Skip to main content

A New Fault Attack on UOV Multivariate Signature Scheme

  • Conference paper
  • First Online:
Post-Quantum Cryptography (PQCrypto 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13512))

Included in the following conference series:

  • 1097 Accesses

  • 4 Citations

Abstract

The unbalanced oil and vinegar signature scheme (UOV), which is one of the multivariate signature schemes, is expected to be secure against quantum attacks. To achieve cryptosystem security in a practical manner, we need to deal with security against physical attacks such as fault attacks, which generate computational errors to lead to security failures. In this study, we propose a new fault attack on UOV using faults occurring on the secret key. The proposed attack first recovers a part of the linear map of the secret key by utilizing faults occurring on the secret key, and then transforms the public key system. As a result, the proposed attack reduces a given public key system into one with fewer variables than the original system. After applying our proposed attack, the secret key can be recovered with less complexity than the original system by using an existing key recovery attack. Our simulation results show that, for two practical parameter sets satisfying 100-bit security, the proposed attack can reduce the given system into one with only 90-bit security with a probability of approximately \(80\sim 90\)%. We also show that the proposed attack achieves a smaller resulting system than the above case with lower probability, and that such a system can be broken even more efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bettale, L., Faugère, J.-C., Perret, L.: Hybrid approach for solving multivariate systems over finite fields. J. Math. Crypto. 3, 177–197 (2009)

    Article  MathSciNet  Google Scholar 

  2. Beullens, W.: Improved cryptanalysis of UOV and rainbow. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 348–373. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5_13

    Chapter  Google Scholar 

  3. Beullens, W.: Breaking rainbow takes a weekend on a laptop. IACR Cryptology ePrint Archive: Report 2022/385 (2022)

    Google Scholar 

  4. Beullens, W., Preneel, B.: Field lifting for smaller UOV public keys. In: Patra, A., Smart, N.P. (eds.) INDOCRYPT 2017. LNCS, vol. 10698, pp. 227–246. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71667-1_12

    Chapter  Google Scholar 

  5. Bogdanov, A., Eisenbarth, T., Rupp, A., Wolf, C.: Time-area optimized public-key engines: \(\cal{MQ}\)-cryptosystems as replacement for elliptic curves? In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 45–61. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85053-3_4

    Chapter  Google Scholar 

  6. Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient algorithms for solving overdefined systems of multivariate polynomial equations. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_27

    Chapter  Google Scholar 

  7. Czypek, P., Heyse, S., Thomae, E.: Efficient implementations of MQPKS on constrained devices. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 374–389. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33027-8_22

    Chapter  Google Scholar 

  8. Chen, A.I.-T., et al.: SSE implementation of multivariate PKCs on modern x86 CPUs. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 33–48. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04138-9_3

    Chapter  Google Scholar 

  9. Ding, J., Schmidt, D.: Rainbow, a new multivariable polynomial signature scheme. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 164–175. Springer, Heidelberg (2005). https://doi.org/10.1007/11496137_12

    Chapter  Google Scholar 

  10. Ding, J., Yang, B.-Y., Chen, C.-H.O., Chen, M.-S., Cheng, C.-M.: New differential-algebraic attacks and reparametrization of rainbow. In: Bellovin, S.M., Gennaro, R., Keromytis, A., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 242–257. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68914-0_15

    Chapter  Google Scholar 

  11. Faugère, J.-C.: A new efficient algorithm for computing Gr\(\rm \ddot{o}\)bner bases (F4). J. Pure Appl. Algebra 139(1–3), 61–88 (1999)

    Article  MathSciNet  Google Scholar 

  12. Faugère, J.-C.: A new efficient algorithm for computing Gr\(\rm \ddot{o}\)bner bases without reduction to zero (F5). In: ISSAC 2002, pp. 75–83. ACM (2002)

    Google Scholar 

  13. Garey, M.-R., Johnson, D.-S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman (1979)

    Google Scholar 

  14. Hashimoto, Y., Takagi, T., Sakurai, K.: General fault attacks on multivariate public key cryptosystems. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 1–18. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5_1

    Chapter  Google Scholar 

  15. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced oil and vinegar signature schemes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_15

    Chapter  Google Scholar 

  16. Kipnis, A., Shamir, A.: Cryptanalysis of the oil and vinegar signature scheme. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 257–266. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055733

    Chapter  Google Scholar 

  17. Krämer, J., Loiero, M.: Fault attacks on UOV and rainbow. In: Polian, I., Stöttinger, M. (eds.) COSADE 2019. LNCS, vol. 11421, pp. 193–214. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16350-1_11

    Chapter  Google Scholar 

  18. Mus, K., Islam, S., Sunar, B.: QuantumHammer: a practical hybrid attack on the LUOV signature scheme. In: CCS 2020, pp. 1071–1084. ACM (2020)

    Google Scholar 

  19. NIST: Post-quantum cryptography CSRC. https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization

  20. NIST: Status report on the second round of the NIST post-quantum cryptography standardization process. NIST Internal Report 8309, NIST (2020)

    Google Scholar 

  21. Park, A., Shim, K.-A., Koo, N., Han, D.-G.: Side-channel attacks on post-quantum signature schemes based on multivariate quadratic equations - rainbow and UOV -. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(3), 500–523 (2018)

    Article  Google Scholar 

  22. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article  MathSciNet  Google Scholar 

  23. Shim, K.-A., Koo, N.: Algebraic fault analysis of UOV and Rainbow with the leakage of random vinegar values. IEEE Trans. Inf. Forensics Secur. 15, 2429–2439 (2020)

    Article  Google Scholar 

  24. Shim, K.-A., Lee, S., Koo, N.: Efficient implementations of Rainbow and UOV using AVX2. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022(1), 245–269 (2022)

    Google Scholar 

  25. Yang, B.-Y., Chen, J.-M., Courtois, N.T.: On asymptotic security estimates in XL and Gröbner bases-related algebraic cryptanalysis. In: Lopez, J., Qing, S., Okamoto, E. (eds.) ICICS 2004. LNCS, vol. 3269, pp. 401–413. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30191-2_31

    Chapter  Google Scholar 

  26. Yang, B.-Y., Chen, O.C.-H., Bernstein, D.J., Chen, J.-M.: Analysis of QUAD. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 290–308. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74619-5_19

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by JST CREST Grant Number JPMJCR2113, Japan, and JSPS KAKENHI Grant Number JP21J20391, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroki Furue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Furue, H., Kiyomura, Y., Nagasawa, T., Takagi, T. (2022). A New Fault Attack on UOV Multivariate Signature Scheme. In: Cheon, J.H., Johansson, T. (eds) Post-Quantum Cryptography. PQCrypto 2022. Lecture Notes in Computer Science, vol 13512. Springer, Cham. https://doi.org/10.1007/978-3-031-17234-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17234-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17233-5

  • Online ISBN: 978-3-031-17234-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Keywords

Publish with us

Policies and ethics