9 releases (2 stable)
Uses new Rust 2024
| new 1.0.4 | Feb 9, 2026 |
|---|---|
| 1.0.1 | Feb 8, 2026 |
| 0.1.9 | Feb 8, 2026 |
#141 in Machine learning
1.5MB
36K
SLoC
CodeTether Agent
A high-performance AI coding agent written in Rust. First-class A2A (Agent-to-Agent) protocol support, rich terminal UI, parallel swarm execution, autonomous PRD-driven development, and a local FunctionGemma tool-call router that separates reasoning from formatting.
v1.0.0
This major release brings together the full CodeTether agent experience:
- FunctionGemma Tool Router — A local 270M-param model that converts text-only LLM responses into structured tool calls. Your primary LLM reasons; FunctionGemma formats. Provider-agnostic, zero-cost passthrough when not needed, safe degradation on failure.
- RLM + FunctionGemma Integration — The Recursive Language Model now uses structured tool dispatch instead of regex-parsed DSL.
rlm_head,rlm_tail,rlm_grep,rlm_count,rlm_slice,rlm_llm_query, andrlm_finalare proper tool definitions. - Marketing Theme — New default TUI theme with cyan accents on a near-black background, matching the CodeTether site.
- Swarm Improvements — Validation, caching, rate limiting, and result storage modules for parallel sub-agent execution.
- Image Tool — New tool for image input handling.
- 27+ Built-in Tools — File ops, LSP, code search, web fetch, shell execution, agent orchestration.
Install
curl -fsSL https://raw.githubusercontent.com/rileyseaburg/codetether-agent/main/install.sh | sh
Downloads the binary to /usr/local/bin (or ~/.local/bin) and the FunctionGemma model (~292 MB) for local tool-call routing. No Rust toolchain required.
# Skip FunctionGemma model
curl -fsSL https://raw.githubusercontent.com/rileyseaburg/codetether-agent/main/install.sh | sh -s -- --no-functiongemma
From Source
git clone https://github.com/rileyseaburg/codetether-agent
cd codetether-agent
cargo build --release
# Binary at target/release/codetether
# Without FunctionGemma (smaller binary)
cargo build --release --no-default-features
From crates.io
cargo install codetether-agent
Quick Start
1. Configure Vault
All API keys live in HashiCorp Vault — never in config files or env vars.
export VAULT_ADDR="https://vault.example.com:8200"
export VAULT_TOKEN="hvs.your-token"
# Add a provider
vault kv put secret/codetether/providers/openrouter api_key="sk-or-v1-..."
2. Launch the TUI
codetether tui
3. Or Run a Single Prompt
codetether run "explain this codebase"
CLI
codetether tui # Interactive terminal UI
codetether run "prompt" # Single prompt (chat, no tools)
codetether swarm "complex task" # Parallel sub-agent execution
codetether ralph run --prd prd.json # Autonomous PRD-driven development
codetether ralph create-prd --feature X # Generate a PRD template
codetether serve --port 4096 # HTTP server (A2A + cognition APIs)
codetether worker --server URL # A2A worker mode
codetether config --show # Show config
Features
FunctionGemma Tool Router
Modern LLMs can call tools — but they're doing two jobs at once: reasoning about what to do, and formatting the structured JSON to express it. CodeTether separates these concerns.
Your primary LLM (Claude, GPT-4o, Kimi, Llama, etc.) focuses on reasoning. A tiny local model (FunctionGemma, 270M params by Google) handles structured output formatting via Candle inference (~5-50ms on CPU).
- Provider-agnostic — Switch models freely; tool-call behavior stays consistent.
- Zero overhead — If the LLM already returns tool calls, FunctionGemma is never invoked.
- Safe degradation — On any error, the original response is returned unchanged.
export CODETETHER_TOOL_ROUTER_ENABLED=true
export CODETETHER_TOOL_ROUTER_MODEL_PATH="$HOME/.local/share/codetether/models/functiongemma/functiongemma-270m-it-Q8_0.gguf"
export CODETETHER_TOOL_ROUTER_TOKENIZER_PATH="$HOME/.local/share/codetether/models/functiongemma/tokenizer.json"
| Variable | Default | Description |
|---|---|---|
CODETETHER_TOOL_ROUTER_ENABLED |
false |
Activate the router |
CODETETHER_TOOL_ROUTER_MODEL_PATH |
— | Path to .gguf model |
CODETETHER_TOOL_ROUTER_TOKENIZER_PATH |
— | Path to tokenizer.json |
CODETETHER_TOOL_ROUTER_ARCH |
gemma3 |
Architecture hint |
CODETETHER_TOOL_ROUTER_DEVICE |
auto |
auto / cpu / cuda |
CODETETHER_TOOL_ROUTER_MAX_TOKENS |
512 |
Max decode tokens |
CODETETHER_TOOL_ROUTER_TEMPERATURE |
0.1 |
Sampling temperature |
RLM: Recursive Language Model
Handles content that exceeds model context windows. Loads context into a REPL, lets the LLM explore it with structured tool calls (rlm_head, rlm_tail, rlm_grep, rlm_count, rlm_slice, rlm_llm_query), and returns a synthesized answer via rlm_final.
When FunctionGemma is enabled, RLM uses structured tool dispatch instead of regex-parsed DSL — the same separation-of-concerns pattern applied to RLM's analysis loop.
codetether rlm "What are the main functions?" -f src/large_file.rs
cat logs/*.log | codetether rlm "Summarize the errors" --content -
Content Types
RLM auto-detects content type for optimized processing:
| Type | Detection | Optimization |
|---|---|---|
code |
Function definitions, imports | Semantic chunking by symbols |
logs |
Timestamps, log levels | Time-based chunking |
conversation |
Chat markers, turns | Turn-based chunking |
documents |
Markdown headers, paragraphs | Section-based chunking |
Example Output
$ codetether rlm "What are the 3 main functions?" -f src/chunker.rs --json
{
"answer": "The 3 main functions are: 1) chunk_content() - splits content...",
"iterations": 1,
"sub_queries": 0,
"stats": {
"input_tokens": 322,
"output_tokens": 235,
"elapsed_ms": 10982
}
}
Swarm: Parallel Sub-Agent Execution
Decomposes complex tasks into subtasks and executes them concurrently with real-time progress in the TUI.
codetether swarm "Implement user auth with tests and docs"
codetether swarm "Refactor the API layer" --strategy domain --max-subagents 8
Strategies: auto (default), domain, data, stage, none.
Ralph: Autonomous PRD-Driven Development
Give it a spec, watch it work story by story. Each iteration is a fresh agent with full tool access. Memory persists via git history, progress.txt, and the PRD file.
codetether ralph create-prd --feature "User Auth" --project-name my-app
codetether ralph run --prd prd.json --max-iterations 10
TUI
The terminal UI includes a webview layout, model selector, session picker, swarm view with per-agent detail, Ralph view with per-story progress, and theme support with hot-reload.
Slash Commands: /swarm, /ralph, /model, /sessions, /resume, /new, /webview, /classic, /inspector, /refresh, /view
Keyboard: Ctrl+M model selector, Ctrl+B toggle layout, Ctrl+S/F2 swarm view, Tab switch agents, Alt+j/k scroll, ? help
Providers
| Provider | Default Model | Notes |
|---|---|---|
moonshotai |
kimi-k2.5 |
Default — excellent for coding |
github-copilot |
claude-opus-4 |
GitHub Copilot models |
openrouter |
stepfun/step-3.5-flash:free |
Access to many models |
google |
gemini-2.5-pro |
Google AI |
anthropic |
claude-sonnet-4-20250514 |
Direct or via Azure |
stepfun |
step-3.5-flash |
Chinese reasoning model |
bedrock |
— | Amazon Bedrock Converse API |
All keys stored in Vault at secret/codetether/providers/<name>.
Tools
27+ tools across file operations (read_file, write_file, edit, multiedit, apply_patch, glob, list_dir), code intelligence (lsp, grep, codesearch), execution (bash, batch, task), web (webfetch, websearch), and agent orchestration (ralph, rlm, prd, swarm, todo_read, todo_write, question, skill, plan_enter, plan_exit).
Architecture
┌─────────────────────────────────────────────────────────┐
│ CodeTether Platform │
│ (A2A Server at api.codetether.run) │
└────────────────────────┬────────────────────────────────┘
│ SSE/JSON-RPC
▼
┌─────────────────────────────────────────────────────────┐
│ codetether-agent │
│ ┌─────────┐ ┌─────────┐ ┌─────────┐ ┌─────────┐ │
│ │ A2A │ │ Agent │ │ Tool │ │ Provider│ │
│ │ Worker │ │ System │ │ System │ │ Layer │ │
│ └────┬────┘ └────┬────┘ └────┬────┘ └────┬────┘ │
│ │ │ │ │ │
│ └────────────┴────────────┴────────────┘ │
│ │ │
│ ┌──────────────────────┴──────────────────────────┐ │
│ │ HashiCorp Vault │ │
│ │ (API Keys & Secrets) │ │
│ └─────────────────────────────────────────────────┘ │
└─────────────────────────────────────────────────────────┘
A2A Protocol
Built for Agent-to-Agent communication:
- Worker mode — Connect to the CodeTether platform and process tasks
- Server mode — Accept tasks from other agents (
codetether serve) - Cognition APIs — Perpetual persona swarms with SSE event stream, spawn/reap control, and lineage graph
AgentCard
When running as a server, the agent exposes its capabilities via /.well-known/agent.json:
{
"name": "CodeTether Agent",
"description": "A2A-native AI coding agent",
"version": "1.0.0",
"skills": [
{ "id": "code-generation", "name": "Code Generation" },
{ "id": "code-review", "name": "Code Review" },
{ "id": "debugging", "name": "Debugging" }
]
}
Perpetual Persona Swarms API (Phase 0)
When running codetether serve, the agent also exposes cognition + swarm control APIs:
| Method | Endpoint | Description |
|---|---|---|
POST |
/v1/cognition/start |
Start perpetual cognition loop |
POST |
/v1/cognition/stop |
Stop cognition loop |
GET |
/v1/cognition/status |
Runtime status and buffer metrics |
GET |
/v1/cognition/stream |
SSE stream of thought events |
GET |
/v1/cognition/snapshots/latest |
Latest compressed memory snapshot |
POST |
/v1/swarm/personas |
Create a root persona |
POST |
/v1/swarm/personas/{id}/spawn |
Spawn child persona |
POST |
/v1/swarm/personas/{id}/reap |
Reap a persona (optional cascade) |
GET |
/v1/swarm/lineage |
Current persona lineage graph |
/v1/cognition/start auto-seeds a default root-thinker persona when no personas exist, unless a seed_persona is provided.
Worker Cognition Sharing (Social-by-Default)
When running in worker mode, CodeTether can include cognition status and a short latest-thought summary in worker heartbeats so upstream systems can monitor active reasoning state.
- Default: enabled
- Privacy control: disable any time with
CODETETHER_WORKER_COGNITION_SHARE_ENABLED=false - Safety: summary text is truncated before transmission (default
480chars)
# Disable upstream thought sharing
export CODETETHER_WORKER_COGNITION_SHARE_ENABLED=false
# Point worker to a non-default local cognition API
export CODETETHER_WORKER_COGNITION_SOURCE_URL=http://127.0.0.1:4096
# Keep status sharing but disable thought text
export CODETETHER_WORKER_COGNITION_INCLUDE_THOUGHTS=false
| Variable | Default | Description |
|---|---|---|
CODETETHER_WORKER_COGNITION_SHARE_ENABLED |
true |
Enable cognition payload in worker heartbeat |
CODETETHER_WORKER_COGNITION_SOURCE_URL |
http://127.0.0.1:4096 |
Local cognition API base URL |
CODETETHER_WORKER_COGNITION_INCLUDE_THOUGHTS |
true |
Include latest thought summary |
CODETETHER_WORKER_COGNITION_THOUGHT_MAX_CHARS |
480 |
Max chars for latest thought summary |
CODETETHER_WORKER_COGNITION_TIMEOUT_MS |
2500 |
Timeout for local cognition API reads |
See docs/perpetual_persona_swarms.md for request/response contracts.
CUDA Build/Deploy Helpers
make build-cuda— Build a CUDA-enabled binary locallymake deploy-spike2-cuda— Sync source tospike2, build with--features candle-cuda, install, and restart servicemake status-spike2-cuda— Check service status, active Candle device config, and GPU usage onspike2
Dogfooding: Self-Implementing Agent
CodeTether implemented its own features using ralph and swarm.
What We Accomplished
Using ralph and swarm, the agent autonomously implemented:
LSP Client Implementation (10 stories):
- US-001: LSP Transport Layer - stdio implementation
- US-002: JSON-RPC Message Framework
- US-003: LSP Initialize Handshake
- US-004: Text Document Synchronization - didOpen
- US-005: Text Document Synchronization - didChange
- US-006: Text Document Completion
- US-007: Text Document Hover
- US-008: Text Document Definition
- US-009: LSP Shutdown and Exit
- US-010: LSP Client Configuration and Server Management
Missing Features (10 stories):
- MF-001: External Directory Tool
- MF-002: RLM Pool - Connection Pooling
- MF-003: Truncation Utilities
- MF-004: LSP Full Integration - Server Management
- MF-005: LSP Transport - stdio Communication
- MF-006: LSP Requests - textDocument/definition
- MF-007: LSP Requests - textDocument/references
- MF-008: LSP Requests - textDocument/hover
- MF-009: LSP Requests - textDocument/completion
- MF-010: RLM Router Enhancement
Results
| Metric | Value |
|---|---|
| Total User Stories | 20 |
| Stories Passed | 20 (100%) |
| Total Iterations | 20 |
| Quality Checks Per Story | 4 (check, clippy, test, build) |
| Lines of Code Generated | ~6,000+ |
| Time to Complete | ~30 minutes |
| Model Used | Kimi K2.5 (Moonshot AI) |
Efficiency Comparison
| Approach | Time | Cost | Notes |
|---|---|---|---|
| Manual Development | 80 hours | $8,000 | Senior dev @ $100/hr, 50-100 LOC/day |
| opencode + subagents | 100 min | ~$11.25 | Bun runtime, Kimi K2.5 (same model) |
| codetether swarm | 29.5 min | $3.75 | Native Rust, Kimi K2.5 |
vs Manual: 163x faster, 2133x cheaper vs opencode: 3.4x faster, ~3x cheaper (same Kimi K2.5 model)
Key advantages over opencode subagents (model parity):
- Native Rust binary (13ms startup vs 25-50ms Bun)
- Direct API calls vs TypeScript HTTP overhead
- PRD-driven state in files vs subagent process spawning
- ~3x fewer tokens due to reduced subagent initialization overhead
Note: Both have LLM-based compaction. The efficiency gain comes from PRD-driven architecture (state in prd.json + progress.txt) vs. spawning subprocesses with rebuilt context.
How to Replicate
# 1. Create a PRD for your feature
cat > prd.json << 'EOF'
{
"project": "my-project",
"feature": "My Feature",
"quality_checks": {
"typecheck": "cargo check",
"test": "cargo test",
"lint": "cargo clippy",
"build": "cargo build --release"
},
"user_stories": [
{
"id": "US-001",
"title": "First Story",
"description": "Implement the first piece",
"acceptance_criteria": ["Compiles", "Tests pass"],
"priority": 1,
"depends_on": [],
"passes": false
}
]
}
EOF
# 2. Run Ralph
codetether ralph run -p prd.json -m "kimi-k2.5" --max-iterations 10
# 3. Watch as your feature gets implemented autonomously
Why This Matters
- Proof of Capability: The agent can implement non-trivial features end-to-end
- Quality Assurance: Every story passes cargo check, clippy, test, and build
- Autonomous Operation: No human intervention during implementation
- Reproducible Process: PRD-driven development is structured and repeatable
- Self-Improvement: The agent literally improved itself
Performance: Why Rust Over Bun/TypeScript
CodeTether Agent is written in Rust for measurable performance advantages over JavaScript/TypeScript runtimes like Bun:
Benchmark Results
| Metric | CodeTether (Rust) | opencode (Bun) | Advantage |
|---|---|---|---|
| Binary Size | 12.5 MB | ~90 MB (bun + deps) | 7.2x smaller |
| Startup Time | 13 ms | 25-50 ms | 2-4x faster |
| Memory (idle) | ~15 MB | ~50-80 MB | 3-5x less |
| Memory (swarm, 10 agents) | ~45 MB | ~200+ MB | 4-5x less |
| Process Spawn | 1.5 ms | 5-10 ms | 3-7x faster |
| Cold Start (container) | ~50 ms | ~200-500 ms | 4-10x faster |
Why This Matters for Sub-Agents
- Lower Memory Per Agent: With 3-5x less memory per agent, you can run more concurrent sub-agents on the same hardware. A 4GB container can run ~80 Rust sub-agents vs ~15-20 Bun sub-agents.
- Faster Spawn Time: Sub-agents spawn in 1.5ms vs 5-10ms. For a swarm of 100 agents, that's 150ms vs 500-1000ms just in spawn overhead.
- No GC Pauses: Rust has no garbage collector. JavaScript/Bun has GC pauses that can add latency spikes of 10-50ms during high-memory operations.
- True Parallelism: Rust's tokio runtime uses OS threads with work-stealing. Bun uses a single-threaded event loop that can bottleneck on CPU-bound decomposition.
- Smaller Attack Surface: Smaller binary = fewer dependencies = smaller CVE surface. Critical for agents with shell access.
Resource Efficiency for Swarm Workloads
┌─────────────────────────────────────────────────────────────────┐
│ Memory Usage Comparison │
│ │
│ Sub-Agents CodeTether (Rust) opencode (Bun) │
│ ────────────────────────────────────────────────────────────── │
│ 1 15 MB 60 MB │
│ 5 35 MB 150 MB │
│ 10 55 MB 280 MB │
│ 25 105 MB 650 MB │
│ 50 180 MB 1200 MB │
│ 100 330 MB 2400 MB │
│ │
│ At 100 sub-agents: Rust uses 7.3x less memory │
└─────────────────────────────────────────────────────────────────┘
Real-World Impact
For a typical swarm task (e.g., "Implement feature X with tests"):
| Scenario | CodeTether | opencode (Bun) |
|---|---|---|
| Task decomposition | 50ms | 150ms |
| Spawn 5 sub-agents | 8ms | 35ms |
| Peak memory | 45 MB | 180 MB |
| Total overhead | ~60ms | ~200ms |
Result: 3.3x faster task initialization, 4x less memory, more capacity for actual AI inference.
Measured: Dogfooding Task (20 User Stories)
Actual resource usage from implementing 20 user stories autonomously:
┌─────────────────────────────────────────────────────────────────┐
│ Dogfooding Task: 20 Stories, Same Model (Kimi K2.5) │
│ │
│ Metric CodeTether opencode (estimated) │
│ ────────────────────────────────────────────────────────────── │
│ Total Time 29.5 min 100 min (3.4x slower) │
│ Wall Clock 1,770 sec 6,000 sec │
│ Iterations 20 20 │
│ Spawn Overhead 20 × 1.5ms = 30ms 20 × 7.5ms = 150ms │
│ Startup Overhead 20 × 13ms = 260ms 20 × 37ms = 740ms │
│ Peak Memory ~55 MB ~280 MB │
│ Tokens Used 500K ~1.5M (subagent init) │
│ Token Cost $3.75 ~$11.25 │
│ │
│ Total Overhead 290ms 890ms (3.1x more) │
│ Memory Efficiency 5.1x less peak RAM │
│ Cost Efficiency ~3x cheaper │
└─────────────────────────────────────────────────────────────────┘
Computation Notes:
- Spawn overhead:
iterations × spawn_time(1.5ms Rust vs 7.5ms Bun avg) - Startup overhead:
iterations × startup_time(13ms Rust vs 37ms Bun avg) - Token difference: opencode has compaction, but subagent spawns rebuild system prompt + context each time (~3x more tokens)
- Memory: Based on 10-agent swarm profile (55 MB vs 280 MB)
- Cost: Same Kimi K2.5 pricing, difference is from subagent initialization overhead
Note: opencode uses LLM-based compaction for long sessions (similar to codetether). The token difference comes from subagent process spawning overhead, not lack of context management.
Benchmark Methodology
Run benchmarks yourself:
./script/benchmark.sh
Benchmarks performed on:
- Ubuntu 24.04, x86_64
- 48 CPU threads, 32GB RAM
- Rust 1.85, Bun 1.x
- HashiCorp Vault for secrets
Configuration
~/.config/codetether-agent/config.toml:
[default]
provider = "anthropic"
model = "claude-sonnet-4-20250514"
[ui]
theme = "marketing" # marketing (default), dark, light, solarized-dark, solarized-light
[session]
auto_save = true
Vault Environment Variables
| Variable | Description |
|---|---|
VAULT_ADDR |
Vault server address |
VAULT_TOKEN |
Authentication token |
VAULT_MOUNT |
KV mount path (default: secret) |
VAULT_SECRETS_PATH |
Provider secrets prefix (default: codetether/providers) |
Crash Reporting (Opt-In)
Disabled by default. Captures panic info on next startup — no source files or API keys included.
codetether config --set telemetry.crash_reporting=true
codetether config --set telemetry.crash_reporting=false
Performance
| Metric | Value |
|---|---|
| Startup | 13ms |
| Memory (idle) | ~15 MB |
| Memory (10-agent swarm) | ~55 MB |
| Binary size | ~12.5 MB |
Written in Rust with tokio — true parallelism, no GC pauses, native performance.
Development
cargo build # Debug build
cargo build --release # Release build
cargo test # Run tests
cargo clippy --all-features # Lint
cargo fmt # Format
./script/benchmark.sh # Run benchmarks
License
MIT
Dependencies
~55–80MB
~1.5M SLoC