Abstract
In 2017, Petzoldt, Szepieniec, and Mohamed proposed a blind signature scheme, based on multivariate cryptography. This construction has been expanded on by several other works. This short paper shows that their construction is susceptible to an efficient polynomial-time attack. The problem is that the authors implicitly assumed that for a random multivariate quadratic map \(\mathcal {R}:\mathbb {F}_q^m \rightarrow \mathbb {F}_q^m\) and a collision-resistant hash function \(H: \{0,1\}^* \rightarrow \mathbb {F}_q^m\), the function \(\textsf{Com}(m;\textbf{r}) := H(m) - \mathcal {R}(\textbf{r})\) is a binding commitment, which is not the case. There is a “folklore” algorithm that can be used to, given any pair of messages, efficiently produce a commitment that opens to both of them. We hope that by pointing out that multivariate quadratic maps are not binding, similar problems can be avoided in the future.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Baum, C., et al.: One tree to rule them all: optimizing GGM trees and OWFs for post-quantum signatures. Cryptology ePrint Archive, Paper 2024/490 (2024). https://eprint.iacr.org/2024/490
Baum, C., et al.: FAEST, Technical report, National Institute of Standards and Technology (2023). https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
Baum, C., et al.: Publicly verifiable zero-knowledge and post-quantum signatures from VOLE-in-the-head. In: Handschuh, H., Lysyanskaya, A. (eds.) CRYPTO 2023, Part V. LNCS, vol. 14085, pp. 581–615. Springer, Heidelberg (2023)
Beullens, W.: Improved cryptanalysis of UOV and rainbow. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021, Part I. LNCS, vol. 12696, pp. 348–373. Springer, Heidelberg (2021)
Beullens, W.: Breaking rainbow takes a weekend on a laptop. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part II. LNCS, vol. 13508, pp. 464–479. Springer, Heidelberg (2022)
Beullens, W.: MAYO: practical post-quantum signatures from oil-and-vinegar maps. In: AlTawy, R., Hülsing, A. (eds.) SAC 2021. LNCS, vol. 13203, pp. 355–376. Springer, Heidelberg (2022)
Beullens, W., et al.: Oil and vinegar: modern parameters and implementations. IACR TCHES 2023(3), 321–365 (2023)
Billet, O., Robshaw, M.J.B., Peyrin, T.: On building hash functions from multivariate quadratic equations. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 07. LNCS, vol. 4586, pp. 82–95. Springer, Heidelberg (2007)
Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds.) CRYPTO’82, pp. 199–203. Plenum Press, New York, USA (1982)
Hoang Duong, D., Susilo, W., Tran, H.T.: A multivariate blind ring signature scheme. Comput. J. 63(8), 1194–1202 (2020)
Juels, A., Luby, M., Ostrovsky, R.: Security of blind digital signatures (extended abstract). In: Burton, S., Kaliski, Jr. (eds.) CRYPTO’97. LNCS, vol. 1294, pp. 150–164. Springer, Heidelberg (1997)
Kipnis, A., Patarin, J., Goubin, L.: Unbalanced oil and vinegar signature schemes. In: Stern, J. (ed.) EUROCRYPT’99. LNCS, vol. 1592, pp. 206–222. Springer, Heidelberg (1999)
Omar, S., Padhye, S., Dey, D.: Multivariate partially blind signature scheme. In: Computational Intelligence, pp. 143–155. Springer, Nature (2023)
Petzoldt, A., Szepieniec, A., Mohamed, M.S.E.: A practical multivariate blind signature scheme. In: Kiayias, A. (ed.) FC 2017. LNCS, vol. 10322, pp. 437–454. Springer, Heidelberg (2017)
Acknowledgements
We thank Charles Bouillaguet for pointing out that the algorithm of Sect. 5 is folklore, and providing us with a reference.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Beullens, W. (2025). Multivariate Blind Signatures Revisited. In: Eichlseder, M., Gambs, S. (eds) Selected Areas in Cryptography – SAC 2024. SAC 2024. Lecture Notes in Computer Science, vol 15516. Springer, Cham. https://doi.org/10.1007/978-3-031-82852-2_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-82852-2_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-82851-5
Online ISBN: 978-3-031-82852-2
eBook Packages: Computer ScienceComputer Science (R0)