Skip to main content

Multivariate Blind Signatures Revisited

  • Conference paper
  • First Online:
Selected Areas in Cryptography – SAC 2024 (SAC 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15516))

Included in the following conference series:

  • 133 Accesses

Abstract

In 2017, Petzoldt, Szepieniec, and Mohamed proposed a blind signature scheme, based on multivariate cryptography. This construction has been expanded on by several other works. This short paper shows that their construction is susceptible to an efficient polynomial-time attack. The problem is that the authors implicitly assumed that for a random multivariate quadratic map \(\mathcal {R}:\mathbb {F}_q^m \rightarrow \mathbb {F}_q^m\) and a collision-resistant hash function \(H: \{0,1\}^* \rightarrow \mathbb {F}_q^m\), the function \(\textsf{Com}(m;\textbf{r}) := H(m) - \mathcal {R}(\textbf{r})\) is a binding commitment, which is not the case. There is a “folklore” algorithm that can be used to, given any pair of messages, efficiently produce a commitment that opens to both of them. We hope that by pointing out that multivariate quadratic maps are not binding, similar problems can be avoided in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baum, C., et al.: One tree to rule them all: optimizing GGM trees and OWFs for post-quantum signatures. Cryptology ePrint Archive, Paper 2024/490 (2024). https://eprint.iacr.org/2024/490

  2. Baum, C., et al.: FAEST, Technical report, National Institute of Standards and Technology (2023). https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures

  3. Baum, C., et al.: Publicly verifiable zero-knowledge and post-quantum signatures from VOLE-in-the-head. In: Handschuh, H., Lysyanskaya, A. (eds.) CRYPTO 2023, Part V. LNCS, vol. 14085, pp. 581–615. Springer, Heidelberg (2023)

    Chapter  MATH  Google Scholar 

  4. Beullens, W.: Improved cryptanalysis of UOV and rainbow. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021, Part I. LNCS, vol. 12696, pp. 348–373. Springer, Heidelberg (2021)

    MATH  Google Scholar 

  5. Beullens, W.: Breaking rainbow takes a weekend on a laptop. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part II. LNCS, vol. 13508, pp. 464–479. Springer, Heidelberg (2022)

    Chapter  MATH  Google Scholar 

  6. Beullens, W.: MAYO: practical post-quantum signatures from oil-and-vinegar maps. In: AlTawy, R., Hülsing, A. (eds.) SAC 2021. LNCS, vol. 13203, pp. 355–376. Springer, Heidelberg (2022)

    Google Scholar 

  7. Beullens, W., et al.: Oil and vinegar: modern parameters and implementations. IACR TCHES 2023(3), 321–365 (2023)

    Article  MATH  Google Scholar 

  8. Billet, O., Robshaw, M.J.B., Peyrin, T.: On building hash functions from multivariate quadratic equations. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 07. LNCS, vol. 4586, pp. 82–95. Springer, Heidelberg (2007)

    Google Scholar 

  9. Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds.) CRYPTO’82, pp. 199–203. Plenum Press, New York, USA (1982)

    MATH  Google Scholar 

  10. Hoang Duong, D., Susilo, W., Tran, H.T.: A multivariate blind ring signature scheme. Comput. J. 63(8), 1194–1202 (2020)

    Google Scholar 

  11. Juels, A., Luby, M., Ostrovsky, R.: Security of blind digital signatures (extended abstract). In: Burton, S., Kaliski, Jr. (eds.) CRYPTO’97. LNCS, vol. 1294, pp. 150–164. Springer, Heidelberg (1997)

    Google Scholar 

  12. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced oil and vinegar signature schemes. In: Stern, J. (ed.) EUROCRYPT’99. LNCS, vol. 1592, pp. 206–222. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  13. Omar, S., Padhye, S., Dey, D.: Multivariate partially blind signature scheme. In: Computational Intelligence, pp. 143–155. Springer, Nature (2023)

    Google Scholar 

  14. Petzoldt, A., Szepieniec, A., Mohamed, M.S.E.: A practical multivariate blind signature scheme. In: Kiayias, A. (ed.) FC 2017. LNCS, vol. 10322, pp. 437–454. Springer, Heidelberg (2017)

    Google Scholar 

Download references

Acknowledgements

We thank Charles Bouillaguet for pointing out that the algorithm of Sect. 5 is folklore, and providing us with a reference.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ward Beullens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Beullens, W. (2025). Multivariate Blind Signatures Revisited. In: Eichlseder, M., Gambs, S. (eds) Selected Areas in Cryptography – SAC 2024. SAC 2024. Lecture Notes in Computer Science, vol 15516. Springer, Cham. https://doi.org/10.1007/978-3-031-82852-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-82852-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-82851-5

  • Online ISBN: 978-3-031-82852-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics