Machine Intelligence

Google is at the forefront of innovation in Machine Intelligence, with active research exploring virtually all aspects of machine learning, including deep learning and more classical algorithms. Exploring theory as well as application, much of our work on language, speech, translation, visual processing, ranking and prediction relies on Machine Intelligence. In all of those tasks and many others, we gather large volumes of direct or indirect evidence of relationships of interest, applying learning algorithms to understand and generalize.

Machine Intelligence at Google raises deep scientific and engineering challenges, allowing us to contribute to the broader academic research community through technical talks and publications in major conferences and journals. Contrary to much of current theory and practice, the statistics of the data we observe shifts rapidly, the features of interest change as well, and the volume of data often requires enormous computation capacity. When learning systems are placed at the core of interactive services in a fast changing and sometimes adversarial environment, combinations of techniques including deep learning and statistical models need to be combined with ideas from control and game theory.

Recent Publications

InstructPipe: Generating Visual Blocks Pipelines with Human Instructions and LLMs
Jing Jin
Xiuxiu Yuan
Jun Jiang
Jingtao Zhou
Yiyi Huang
Zheng Xu
Kristen Wright
Jason Mayes
Mark Sherwood
Johnny Lee
Alex Olwal
Ram Iyengar
Na Li
Proceedings of the 2025 CHI Conference on Human Factors in Computing Systems (CHI), ACM, pp. 23
Preview abstract Visual programming has the potential of providing novice programmers with a low-code experience to build customized processing pipelines. Existing systems typically require users to build pipelines from scratch, implying that novice users are expected to set up and link appropriate nodes from a blank workspace. In this paper, we introduce InstructPipe, an AI assistant for prototyping machine learning (ML) pipelines with text instructions. We contribute two large language model (LLM) modules and a code interpreter as part of our framework. The LLM modules generate pseudocode for a target pipeline, and the interpreter renders the pipeline in the node-graph editor for further human-AI collaboration. Both technical and user evaluation (N=16) shows that InstructPipe empowers users to streamline their ML pipeline workflow, reduce their learning curve, and leverage open-ended commands to spark innovative ideas. View details
Using Early Readouts to Mediate Featural Bias in Distillation
Rishabh Tiwari
Durga Sivasubramanian
Anmol Mekala
Ganesh Ramakrishnan
WACV 2024 (2024)
Preview abstract Deep networks tend to learn spurious feature-label correlations in real-world supervised learning tasks. This vulnerability is aggravated in distillation, where a (student) model may have less representational capacity than the corresponding teacher model. Often, knowledge of specific problem features is used to reweight instances & rebalance the learning process. We propose a novel early readout mechanism whereby we attempt to predict the label using representations from earlier network layers. We show that these early readouts automatically identify problem instances or groups in the form of confident, incorrect predictions. We improve group fairness measures across benchmark datasets by leveraging these signals to mediate between teacher logits and supervised label. We extend our results to the closely related but distinct problem of domain generalization, which also critically depends on the quality of learned features. We provide secondary analyses that bring insight into the role of feature learning in supervision and distillation. View details
Solving olympiad geometry without human demonstrations
Trieu Trinh
Yuhuai Tony Wu
He He
Nature, 625 (2024), pp. 476-482
Preview abstract Proving mathematical theorems at the olympiad level represents a notable milestone in human-level automated reasoning, owing to their reputed difficulty among the world’s best talents in pre-university mathematics. Current machine-learning approaches, however, are not applicable to most mathematical domains owing to the high cost of translating human proofs into machine-verifiable format. The problem is even worse for geometry because of its unique translation challenges, resulting in severe scarcity of training data. We propose AlphaGeometry, a theorem prover for Euclidean plane geometry that sidesteps the need for human demonstrations by synthesizing millions of theorems and proofs across different levels of complexity. AlphaGeometry is a neuro-symbolic system that uses a neural language model, trained from scratch on our large-scale synthetic data, to guide a symbolic deduction engine through infinite branching points in challenging problems. On a test set of 30 latest olympiad-level problems, AlphaGeometry solves 25, outperforming the previous best method that only solves ten problems and approaching the performance of an average International Mathematical Olympiad (IMO) gold medallist. Notably, AlphaGeometry produces human-readable proofs, solves all geometry problems in the IMO 2000 and 2015 under human expert evaluation and discovers a generalized version of a translated IMO theorem in 2004. View details
Artificial Intelligence in Healthcare: A Perspective from Google
Lily Peng
Lisa Lehmann
Artificial Intelligence in Healthcare, Elsevier (2024)
Preview abstract Artificial Intelligence (AI) holds the promise of transforming healthcare by improving patient outcomes, increasing accessibility and efficiency, and decreasing the cost of care. Realizing this vision of a healthier world for everyone everywhere requires partnerships and trust between healthcare systems, clinicians, payers, technology companies, pharmaceutical companies, and governments to drive innovations in machine learning and artificial intelligence to patients. Google is one example of a technology company that is partnering with healthcare systems, clinicians, and researchers to develop technology solutions that will directly improve the lives of patients. In this chapter we share landmark trials of the use of AI in healthcare. We also describe the application of our novel system of organizing information to unify data in electronic health records (EHRs) and bring an integrated view of patient records to clinicians. We discuss our consumer focused innovation in dermatology to help guide search journeys for personalized information about skin conditions. Finally, we share a perspective on how to embed ethics and a concern for all patients into the development of AI. View details
Multimodal Modeling for Spoken Language Identification
Shikhar Bharadwaj
Ankur Bapna
Sriram (Sri) Ganapathy
Vera Axelrod
Sid Dalmia
Wei Han
Yu Zhang
Sandy Ritchie
Proceedings of 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2024) (2024)
Preview abstract Spoken language identification refers to the task of automatically predicting the spoken language in a given utterance. Conventionally, it is modeled as a speech-based language identification task. Prior techniques have been constrained to a single modality; however in the case of video data there is a wealth of other metadata that may be beneficial for this task. In this work, we propose MuSeLI, a Multimodal Spoken Language Identification method, which delves into the use of various metadata sources to enhance language identification. Our study reveals that metadata such as video title, description and geographic location provide substantial information to identify the spoken language of the multimedia recording. We conduct experiments using two diverse public datasets of YouTube videos, and obtain state-of-the-art results on the language identification task. We additionally conduct an ablation study that describes the distinct contribution of each modality for language recognition. View details
Artificial intelligence as a second reader for screening mammography
Etsuji Nakai
Alessandro Scoccia Pappagallo
Hiroki Kayama
Lin Yang
Shawn Xu
Christopher Kelly
Timo Kohlberger
Daniel Golden
Akib Uddin
Radiology Advances, 1(2) (2024)
Preview abstract Background Artificial intelligence (AI) has shown promise in mammography interpretation, and its use as a second reader in breast cancer screening may reduce the burden on health care systems. Purpose To evaluate the performance differences between routine double read and an AI as a second reader workflow (AISR), where the second reader is replaced with AI. Materials and Methods A cohort of patients undergoing routine breast cancer screening at a single center with mammography was retrospectively collected between 2005 and 2021. A model developed on US and UK data was fine-tuned on Japanese data. We subsequently performed a reader study with 10 qualified readers with varied experience (5 reader pairs), comparing routine double read to an AISR workflow. Results A “test set” of 4,059 women (mean age, 56 ± 14 years; 157 positive, 3,902 negative) was collected, with 278 (mean age 55 ± 13 years; 90 positive, 188 negative) evaluated for the reader study. We demonstrate an area under the curve =.84 (95% confidence interval [CI], 0.805-0.881) on the test set, with no significant difference to decisions made in clinical practice (P = .32). Compared with routine double reading, in the AISR arm, sensitivity improved by 7.6% (95% CI, 3.80-11.4; P = .00004) and specificity decreased 3.4% (1.42-5.43; P = .0016), with 71% (212/298) of scans no longer requiring input from a second reader. Variation in recall decision between reader pairs improved from a Cohen kappa of κ = .65 (96% CI, 0.61-0.68) to κ = .74 (96% CI, 0.71-0.77) in the AISR arm. View details