Skip to main content

Practical and Theoretical Cryptanalysis of VOX

  • Conference paper
  • First Online:
Post-Quantum Cryptography (PQCrypto 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14772))

Included in the following conference series:

  • 481 Accesses

Abstract

VOX is a UOV-like hash-and-sign signature scheme from the Multivariate Quadratic (MQ) family, which has been submitted to NIST Post-Quantum Cryptography Project, in response to NIST’s Call for Additional Digital Signature Schemes for the PQC Standardization Process. In 2023, the submitters of VOX updated the sets of recommended parameters of VOX, due to the rectangular MinRank attack proposed by Furue and Ikematsu.

In this work we demonstrate the insecurity of the updated VOX from both the practical and the theoretical aspects.

First, we conduct a practical MinRank attack against VOX, which uses multiple matrices from matrix deformation of public key to form a large rectangular matrix and evaluate the rank of this new matrix. By using Kipnis–Shamir method and Gröbner basis calculation only instead of support-minors method, our experiment shows it could recover, within two seconds, the secret key of almost every updated recommended instance of VOX.

Moreover, we propose a theoretical analysis on VOX by expressing public/secret key as matrices over a smaller field to find a low-rank matrix, resulting in a more precise estimation on the concrete hardness of VOX; for instance, the newly recommended VOX instance claimed to achieve NIST security level 3 turns out to be 69-bit-hard, as our analysis shows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/tuovsig/analysis.

  2. 2.

    https://github.com/tuovsig/analysis.

References

  1. Bardet, M., Bertin, M.: Improvement of algebraic attacks for solving super determined min rank instances. In: Cheon, J.H., Johansson, T. (eds.) PQCrypto 2022. LNCS, vol. 13512, pp. 107–123. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17234-2_6

    Chapter  Google Scholar 

  2. Bardet, M., et al.: Improvements of algebraic attacks for solving the rank decoding and MinRank problems. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12491, pp. 507–536. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64837-4_17

    Chapter  Google Scholar 

  3. Beullens, W.: Improved cryptanalysis of UOV and rainbow. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 348–373. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5_13

    Chapter  Google Scholar 

  4. Beullens, W.: MAYO: practical post-quantum signatures from oil-and-vinegar maps. In: AlTawy, R., Hülsing, A. (eds.) SAC 2021. LNCS, vol. 13203, pp. 355–376. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99277-4_17

    Chapter  Google Scholar 

  5. Beullens, W., Campos, F., Celi, S., Hess, B., Kannwischer, M.J.: MAYO. Round 1 Additional Signatures, Post-Quantum Cryptography: Digital Signature Schemes (2023). https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/mayo-spec-web.pdf

  6. Beullens, W., et al.: UOV: Unbalanced Oil and Vinegar - Algorithm Specifications and Supporting Documentation Version 1.0. Round 1 Additional Signatures, Post-Quantum Cryptography: Digital Signature Schemes (2023). https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/UOV-spec-web.pdf

  7. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symbolic Comput. 24(3-4), 235–265 (1997). https://doi.org/10.1006/jsco.1996.0125, computational algebra and number theory, London (1993)

  8. Courtois, N.T.: Efficient zero-knowledge authentication based on a linear algebra problem MinRank. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 402–421. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_24

    Chapter  Google Scholar 

  9. Ding, J., et al.: TUOV: Triangular Unbalanced Oil and Vinegar - Algorithm Specifications and Supporting Documentation Version 1.0. Round 1 Additional Signatures, Post-Quantum Cryptography: Digital Signature Schemes (2023). https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/TUOV-spec-web.pdf

  10. Ding, J., Petzoldt, A., Schmidt, D.S.: Multivariate Public Key Cryptosystems. AIS, vol. 80. Springer, New York (2020). https://doi.org/10.1007/978-1-0716-0987-3

    Book  Google Scholar 

  11. Ding, J., Schmidt, D.: Rainbow, a new multivariable polynomial signature scheme. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 164–175. Springer, Heidelberg (2005). https://doi.org/10.1007/11496137_12

    Chapter  Google Scholar 

  12. Faugère, J., Din, M.S.E., Spaenlehauer, P.: Computing loci of rank defects of linear matrices using gröbner bases and applications to cryptology. In: Koepf, W. (ed.) Symbolic and Algebraic Computation, International Symposium, ISSAC 2010, Munich, Germany, 25–28 July 2010, Proceedings, pp. 257–264. ACM (2010). https://doi.org/10.1145/1837934.1837984

  13. Faugère, J., Din, M.S.E., Spaenlehauer, P.: On the complexity of the generalized MinRank problem. J. Symb. Comput. 55, 30–58 (2013). https://doi.org/10.1016/J.JSC.2013.03.004

    Article  MathSciNet  Google Scholar 

  14. Faugère, J.-C., Levy-dit-Vehel, F., Perret, L.: Cryptanalysis of MinRank. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 280–296. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_16

    Chapter  Google Scholar 

  15. Faugère, J.C., Macario-Rat, G., Patarin, J., Perret, L.: A New Perturbation for Multivariate Public Key Schemes such as HFE and UOV. Cryptology ePrint Archive, Paper 2022/203 (2022). https://eprint.iacr.org/2022/203

  16. Furue, H., Ikematsu, Y.: A new security analysis against MAYO and QR-UOV using rectangular MinRank attack. In: Shikata, J., Kuzuno, H. (eds.) IWSEC 2023. LNCS, vol. 14128, pp. 101–116. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-41326-1_6

    Chapter  Google Scholar 

  17. Furue, H., et al.: QR-UOV. Round 1 Additional Signatures, Post-Quantum Cryptography: Digital Signature Schemes (2023). https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/qruov-spec-web.pdf

  18. Furue, H., Ikematsu, Y., Kiyomura, Y., Takagi, T.: A new variant of unbalanced oil and vinegar using quotient ring: QR-UOV. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13093, pp. 187–217. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92068-5_7

    Chapter  Google Scholar 

  19. Goubin, L., et al.: PROV: PRovable unbalanced Oil and Vinegar Specification v1.0 - 06/01/2023. Round 1 Additional Signatures, Post-Quantum Cryptography: Digital Signature Schemes (2023). https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/prov-spec-web.pdf

  20. Goubin, L., Courtois, N.T.: Cryptanalysis of the TTM cryptosystem. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 44–57. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3_4

    Chapter  Google Scholar 

  21. Guo, H., Ding, J.: Algebraic relation of three MinRank algebraic modelings. In: Mesnager, S., Zhou, Z. (eds.) WAIFI 2022. LNCS, vol. 13638, pp. 239–249. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22944-2_15

    Chapter  Google Scholar 

  22. Ikematsu, Y., Nakamura, S., Takagi, T.: Recent progress in the security evaluation of multivariate public-key cryptography. IET Inf. Secur. 17(2), 210–226 (2023). https://doi.org/10.1049/ISE2.12092

    Article  Google Scholar 

  23. Kipnis, A., Shamir, A.: Cryptanalysis of the HFE public key cryptosystem by relinearization. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 19–30. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_2

    Chapter  Google Scholar 

  24. Macario-Rat, G., et al.: Rectangular attack on VOX. IACR Cryptology ePrint Archive, p. 1822 (2023). https://eprint.iacr.org/2023/1822

  25. Nakamura, S., Wang, Y., Ikematsu, Y.: A new analysis of the kipnis-shamir method solving the MinRank problem. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 106(3), 203–211 (2023). https://doi.org/10.1587/TRANSFUN.2022CIP0014

  26. Patarin, J., et al.: Vox specification v1.0 - 06/01/2023. Round 1 Additional Signatures, Post-Quantum Cryptography: Digital Signature Schemes (2023). https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/vox-spec-web.pdf

  27. Tao, C., Petzoldt, A., Ding, J.: Efficient key recovery for All HFE signature variants. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12825, pp. 70–93. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84242-0_4

    Chapter  Google Scholar 

  28. Verbel, J., Baena, J., Cabarcas, D., Perlner, R., Smith-Tone, D.: On the complexity of “Superdetermined’’ Minrank instances. In: Ding, J., Steinwandt, R. (eds.) PQCrypto 2019. LNCS, vol. 11505, pp. 167–186. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25510-7_10

    Chapter  Google Scholar 

  29. Wang, L.C., et al.: SNOVA - Proposal for NISTPQC: Digital Signature Schemes project. Round 1 Additional Signatures, Post-Quantum Cryptography: Digital Signature Schemes (2023). https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/SNOVA-spec-web.pdf

  30. Wang, Y., Ikematsu, Y., Nakamura, S., Takagi, T.: Revisiting the minrank problem on multivariate cryptography. In: You, I. (ed.) WISA 2020. LNCS, vol. 12583, pp. 291–307. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65299-9_22

    Chapter  Google Scholar 

Download references

Acknowledgments

This work is supported by National Key R &D Program of China (No. 2021YFB3100100) and Beijing Natural Science Foundation (No. M22001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jintai Ding .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Appendices

A Magma code for our practical attack

Here we list the Magma code we used in Sect. 3.

figure c
figure d
figure e

B Magma code for our theoretical attack

Here we list the Magma code we used in Sect. 4.

figure f
figure g
figure h
figure i

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guo, H., Jin, Y., Pan, Y., He, X., Gong, B., Ding, J. (2024). Practical and Theoretical Cryptanalysis of VOX. In: Saarinen, MJ., Smith-Tone, D. (eds) Post-Quantum Cryptography. PQCrypto 2024. Lecture Notes in Computer Science, vol 14772. Springer, Cham. https://doi.org/10.1007/978-3-031-62746-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-62746-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-62745-3

  • Online ISBN: 978-3-031-62746-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Keywords

Publish with us

Policies and ethics