Skip to main content
Log in

Toward sustainable hydrogen and carbon economies through plasma-based recycling

  • Views & Comments
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

The transition to sustainable hydrogen and carbon economies is essential for addressing critical global issues such as climate change, resource depletion, and waste management. A vital strategy for low-carbon sustainability in the energy and chemical sectors is the chemical conversion of greenhouse gas into fuels and platform chemicals. Effective waste management, including waste-to-energy conversion and recycling, plays a crucial role in reducing emissions and promoting a circular economy. A key aspect of this transition is the development of innovative technologies that can transform waste into valuable resources while minimizing environmental impacts. Plasma-based recycling presents a promising solution, offering remarkable versatility for applications like waste upcycling and greenhouse gas conversion. These processes play a crucial role in advancing the development of sustainable carbon and hydrogen economies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang N, Otor H O, Rivera-Castro G, Hicks J C. Plasma catalysis for hydrogen production: a bright future for decarbonization. ACS Catalysis, 2024, 14(9): 6749–6798

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Chen G, Snyders R, Britun N. CO2 conversion using catalyst-free and catalyst-assisted plasma-processes: recent progress and understanding. Journal of CO2 Utilization, 2021, 49: 101557

    Article  CAS  Google Scholar 

  3. Sikarwar V S, Hrabovský M, Van Oost G, Pohořelý M, Jeremiáš M. Progress in waste utilization via thermal plasma. Progress in Energy and Combustion Science, 2020, 81: 100873

    Article  Google Scholar 

  4. Kusano R, Kusano Y. Applications of plasma technologies in recycling processes. Materials, 2024, 17(7): 1687

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Longo V, Centi G, Perathoner S, Genovese C. CO2 utilisation with plasma technologies. Current Opinion in Green and Sustainable Chemistry, 2024, 46: 100893

    Article  CAS  Google Scholar 

  6. Ray D, Ye P, Yu J C, Song C. Recent progress in plasma-catalytic conversion of CO2 to chemicals and fuels. Catalysis Today, 2023, 423: 113973

    Article  CAS  Google Scholar 

  7. Girard-Sahun F, Biondo O, Trenchev G, van Rooij G, Bogaerts A. Carbon bed post-plasma to enhance the CO2 conversion and remove O2 from the product stream. Chemical Engineering Journal, 2022, 442: 136268

    Article  CAS  Google Scholar 

  8. O’Modhrain C, Gorbanev Y, Bogaerts A. Post-plasma carbon bed design for CO2 conversion: Does size and insulation matter? Journal of Energy Chemistry, 2025, 104: 312–323

    Article  Google Scholar 

  9. Van Rooij G J, Akse H N, Bongers W A, van de Sanden M C M. Plasma for electrification of chemical industry: a case study on CO2 reduction. Plasma Physics and Controlled Fusion, 2018, 60(1): 014019

    Article  Google Scholar 

  10. Rouwenhorst K H R, Lefferts L. Plasma-based conversions with in situ product removal. Plasma Processes and Polymers, 2024, 21(1): 2200244

    Article  CAS  Google Scholar 

  11. Chen G, Buck F, Kistner I, Widenmeyer M, Schiestel T, Schulz A, Walker M, Weidenkaff A. A novel plasma-assisted hollow fiber membrane concept for efficiently separating oxygen from CO in a CO2 plasma. Chemical Engineering Journal, 2020, 392: 123699

    Article  CAS  Google Scholar 

  12. Antunes R, Wiegers K, Hecimovic A, Kiefer C K, Buchberger S, Meindl A, Schiestel T, Schulz A, Walker M, Fantz U. Proof of concept for O2 removal with multiple LCCF membranes accommodated in theeffluent of a CO2 plasma torch. ACS Sustainable Chemistry & Engineering, 2023, 11(44): 15984–15993

    Article  CAS  Google Scholar 

  13. Chen G, Widenmeyer M, Yu X, Han N, Tan X, Homm G, Liu S, Weidenkaff A. Perspectives on achievements and challenges of oxygen transport dual-functional membrane reactors. Journal of the American Ceramic Society, 2024, 107(3): 1490–1504

    Article  CAS  Google Scholar 

  14. Zhang C, Sunarso J, Liu S. Designing CO2-resistant oxygen-selective mixed ionic-electronic conducting membranes: guidelines, recent advances, and forward directions. Chemical Society Reviews, 2017, 46(10): 2941–3005

    Article  PubMed  CAS  Google Scholar 

  15. Osman A I, Nasr M, Aniagor C O, Farghali M, Huang M M, Chin B L F, Sun Z, Lock S S M, López-Maldonado E A, Yiin C L, et al. Synergistic technologies for a circular economy: upcycling waste plastics and biomass. Frontiers of Chemical Science and Engineering, 2024, 19(1): 1–35

    Google Scholar 

  16. Zheng K, Wu Y, Hu Z, Wang S, Jiao X, Zhu J, Sun Y, Xie Y. Progress and perspective for conversion of plastic wastes into valuable chemicals. Chemical Society Reviews, 2023, 52(1): 8–29

    Article  PubMed  CAS  Google Scholar 

  17. Yu X, Rao Z, Chen G, Yang Y, Yoon S, Liu L, Huang Z, Widenmeyer M, Guo H, Homm G, et al. Plasma-enabled process with single-atom catalysts for sustainable plastic waste transformation. Angewandte Chemie International Edition, 2024, 63(50): e202404196

    Article  PubMed  CAS  Google Scholar 

  18. Munir M T, Mardon I, Al-Zuhair S, Shawabkeh A, Saqib N U. Plasma gasification of municipal solid waste for waste-to-value processing. Renewable & Sustainable Energy Reviews, 2019, 116: 109461

    Article  CAS  Google Scholar 

  19. Shah H H, Amin M, Iqbal A, Nadeem I, Kalin M, Soomar A M, Galal A M. A review on gasification and pyrolysis of waste plastics. Frontiers in Chemistry, 2023, 10: 1608

    Article  Google Scholar 

  20. Hecimovic A, Mayer M T, de Haart L G J, Gupta S, Kiefer C K, Navarrete A, Schulz A, Fantz U. Benchmarking microwave-induced CO2 plasma splitting against electrochemical CO2 reduction for a comparison of promising technologies. Journal of CO2 Utilization, 2024, 83: 102825

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Chen G kindly thanks CHN Energy Europe Research GmbH for financial support during the plasma-blade industrial project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoxing Chen.

Ethics declarations

Competing interests The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Weidenkaff, A. Toward sustainable hydrogen and carbon economies through plasma-based recycling. Front. Chem. Sci. Eng. 19, 91 (2025). https://doi.org/10.1007/s11705-025-2544-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1007/s11705-025-2544-3