scipy.stats.genextreme#

scipy.stats.genextreme = <scipy.stats._continuous_distns.genextreme_gen object>[source]#

A generalized extreme value continuous random variable.

As an instance of the rv_continuous class, genextreme object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Methods

rvs(c, loc=0, scale=1, size=1, random_state=None)

Random variates.

pdf(x, c, loc=0, scale=1)

Probability density function.

logpdf(x, c, loc=0, scale=1)

Log of the probability density function.

cdf(x, c, loc=0, scale=1)

Cumulative distribution function.

logcdf(x, c, loc=0, scale=1)

Log of the cumulative distribution function.

sf(x, c, loc=0, scale=1)

Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).

logsf(x, c, loc=0, scale=1)

Log of the survival function.

ppf(q, c, loc=0, scale=1)

Percent point function (inverse of cdf — percentiles).

isf(q, c, loc=0, scale=1)

Inverse survival function (inverse of sf).

moment(order, c, loc=0, scale=1)

Non-central moment of the specified order.

stats(c, loc=0, scale=1, moments=’mv’)

Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’).

entropy(c, loc=0, scale=1)

(Differential) entropy of the RV.

fit(data)

Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.

expect(func, args=(c,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)

Expected value of a function (of one argument) with respect to the distribution.

median(c, loc=0, scale=1)

Median of the distribution.

mean(c, loc=0, scale=1)

Mean of the distribution.

var(c, loc=0, scale=1)

Variance of the distribution.

std(c, loc=0, scale=1)

Standard deviation of the distribution.

interval(confidence, c, loc=0, scale=1)

Confidence interval with equal areas around the median.

See also

gumbel_r

Notes

For \(c=0\), genextreme is equal to gumbel_r with probability density function

\[f(x) = \exp(-\exp(-x)) \exp(-x),\]

where \(-\infty < x < \infty\).

For \(c \ne 0\), the probability density function for genextreme is:

\[f(x, c) = \exp(-(1-c x)^{1/c}) (1-c x)^{1/c-1},\]

where \(-\infty < x \le 1/c\) if \(c > 0\) and \(1/c \le x < \infty\) if \(c < 0\).

Note that several sources and software packages use the opposite convention for the sign of the shape parameter \(c\).