TOPICS
Search

Struve Function


StruveH

The Struve function, denoted H_n(z) or occasionally H_n(z), is defined as

 H_nu(z)=(1/2z)^(nu+1)sum_(k=0)^infty((-1)^k(1/2z)^(2k))/(Gamma(k+3/2)Gamma(k+nu+3/2)),
(1)

where Gamma(z) is the gamma function (Abramowitz and Stegun 1972, pp. 496-499). Watson (1966, p. 338) defines the Struve function as

 H_nu(z)=(2(1/2z)^nu)/(Gamma(nu+1/2)Gamma(1/2))int_0^1(1-t^2)^(nu-1/2)sin(zt)dt.
(2)

The Struve function is implemented as StruveH[n, z].

The Struve function and its derivatives satisfy

 H_(nu-1)(z)-H_(nu+1)(z)=2H_nu^'(z)-((1/2z)^nu)/(sqrt(pi)Gamma(nu+3/2)).
(3)

For integer n, the Struve function gives the solution to

 z^2y^('')+zy^'+(z^2-n^2)y=2/pi(z^(n+1))/((2n-1)!!),
(4)

where n!! is the double factorial.

The Struve function arises in the problem of the rigid-piston radiator mounted in an infinite baffle, which has radiation impedance given by

 Z=rhocpia^2[R_1(2ka)-iX_1(2ka)],
(5)

where

R_1(x)=1-(2J_1(x))/(2x)
(6)
X_1(x)=(2H_1(x))/x,
(7)

where a is the piston radius, k is the wavenumber omega/c, rho is the density of the medium, c is the speed of sound, J_1(x) is the first order Bessel function of the first kind and H_1(z) is the Struve function of the first kind.

StruveHReIm
StruveHContours

The illustrations above show the values of the Struve function H_0(z) in the complex plane.

For integer orders,

H_0(z)=2/pisum_(k=0)^(infty)((-1)^k)/([(2k+1)!!]^2)z^(2k+1)
(8)
=2/pi(z-1/9z^3+1/(225)z^5-1/(11025)z^7+1/(893025)z^9-...)
(9)
H_1(z)=2/pisum_(k=1)^(infty)((-1)^(k+1))/((2k-1)!!(2k+1)!!)z^(2k)
(10)
=2/pi(1/3z^2-1/(45)z^4+1/(1575)z^6-1/(99225)z^8+...)
(11)

(OEIS A001818 and A079484).

StruveH1Approximation

A simple approximation of H_1(x) for real x is given by

 H_1(x) approx h(x) 
 =2/pi-J_0(x)+((16)/pi-5)(sinx)/x+(12-(36)/pi)(1-cosx)/(x^2),
(12)

with squared approximation error on [0,infty) equal to 2.2×10^(-4) by Parseval's formula (Aarts and Janssen 2003). The right-hand side of equation (12) equals 0=H_1(0) for x=0. The approximation error is small and decently spread-out over the whole x-range, vanishes for x=0, and reaches its maximum value at about 0.005. The maximum relative error appears to be less than 1% and decays to zero for x->infty.

For half integer orders,

H_(n+1/2)(z)=Y_(n+1/2)(z)+1/pisum_(k=0)^(n)(Gamma(k+1/2)(1/2z)^(-2k+n-1/2))/(Gamma(n+1-k))
(13)
H_(-(n+1/2))(z)=(-1)^nJ_(n+1/2)(z).
(14)

The first few cases are

H_(1/2)(z)=sqrt(2/(piz))(1-cosz)
(15)
H_(3/2)(z)=(2+z^2-2cosz-2zsinz)/(sqrt(2pi)z^(3/2))
(16)
H_(5/2)(z)=(24+4z^2+z^4+8(z^2-3)cosz-24zsinz)/(4sqrt(2pi)z^(5/2)).
(17)

See also

Anger Function, Bessel Function,