585 const noexcept {
1586 return it_ > other.base();
1587 }
1588 template <typename OtherIterator, typename OtherElementType>
1589 [[nodiscard]] constexpr bool operator>=(
1591 const noexcept {
1592 return it_ >= other.base();
1593 }
1594#endif
1595
1596 constexpr WrappedIterator& operator++() noexcept {
1597 ++it_;
1598 return *this;
1599 }
1600 constexpr WrappedIterator operator++(int) noexcept {
1601 WrappedIterator result(*this);
1602 ++(*this);
1603 return result;
1604 }
1605
1606 constexpr WrappedIterator& operator--() noexcept {
1607 --it_;
1608 return *this;
1609 }
1610 constexpr WrappedIterator operator--(int) noexcept {
1611 WrappedIterator result(*this);
1612 --(*this);
1613 return result;
1614 }
1615 [[nodiscard]] constexpr WrappedIterator operator+(
1616 difference_type n) const noexcept {
1617 WrappedIterator result(*this);
1618 result += n;
1619 return result;
1620 }
1621 [[nodiscard]] friend constexpr WrappedIterator operator+(
1622 difference_type n, const WrappedIterator& x) noexcept {
1623 return x + n;
1624 }
1626 it_ += n;
1627 return *this;
1628 }
1629 [[nodiscard]] constexpr WrappedIterator operator-(
1630 difference_type n) const noexcept {
1631 return *this + -n;
1632 }
1634 return *this += -n;
1635 }
1636 template <typename OtherIterator, typename OtherElementType>
1637 [[nodiscard]] constexpr auto operator-(
1639 const noexcept {
1640 return it_ - other.base();
1641 }
1642 [[nodiscard]] constexpr reference operator[](
1643 difference_type n) const noexcept {
1644 return it_[n];
1645 }
1646
1647 [[nodiscard]] constexpr const Iterator& base() const noexcept { return it_; }
1648
1649 private:
1650 Iterator it_;
1651};
1652
1653// Helper functions about values contained in handles.
1654// A value is either an indirect pointer or a direct pointer, depending on
1655// whether direct local support is enabled.
1656class ValueHelper final {
1657 public:
1658 // ValueHelper::InternalRepresentationType is an abstract type that
1659 // corresponds to the internal representation of v8::Local and essentially
1660 // to what T* really is (these two are always in sync). This type is used in
1661 // methods like GetDataFromSnapshotOnce that need access to a handle's
1662 // internal representation. In particular, if `x` is a `v8::Local<T>`, then
1663 // `v8::Local<T>::FromRepr(x.repr())` gives exactly the same handle as `x`.
1664#ifdef V8_ENABLE_DIRECT_HANDLE
1665 static constexpr Address kTaggedNullAddress = 1;
1666
1668 static constexpr InternalRepresentationType kEmpty = kTaggedNullAddress;
1669#else
1671 static constexpr InternalRepresentationType kEmpty = nullptr;
1672#endif // V8_ENABLE_DIRECT_HANDLE
1673
1674 template <typename T>
1675 V8_INLINE static bool IsEmpty(T* value) {
1676 return ValueAsRepr(value) == kEmpty;
1677 }
1678
1679 // Returns a handle's "value" for all kinds of abstract handles. For Local,
1680 // it is equivalent to `*handle`. The variadic parameters support handle
1681 // types with extra type parameters, like `Persistent<T, M>`.
1682 template <template <typename T, typename... Ms> typename H, typename T,
1683 typename... Ms>
1684 V8_INLINE static T* HandleAsValue(const H<T, Ms...>& handle) {
1685 return handle.template value<T>();
1686 }
1687
1688#ifdef V8_ENABLE_DIRECT_HANDLE
1689
1690 template <typename T>
1691 V8_INLINE static Address ValueAsAddress(const T* value) {
1692 return reinterpret_cast<Address>(value);
1693 }
1694
1695 template <typename T, bool check_null = true, typename S>
1696 V8_INLINE static T* SlotAsValue(S* slot) {
1697 if (check_null && slot == nullptr) {
1698 return reinterpret_cast<T*>(kTaggedNullAddress);
1699 }
1700 return *reinterpret_cast<T**>(slot);
1701 }
1702
1703 template <typename T>
1704 V8_INLINE static InternalRepresentationType ValueAsRepr(const T* value) {
1705 return reinterpret_cast<InternalRepresentationType>(value);
1706 }
1707
1708 template <typename T>
1710 return reinterpret_cast<T*>(repr);
1711 }
1712
1713#else // !V8_ENABLE_DIRECT_HANDLE
1714
1715 template <typename T>
1716 V8_INLINE static Address ValueAsAddress(const T* value) {
1717 return *reinterpret_cast<const Address*>(value);
1718 }
1719
1720 template <typename T, bool check_null = true, typename S>
1721 V8_INLINE static T* SlotAsValue(S* slot) {
1722 return reinterpret_cast<T*>(slot);
1723 }
1724
1725 template <typename T>
1727 return const_cast<InternalRepresentationType>(
1728 reinterpret_cast<const Address*>(value));
1729 }
1730
1731 template <typename T>
1733 return reinterpret_cast<T*>(repr);
1734 }
1735
1736#endif // V8_ENABLE_DIRECT_HANDLE
1737};
1738
1742class HandleHelper final {
1743 public:
1754 template <typename T1, typename T2>
1755 V8_INLINE static bool EqualHandles(const T1& lhs, const T2& rhs) {
1756 if (lhs.IsEmpty()) return rhs.IsEmpty();
1757 if (rhs.IsEmpty()) return false;
1758 return lhs.ptr() == rhs.ptr();
1759 }
1760};
1761
1763
1764// These functions are here just to match friend declarations in
1765// XxxCallbackInfo classes allowing these functions to access the internals
1766// of the info objects. These functions are supposed to be called by debugger
1767// macros.
1768void PrintFunctionCallbackInfo(void* function_callback_info);
1769void PrintPropertyCallbackInfo(void* property_callback_info);
1770
1771} // namespace internal
1772} // namespace v8
1773
1774#endif // INCLUDE_V8_INTERNAL_H_
Definition: v8-isolate.h:274
Definition: v8-internal.h:1384
Definition: v8-internal.h:1742
static bool EqualHandles(const T1 &lhs, const T2 &rhs)
Definition: v8-internal.h:1755
Definition: v8-internal.h:848
static Address LoadMap(Address obj)
Definition: v8-internal.h:1134
static bool IsExternalTwoByteString(int instance_type)
Definition: v8-internal.h:1147
static Address ReadExternalPointerField(v8::Isolate *isolate, Address heap_object_ptr, int offset)
Definition: v8-internal.h:1311
static constexpr bool HasHeapObjectTag(Address value)
Definition: v8-internal.h:1073
static Address GetRoot(v8::Isolate *isolate, int index)
Definition: v8-internal.h:1211
static uint8_t GetNodeFlag(Address *obj, int shift)
Definition: v8-internal.h:1164
static uint8_t GetNodeState(Address *obj)
Definition: v8-internal.h:1175
static constexpr Address AddressToSmi(Address value)
Definition: v8-internal.h:1081
static void CheckInitialized(v8::Isolate *isolate)
Definition: v8-internal.h:1067
static void UpdateNodeState(Address *obj, uint8_t value)
Definition: v8-internal.h:1180
static constexpr Address IntegralToSmi(T value)
Definition: v8-internal.h:1092
static constexpr bool IsValidSmi(T value)
Definition: v8-internal.h:1098
static constexpr bool CanHaveInternalField(int instance_type)
Definition: v8-internal.h:1152
static constexpr Address IntToSmi(int value)
Definition: v8-internal.h:1086
static void CheckInitializedImpl(v8::Isolate *isolate)
static void * GetEmbedderData(const v8::Isolate *isolate, uint32_t slot)
Definition: v8-internal.h:1192
static int GetInstanceType(Address obj)
Definition: v8-internal.h:1126
static Address ReadTaggedSignedField(Address heap_object_ptr, int offset)
Definition: v8-internal.h:1275
static Address ReadTaggedPointerField(Address heap_object_ptr, int offset)
Definition: v8-internal.h:1264
static void SetEmbedderData(v8::Isolate *isolate, uint32_t slot, void *data)
Definition: v8-internal.h:1185
static Address * GetRootSlot(v8::Isolate *isolate, int index)
Definition: v8-internal.h:1205
static constexpr int SmiValue(Address value)
Definition: v8-internal.h:1077
static void UpdateNodeFlag(Address *obj, bool value, int shift)
Definition: v8-internal.h:1169
static void IncrementLongTasksStatsCounter(v8::Isolate *isolate)
Definition: v8-internal.h:1199
static T ReadRawField(Address heap_object_ptr, int offset)
Definition: v8-internal.h:1248
static v8::Isolate * GetCurrentIsolate()
static v8::Isolate * GetCurrentIsolateForSandbox()
Definition: v8-internal.h:1301
static int GetOddballKind(Address obj)
Definition: v8-internal.h:1143
static constexpr std::optional< Address > TryIntegralToSmi(T value)
Definition: v8-internal.h:1104
Definition: v8-internal.h:1392
friend bool operator==(const StrongRootAllocatorBase &a, const StrongRootAllocatorBase &b)
Definition: v8-internal.h:1396
StrongRootAllocatorBase(Heap *heap)
Definition: v8-internal.h:1404
StrongRootAllocatorBase(v8::Isolate *isolate)
StrongRootAllocatorBase(LocalIsolate *isolate)
void deallocate_impl(Address *p, size_t n) noexcept
Heap * heap() const
Definition: v8-internal.h:1394
Definition: v8-internal.h:1424
StrongRootAllocator(HeapOrIsolateT *)
Definition: v8-internal.h:1429
T value_type
Definition: v8-internal.h:1426
StrongRootAllocator(const StrongRootAllocator< U > &other) noexcept
Definition: v8-internal.h:1431
Definition: v8-internal.h:1656
static Address ValueAsAddress(const T *value)
Definition: v8-internal.h:1716
static T * ReprAsValue(InternalRepresentationType repr)
Definition: v8-internal.h:1732
internal::Address * InternalRepresentationType
Definition: v8-internal.h:1670
static T * SlotAsValue(S *slot)
Definition: v8-internal.h:1721
static T * HandleAsValue(const H< T, Ms... > &handle)
Definition: v8-internal.h:1684
static InternalRepresentationType ValueAsRepr(const T *value)
Definition: v8-internal.h:1726
static bool IsEmpty(T *value)
Definition: v8-internal.h:1675
static constexpr InternalRepresentationType kEmpty
Definition: v8-internal.h:1671
Definition: v8-internal.h:1483
constexpr WrappedIterator & operator-=(difference_type n) noexcept
Definition: v8-internal.h:1633
constexpr WrappedIterator operator--(int) noexcept
Definition: v8-internal.h:1610
constexpr WrappedIterator & operator+=(difference_type n) noexcept
Definition: v8-internal.h:1625
constexpr const Iterator & base() const noexcept
Definition: v8-internal.h:1647
std::conditional_t< std::is_void_v< ElementType >, typename std::iterator_traits< Iterator >::value_type, ElementType > value_type
Definition: v8-internal.h:1497
constexpr WrappedIterator & operator++() noexcept
Definition: v8-internal.h:1596
constexpr pointer operator->() const noexcept
Definition: v8-internal.h:1522
constexpr reference operator[](difference_type n) const noexcept
Definition: v8-internal.h:1642
typename std::iterator_traits< Iterator >::difference_type difference_type
Definition: v8-internal.h:1493
constexpr bool operator!=(const WrappedIterator< OtherIterator, OtherElementType > &other) const noexcept
Definition: v8-internal.h:1564
constexpr bool operator>=(const WrappedIterator< OtherIterator, OtherElementType > &other) const noexcept
Definition: v8-internal.h:1589
constexpr bool operator<(const WrappedIterator< OtherIterator, OtherElementType > &other) const noexcept
Definition: v8-internal.h:1571
std::conditional_t< std::is_void_v< ElementType >, typename std::iterator_traits< Iterator >::reference, std::add_lvalue_reference_t< ElementType > > reference
Definition: v8-internal.h:1505
constexpr WrappedIterator & operator--() noexcept
Definition: v8-internal.h:1606
constexpr WrappedIterator() noexcept=default
constexpr bool operator<=(const WrappedIterator< OtherIterator, OtherElementType > &other) const noexcept
Definition: v8-internal.h:1577
constexpr WrappedIterator(const WrappedIterator< OtherIterator, OtherElementType > &other) noexcept
Definition: v8-internal.h:1517
constexpr bool operator>(const WrappedIterator< OtherIterator, OtherElementType > &other) const noexcept
Definition: v8-internal.h:1583
typename std::iterator_traits< Iterator >::iterator_category iterator_category
Definition: v8-internal.h:1507
constexpr reference operator*() const noexcept
Definition: v8-internal.h:1521
constexpr auto operator-(const WrappedIterator< OtherIterator, OtherElementType > &other) const noexcept
Definition: v8-internal.h:1637
friend constexpr WrappedIterator operator+(difference_type n, const WrappedIterator &x) noexcept
Definition: v8-internal.h:1621
constexpr WrappedIterator operator+(difference_type n) const noexcept
Definition: v8-internal.h:1615
constexpr WrappedIterator operator++(int) noexcept
Definition: v8-internal.h:1600
constexpr WrappedIterator operator-(difference_type n) const noexcept
Definition: v8-internal.h:1629
std::conditional_t< std::is_void_v< ElementType >, typename std::iterator_traits< Iterator >::pointer, std::add_pointer_t< ElementType > > pointer
Definition: v8-internal.h:1501
constexpr bool operator==(const WrappedIterator< OtherIterator, OtherElementType > &other) const noexcept
Definition: v8-internal.h:1531
const intptr_t kHeapObjectTagMask
Definition: v8-internal.h:75
constexpr uint64_t kCppHeapPointerMarkBit
Definition: v8-internal.h:397
constexpr int kCodePointerTableEntrySizeLog2
Definition: v8-internal.h:814
constexpr bool kRuntimeGeneratedCodeObjectsLiveInTrustedSpace
Definition: v8-internal.h:826
internal::Isolate * IsolateFromNeverReadOnlySpaceObject(Address obj)
constexpr uint64_t kExternalPointerTagShift
Definition: v8-internal.h:347
IndirectPointerHandle TrustedPointerHandle
Definition: v8-internal.h:749
const int kApiSystemPointerSize
Definition: v8-internal.h:65
constexpr bool SandboxIsEnabled()
Definition: v8-internal.h:220
const int kApiDoubleSize
Definition: v8-internal.h:66
constexpr size_t kMaxCppHeapPointers
Definition: v8-internal.h:420
constexpr intptr_t kIntptrAllBitsSet
Definition: v8-internal.h:93
constexpr int GB
Definition: v8-internal.h:57
void VerifyHandleIsNonEmpty(bool is_empty)
const int kApiInt32Size
Definition: v8-internal.h:67
const int kForwardingTagSize
Definition: v8-internal.h:82
uint32_t CppHeapPointerHandle
Definition: v8-internal.h:382
const intptr_t kForwardingTagMask
Definition: v8-internal.h:83
void PrintPropertyCallbackInfo(void *property_callback_info)
constexpr ExternalPointerTagRange kAnyManagedResourceExternalPointerTag(kFirstManagedResourceTag, kLastManagedResourceTag)
IndirectPointerHandle CodePointerHandle
Definition: v8-internal.h:787
constexpr uint64_t kExternalPointerPayloadMask
Definition: v8-internal.h:354
const int kSmiTagSize
Definition: v8-internal.h:87
const int kApiInt64Size
Definition: v8-internal.h:68
constexpr ExternalPointerTagRange kAnyExternalPointerTagRange(kFirstExternalPointerTag, kLastExternalPointerTag)
constexpr uint64_t kExternalPointerTagMask
Definition: v8-internal.h:348
constexpr int kCodePointerTableEntryCodeObjectOffset
Definition: v8-internal.h:822
constexpr int kTrustedPointerTableEntrySizeLog2
Definition: v8-internal.h:766
constexpr int kTrustedPointerTableEntrySize
Definition: v8-internal.h:765
constexpr uint64_t kCppHeapPointerPayloadShift
Definition: v8-internal.h:399
constexpr ExternalPointer_t kNullExternalPointer
Definition: v8-internal.h:374
Address ExternalPointer_t
Definition: v8-internal.h:371
uint32_t IndirectPointerHandle
Definition: v8-internal.h:729
constexpr CppHeapPointer_t kNullCppHeapPointer
Definition: v8-internal.h:394
constexpr ExternalPointerTagRange kAnySharedExternalPointerTagRange(kFirstSharedExternalPointerTag, kLastSharedExternalPointerTag)
const int kApiSizetSize
Definition: v8-internal.h:69
constexpr uint64_t kExternalPointerTagAndMarkbitMask
Definition: v8-internal.h:353
constexpr int kCodePointerTableEntryEntrypointOffset
Definition: v8-internal.h:821
constexpr size_t kMaxExternalPointers
Definition: v8-internal.h:342
constexpr size_t kCodePointerTableReservationSize
Definition: v8-internal.h:792
constexpr TrustedPointerHandle kNullTrustedPointerHandle
Definition: v8-internal.h:761
const int kWeakHeapObjectTag
Definition: v8-internal.h:73
constexpr ExternalPointerHandle kNullExternalPointerHandle
Definition: v8-internal.h:375
constexpr ExternalPointerTagRange kAnyMaybeReadOnlyExternalPointerTagRange(kFirstMaybeReadOnlyExternalPointerTag, kLastMaybeReadOnlyExternalPointerTag)
constexpr uintptr_t kUintptrAllBitsSet
Definition: v8-internal.h:94
const int kForwardingTag
Definition: v8-internal.h:81
const intptr_t kHeapObjectReferenceTagMask
Definition: v8-internal.h:76
constexpr bool SmiValuesAre31Bits()
Definition: v8-internal.h:208
constexpr size_t kMaxTrustedPointers
Definition: v8-internal.h:767
bool ShouldThrowOnError(internal::Isolate *isolate)
constexpr uint64_t kCppHeapPointerTagShift
Definition: v8-internal.h:398
constexpr ExternalPointerTagRange kAnyInterceptorInfoExternalPointerTagRange(kFirstInterceptorInfoExternalPointerTag, kLastInterceptorInfoExternalPointerTag)
constexpr int KB
Definition: v8-internal.h:55
constexpr bool kBuiltinCodeObjectsLiveInTrustedSpace
Definition: v8-internal.h:827
constexpr uint32_t kTrustedPointerHandleShift
Definition: v8-internal.h:758
constexpr uint32_t kCodePointerHandleShift
Definition: v8-internal.h:796
constexpr ExternalPointerTagRange kAnyManagedExternalPointerTagRange(kFirstManagedExternalPointerTag, kLastManagedExternalPointerTag)
const int kHeapObjectTag
Definition: v8-internal.h:72
const int kSmiShiftSize
Definition: v8-internal.h:204
constexpr size_t kMaxCodePointers
Definition: v8-internal.h:815
constexpr bool kHaveIteratorCategory
Definition: v8-internal.h:1446
SmiTagging< kApiTaggedSize > PlatformSmiTagging
Definition: v8-internal.h:199
ExternalPointerTag
Definition: v8-internal.h:552
@ kLastForeignExternalPointerTag
Definition: v8-internal.h:642
@ kApiIndexedPropertyDescriptorCallbackTag
Definition: v8-internal.h:595
@ kGenericForeignTag
Definition: v8-internal.h:608
@ kFirstMaybeReadOnlyExternalPointerTag
Definition: v8-internal.h:578
@ kTemporalInstantTag
Definition: v8-internal.h:638
@ kExternalPointerEvacuationEntryTag
Definition: v8-internal.h:650
@ kFirstSharedExternalPointerTag
Definition: v8-internal.h:564
@ kApiNamedPropertyDefinerCallbackTag
Definition: v8-internal.h:589
@ kLastSharedExternalPointerTag
Definition: v8-internal.h:568
@ kD8WorkerTag
Definition: v8-internal.h:640
@ kApiIndexedPropertySetterCallbackTag
Definition: v8-internal.h:594
@ kWasmManagedDataTag
Definition: v8-internal.h:626
@ kLastExternalPointerTag
Definition: v8-internal.h:653
@ kIcuBreakIteratorTag
Definition: v8-internal.h:628
@ kMicrotaskCallbackDataTag
Definition: v8-internal.h:614
@ kWasmNativeModuleTag
Definition: v8-internal.h:627
@ kApiIndexedPropertyGetterCallbackTag
Definition: v8-internal.h:593
@ kApiNamedPropertyDescriptorCallbackTag
Definition: v8-internal.h:588
@ kAccessorInfoGetterTag
Definition: v8-internal.h:580
@ kIcuCollatorTag
Definition: v8-internal.h:637
@ kIcuSimpleDateFormatTag
Definition: v8-internal.h:632
@ kApiIndexedPropertyDefinerCallbackTag
Definition: v8-internal.h:596
@ kSyntheticModuleTag
Definition: v8-internal.h:612
@ kD8ModuleEmbedderDataTag
Definition: v8-internal.h:641
@ kExternalStringResourceTag
Definition: v8-internal.h:566
@ kWasmFuncDataTag
Definition: v8-internal.h:625
@ kExternalObjectValueTag
Definition: v8-internal.h:577
@ kWaiterQueueForeignTag
Definition: v8-internal.h:618
@ kAccessorInfoSetterTag
Definition: v8-internal.h:581
@ kApiNamedPropertyDeleterCallbackTag
Definition: v8-internal.h:590
@ kApiAccessCheckCallbackTag
Definition: v8-internal.h:610
@ kApiAbortScriptExecutionCallbackTag
Definition: v8-internal.h:611
@ kMicrotaskCallbackTag
Definition: v8-internal.h:613
@ kIcuLocalizedNumberFormatterTag
Definition: v8-internal.h:635
@ kApiNamedPropertyGetterCallbackTag
Definition: v8-internal.h:586
@ kApiNamedPropertySetterCallbackTag
Definition: v8-internal.h:587
@ kApiIndexedPropertyEnumeratorCallbackTag
Definition: v8-internal.h:598
@ kExternalPointerFreeEntryTag
Definition: v8-internal.h:651
@ kFirstInterceptorInfoExternalPointerTag
Definition: v8-internal.h:584
@ kCFunctionTag
Definition: v8-internal.h:615
@ kIcuUnicodeStringTag
Definition: v8-internal.h:629
@ kLastManagedExternalPointerTag
Definition: v8-internal.h:643
@ kWaiterQueueNodeTag
Definition: v8-internal.h:565
@ kGenericManagedTag
Definition: v8-internal.h:623
@ kExternalPointerNullTag
Definition: v8-internal.h:554
@ kExternalStringResourceDataTag
Definition: v8-internal.h:567
@ kWasmStackMemoryTag
Definition: v8-internal.h:604
@ kLastManagedResourceTag
Definition: v8-internal.h:647
@ kExternalPointerZappedEntryTag
Definition: v8-internal.h:649
@ kApiNamedPropertyQueryCallbackTag
Definition: v8-internal.h:585
@ kEmbedderDataSlotPayloadTag
Definition: v8-internal.h:573
@ kFirstForeignExternalPointerTag
Definition: v8-internal.h:607
@ kIcuListFormatterTag
Definition: v8-internal.h:630
@ kDisplayNamesInternalTag
Definition: v8-internal.h:639
@ kFirstManagedResourceTag
Definition: v8-internal.h:621
@ kFirstManagedExternalPointerTag
Definition: v8-internal.h:622
@ kIcuPluralRulesTag
Definition: v8-internal.h:636
@ kApiIndexedPropertyQueryCallbackTag
Definition: v8-internal.h:592
@ kIcuLocaleTag
Definition: v8-internal.h:631
@ kMessageListenerTag
Definition: v8-internal.h:617
@ kApiIndexedPropertyDeleterCallbackTag
Definition: v8-internal.h:597
@ kLastInterceptorInfoExternalPointerTag
Definition: v8-internal.h:599
@ kIcuRelativeDateTimeFormatterTag
Definition: v8-internal.h:634
@ kWasmWasmStreamingTag
Definition: v8-internal.h:624
@ kNativeContextMicrotaskQueueTag
Definition: v8-internal.h:572
@ kLastMaybeReadOnlyExternalPointerTag
Definition: v8-internal.h:602
@ kArrayBufferExtensionTag
Definition: v8-internal.h:646
@ kIcuDateIntervalFormatTag
Definition: v8-internal.h:633
@ kCFunctionInfoTag
Definition: v8-internal.h:616
@ kFirstExternalPointerTag
Definition: v8-internal.h:553
@ kApiNamedPropertyEnumeratorCallbackTag
Definition: v8-internal.h:591
@ kFunctionTemplateInfoCallbackTag
Definition: v8-internal.h:579
const int kSmiValueSize
Definition: v8-internal.h:205
constexpr ExternalPointerTagRange kAnyForeignExternalPointerTagRange(kFirstForeignExternalPointerTag, kLastForeignExternalPointerTag)
constexpr bool SmiValuesAre32Bits()
Definition: v8-internal.h:209
TagRange< ExternalPointerTag > ExternalPointerTagRange
Definition: v8-internal.h:656
constexpr IndirectPointerHandle kNullIndirectPointerHandle
Definition: v8-internal.h:732
uintptr_t Address
Definition: v8-internal.h:52
void PerformCastCheck(T *data)
Definition: v8-internal.h:1377
void PrintFunctionCallbackInfo(void *function_callback_info)
constexpr size_t kTrustedPointerTableReservationSize
Definition: v8-internal.h:754
uint32_t ExternalPointerHandle
Definition: v8-internal.h:363
const intptr_t kSmiTagMask
Definition: v8-internal.h:88
const int kHeapObjectTagSize
Definition: v8-internal.h:74
const int kSmiMaxValue
Definition: v8-internal.h:207
constexpr bool Is64()
Definition: v8-internal.h:210
constexpr bool kAllCodeObjectsLiveInTrustedSpace
Definition: v8-internal.h:828
const int kSmiTag
Definition: v8-internal.h:86
constexpr CodePointerHandle kNullCodePointerHandle
Definition: v8-internal.h:799
Address CppHeapPointer_t
Definition: v8-internal.h:391
constexpr CppHeapPointerHandle kNullCppHeapPointerHandle
Definition: v8-internal.h:395
constexpr int kGarbageCollectionReasonMaxValue
Definition: v8-internal.h:1388
constexpr int kCodePointerTableEntrySize
Definition: v8-internal.h:813
constexpr uint32_t kCodePointerHandleMarker
Definition: v8-internal.h:808
const int kSmiMinValue
Definition: v8-internal.h:206
constexpr bool kHaveIteratorConcept
Definition: v8-internal.h:1440
constexpr int MB
Definition: v8-internal.h:56
constexpr uint64_t kExternalPointerShiftedTagMask
Definition: v8-internal.h:349
constexpr uint64_t kExternalPointerMarkBit
Definition: v8-internal.h:346
Address SandboxedPointer_t
Definition: v8-internal.h:230
const int kApiTaggedSize
Definition: v8-internal.h:189
constexpr bool PointerCompressionIsEnabled()
Definition: v8-internal.h:192
Definition: libplatform.h:15
Definition: v8-internal.h:1361
static void Perform(T *data)
Definition: v8-internal.h:1455
static constexpr bool IsValidSmi(uint64_t value)
Definition: v8-internal.h:141
static constexpr bool IsValidSmi(int64_t value)
Definition: v8-internal.h:134
static constexpr bool IsValidSmi(T value)
Definition: v8-internal.h:114
static constexpr int SmiToInt(Address value)
Definition: v8-internal.h:106
static constexpr bool IsValidSmi(T value)
Definition: v8-internal.h:164
static constexpr int SmiToInt(Address value)
Definition: v8-internal.h:156
Definition: v8-internal.h:91
Definition: v8-internal.h:452
constexpr size_t Size() const
Definition: v8-internal.h:474
constexpr bool IsEmpty() const
Definition: v8-internal.h:472
const Tag last
Definition: v8-internal.h:505
constexpr bool operator==(const TagRange other) const
Definition: v8-internal.h:494
constexpr bool Contains(Tag tag) const
Definition: v8-internal.h:482
const Tag first
Definition: v8-internal.h:504
constexpr TagRange()
Definition: v8-internal.h:469
constexpr TagRange(Tag tag)
Definition: v8-internal.h:465
constexpr size_t hash_value() const
Definition: v8-internal.h:498
constexpr TagRange(Tag first, Tag last)
Definition: v8-internal.h:458
constexpr bool Contains(TagRange tag_range) const
Definition: v8-internal.h:490
#define V8_EXPORT
Definition: v8config.h:800
#define V8_INLINE
Definition: v8config.h:500
#define V8_DEPRECATE_SOON(message)
Definition: v8config.h:614
#define V8_LIKELY(condition)
Definition: v8config.h:661