Skip to main content
Log in

Firing patterns of a multifunctional neural circuit with memristive membrane

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

The functionality of nonlinear circuits can be significantly enhanced by integrating specialized electrical elements, enabling them to emulate the firing behaviors of biological neurons through parameter modulation or external stimuli. In this study, we develop a multifunctional neural circuit by incorporating a photocell and a thermistor into a magnetic flux-controlled memristor (MFCM)-based circuit coupled with dual capacitors. The photocell and thermistor serve as sensors for detecting external light and temperature signals, respectively. MFCM describes the flexible organizational structure between cell membranes and two capacitors exprent the inner and outer membranes of the cell membranes. We derive the mathematical model and energy equations of the system, and validate the circuit’s neuronal dynamics through numerical simulations. Furthermore, this versatile neural circuit provides a scalable platform for studying collective behaviors in functional neuron networks, and offering potential applications in neuromorphic computing, adaptive sensing, and bio-inspired robotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Data availability

No datasets were generated or analysed during the current study.

References

  1. Tsuda I (2001) Toward an interpretation of dynamic neural activity in terms of chaotic dynamical systems. Behav Brain Sci 24(5):793–810

    Article  Google Scholar 

  2. Izhikevich EM (2003) Simple model of spiking neurons. IEEE Trans Neural Netw 14(6):1569–1572

    Article  MathSciNet  Google Scholar 

  3. Zandi-Mehran N, Jafari S, Hashemi Golpayegani SMR et al (2020) Different synaptic connections evoke different firing patterns in neurons subject to an electromagnetic field. Nonlinear Dyn 100:1809–1824

    Article  Google Scholar 

  4. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500

    Article  Google Scholar 

  5. FitzHugh R (1961) Impulses and physiological states in theoretical models of nerve membrane. Biophys J 1:445–466

    Article  Google Scholar 

  6. Nagumo J, Arimoto S, Yoshizawa S (1962) An active pulse transmission line simulating nerve axon. Proc IRE 50:2061–2070

    Article  Google Scholar 

  7. Morris C, Lecar H (1981) Voltage oscillations in the barnacle giant muscle fiber. Biophys J 35:193–213

    Article  Google Scholar 

  8. Hindmarsh JL, Rose RM (1982) A model of the nerve impulse using two first-order differential equations. Nature 296:162–164

    Article  Google Scholar 

  9. Chay TR (1985) Chaos in a three-variable model of an excitable cell. Phys D 16:233–242

    Article  MATH  Google Scholar 

  10. Vazquez R (2010) Izhikevich neuron model and its application in pattern recognition. Aust J Intell Inf Process Syst 11(1):35–40

    Google Scholar 

  11. Muni SS, Fatoyinbo HO, Ghosh I (2022) Dynamical effects of electromagnetic flux on chialvo neuron map: nodal and network behaviors. Int J Bifurc Chaos 32:2230020

    Article  MathSciNet  MATH  Google Scholar 

  12. Liu Y, Xu W, Ma J et al (2020) A new photosensitive neuron model and its dynamics. Front Inf Technol Electron Eng 21(9):1387–1396

    Article  Google Scholar 

  13. Xu Y, Guo Y, Ren G et al (2020) Dynamics and stochastic resonance in a thermosensitive neuron. Appl Math Comput 385:125427

    MathSciNet  Google Scholar 

  14. Guo Y, Zhou P, Yao Z et al (2021) Biophysical mechanism of signal encoding in an auditory neuron. Nonlinear Dyn 105:3603–3614

    Article  Google Scholar 

  15. Yang F, Xu Y, Ma J (2023) A memristive neuron and its adaptability to external electric field. Chaos 33(2):023110

    Article  MathSciNet  MATH  Google Scholar 

  16. Yang F, Han Z, Ren G et al (2024) Enhance controllability of a memristive neuron under magnetic field and circuit approach. Eur Phys J Plus 139(6):534

    Article  Google Scholar 

  17. Yang F, Ren G, Tang J (2023) Dynamics in a memristive neuron under an electromagnetic field. Nonlinear Dyn 111(23):21917–21939

    Article  Google Scholar 

  18. Wu F, Ma J, Zhang G (2019) A new neuron model under electromagnetic field. Appl Math Comput 347:590–599

    MathSciNet  MATH  Google Scholar 

  19. Ju Z, Lin Y, Chen B et al (2022) Electromagnetic radiation induced non-chaotic behaviors in a Wilson neuron model. Chin J Phys 77:214–222

    Article  MathSciNet  Google Scholar 

  20. Hu X, Liu C (2019) Bursting and synchronization of coupled neurons under electromagnetic radiation. Complexity 2019(1):4835379

    Article  Google Scholar 

  21. Thornton IM (2006) Out of time: a possible link between mirror neurons, autism and electromagnetic radiation. Med Hypotheses 67(2):378–382

    Article  Google Scholar 

  22. Takembo CN, Mvogo A, Ekobena Fouda HP et al (2019) Effect of electromagnetic radiation on the dynamics of spatiotemporal patterns in memristor-based neuronal network. Nonlinear Dyn 95:1067–1078

    Article  MATH  Google Scholar 

  23. Guo Y, Xie Y, Ma J (2023) Nonlinear responses in a neural network under spatial electromagnetic radiation. Phys A 626:129120

    Article  MATH  Google Scholar 

  24. Minasyan SM, Grigoryan GY, Saakyan SG et al (2007) Effects of the action of microwave-frequency electromagnetic radiation on the spike activity of neurons in the supraoptic nucleus of the hypothalamus in rats. Neurosci Behav Physiol 37:175–180

    Article  Google Scholar 

  25. Yang F, Wang Y, Ma J (2023) Creation of heterogeneity or defects in a memristive neural network under energy flow. Commun Nonlinear Sci Numer Simul 119:107127

    Article  MATH  Google Scholar 

  26. Yang F, Ma J (2023) Creation of memristive synapse connection to neurons for keeping energy balance. Pramana 97(2):55

    Article  Google Scholar 

  27. Li Y, Lv M, Ma J et al (2024) A discrete memristive neuron and its adaptive dynamics. Nonlinear Dyn 112(9):7541–7553

    Article  Google Scholar 

  28. Bao B, Hu J, Bao H et al (2024) Memristor-coupled dual-neuron mapping model: initials-induced coexisting firing patterns and synchronization activities. Cogn Neurodyn 18(2):539–555

    Article  Google Scholar 

  29. Yang F, Song X, Ma J (2024) A memristive map neuron under noisy electric field. Chin J Phys 91:287–298

    Article  MathSciNet  Google Scholar 

  30. Yang F, Song X, Yu Z (2024) Dynamics of a functional neuron model with double membranes. Chaos Solitons Fractals 188:115496

    Article  MathSciNet  Google Scholar 

  31. Yang F, Guo Q, Ma J (2024) A neuron model with nonlinear membranes. Cogn Neurodyn 18(2):673–684

    Article  Google Scholar 

  32. Yang F, Song X, Yu Z (2025) Adaptive mode selection of electrical activities in a neuron with a memristive ion channel. Nonlinear Dyn 113(7):7213–7222

    Article  Google Scholar 

  33. Yu Z, Zhu K, Wang Y et al (2025) Dynamics of a neuron with a hybrid memristive ion channel. Chaos Solitons Fractals 194:116233

    Article  Google Scholar 

  34. Yang F, Song X, Xu Y (2025) A photocurrent-driven memristive ion channel neuron. Chaos Solitons Fractals 199:116740

    Article  Google Scholar 

  35. Chua L (2003) Memristor-the missing circuit element. IEEE Trans Circuit Theory 18(5):507–519

    Article  Google Scholar 

  36. Pershin YV, Di Ventra M (2011) Neuromorphic, digital, and quantum computation with memory circuit elements. Proc IEEE 100(6):2071–2080

    Article  Google Scholar 

  37. Indiveri G, Linares-Barranco B, Hamilton TJ et al (2011) Neuromorphic silicon neuron circuits. Front Neurosci 5:73

    Article  Google Scholar 

  38. Bao H, Zhang Y, Liu W et al (2020) Memristor synapse-coupled memristive neuron network: synchronization transition and occurrence of chimera. Nonlinear Dyn 100(1):937–950

    Article  Google Scholar 

  39. Bao B, Hu J, Cai J et al (2023) Memristor-induced mode transitions and extreme multistability in a map-based neuron model. Nonlinear Dyn 111(4):3765–3779

    Article  Google Scholar 

  40. Hu J, Bao H, Xu Q et al (2024) Synchronization generations and transitions in two map-based neurons coupled with locally active memristor. Chaos Solitons Fractals 184:114993

    Article  MathSciNet  Google Scholar 

  41. Wang Y, Chik DTW, Wang ZD (2000) Coherence resonance and noise-induced synchronization in globally coupled Hodgkin-Huxley neurons. Phys Rev E 61(1):740

    Article  Google Scholar 

  42. Zhou P, Xu Y, Ma J (2023) Dynamical and coherence resonance in a photoelectric neuron under autaptic regulation. Phys A 620:128746

    Article  Google Scholar 

  43. Wang Z, Li Y, Xu Y et al (2022) Coherence-resonance chimeras in coupled HR neurons with alpha-stable Lévy noise. J Stat Mech 2022(5):053501

    Article  MATH  Google Scholar 

  44. Ghori MB, Kang Y, Chen Y (2022) Emergence of stochastic resonance in a two-compartment hippocampal pyramidal neuron model. J Comput Neurosci 50:217–240

    Article  MathSciNet  MATH  Google Scholar 

  45. Yu D, Yang L, Zhan X et al (2023) Logical stochastic resonance and energy consumption in stochastic Hodgkin-Huxley neuron system. Nonlinear Dyn 111(7):6757–6772

    Article  Google Scholar 

  46. Hou B, Hu X, Guo Y et al (2023) Energy flow and stochastic resonance in a memristive neuron. Phys Scr 98(10):105236

    Article  Google Scholar 

  47. Mehrabbeik M, Jafari S, Perc M (2023) Synchronization in simplicial complexes of memristive Rulkov neurons. Front Comput Neurosci 17:1248976

    Article  Google Scholar 

  48. Malik SA, Mir AH (2020) Synchronization of hindmarsh rose neurons. Neural Netw 123:372–380

    Article  MATH  Google Scholar 

  49. Ma M, Lu Y, Li Z et al (2023) Multistability and phase synchronization of Rulkov neurons coupled with a locally active discrete memristor. Fractal Fract 7(1):82

    Article  Google Scholar 

  50. Jiruska P, De Curtis M, Jefferys JGR et al (2013) Synchronization and desynchronization in epilepsy: controversies and hypotheses. J Physiol 591(4):787–797

    Article  Google Scholar 

  51. Guo Y, Wang C, Yao Z et al (2022) Desynchronization of thermosensitive neurons by using energy pumping. Phys A 602:127644

    Article  MathSciNet  Google Scholar 

  52. Sun G, Yang F, Ren G et al (2023) Energy encoding in a biophysical neuron and adaptive energy balance under field coupling. Chaos Solitons Fractals 169:113230

    Article  MathSciNet  Google Scholar 

  53. Zhang L, Xiong L, An X et al (2023) Hamilton energy balance and synchronization behaviors of two functional neurons. Cogn Neurodyn 17(6):1683–1702

    Article  Google Scholar 

  54. Ma X, Xu Y (2022) Taming the hybrid synapse under energy balance between neurons. Chaos Solitons Fractals 159:112149

    Article  MathSciNet  Google Scholar 

  55. Yao Z, Wang C (2021) Control the collective behaviors in a functional neural network. Chaos Solitons Fractals 152:111361

    Article  MathSciNet  MATH  Google Scholar 

  56. Xie Y, Yao Z, Ma J (2023) Formation of local heterogeneity under energy collection in neural networks. Sci China Technol Sci 66(2):439–455

    Article  Google Scholar 

  57. Yang F, Wang Y, Ma J (2023) An adaptive synchronization approach in a network composed of four neurons with energy diversity. Indian J Phys 97(7):2125–2137

    Article  Google Scholar 

  58. Ma J, Tang J (2017) A review for dynamics in neuron and neuronal network. Nonlinear Dyn 89:1569–1578

    Article  MathSciNet  Google Scholar 

  59. Ma J (2023) Biophysical neurons, energy, and synapse controllability: a review. J Zhejiang Univ-Sci A 24(2):109–129

    Article  Google Scholar 

  60. Yang F, Ma J, Wu F (2024) Review on memristor application in neural circuit and network. Chaos Solitons Fractals 187:115361

    Article  MathSciNet  Google Scholar 

  61. Bai Y, Shao S, Zhang J et al (2024) A review of brain-inspired cognition and navigation technology for mobile robots. Cyborg Bionic Syst 5:0128

    Article  Google Scholar 

  62. Xu J, Park SH, Zhang X (2019) A temporally irreversible visual attention model inspired by motion sensitive neurons. IEEE Trans Ind Inform 16(1):595–605

    Article  Google Scholar 

  63. Ma N, Fang X, Zhang Y et al (2024) Enhancing the sensitivity of spin-exchange relaxation-free magnetometers using phase-modulated pump light with external Gaussian noise. Opt Express 32(19):33378–33390

    Article  Google Scholar 

  64. He T, Zheng Y, Liang X et al (2023) A highly energy-efficient body-coupled transceiver employing a power-on-demand amplifier. Cyborg Bionic Syst 4:0030

    Article  Google Scholar 

  65. Ostrovskii V et al (2025) Bio-inspired neuron based on threshold selector and tunnel diode capable of excitability modulation. Neurocomputing 624:129454

    Article  Google Scholar 

  66. Karimov T et al (2022) Single-coil metal detector based on spiking chaotic oscillator. Nonlinear Dyn 107(1):1295–1312

    Article  Google Scholar 

  67. Rybin V, Butusov D, Shirnin K et al (2024) Revealing hidden features of chaotic systems using high-performance bifurcation analysis tools based on CUDA technology. Int J Bifurcat Chaos 34(11):2450134

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This study can be supported by the National Natural Science Foundation of China under Grant No. 62273272. The National Science Basic Research Program of Shaanxi (Program No. 2023-JC-QN-0087).

Author information

Authors and Affiliations

Authors

Contributions

ZY: Writing-original draft, Methodology, Writing-final version. HC: Software, Numerical calculation. XS: Supervision, Numerical calculation. FY: Methodology, Software, Supervision, Writing-final version. The part by Youth Innovation Team of Shaanxi Universities.

Corresponding author

Correspondence to Feifei Yang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Z., Cui, H., Song, X. et al. Firing patterns of a multifunctional neural circuit with memristive membrane. J Supercomput 81, 1469 (2025). https://doi.org/10.1007/s11227-025-07980-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11227-025-07980-7

Keywords