Supercon 2023: Receiving Microwave Signals From Deep-Space Probes

Here’s the thing about radio signals. There is wild and interesting stuff just getting beamed around all over the place. Phrased another way, there are beautiful signals everywhere for those with ears to listen. We go about our lives oblivious to most of them, but some dedicate their time to teasing out and capturing these transmissions.

David Prutchi is one such person. He’s a ham radio enthusiast that dabbles in receiving microwave signals sent from probes in deep space. What’s even better is that he came down to Supercon 2023 to tell us all about how it’s done!

Continue reading “Supercon 2023: Receiving Microwave Signals From Deep-Space Probes”

Feast Your Eyes On These AI-Generated Sounds

The radio hackers in the audience will be familiar with a spectrogram display, but for the uninitiated, it’s basically a visual representation of how a range of frequencies are changing with time. Usually such a display is used to identify a clear transmission in a sea of noise, but with the right software, it’s possible to generate a signal that shows up as text or an image when viewed as a spectrogram. Musicians even occasionally use the technique to hide images in their songs. Unfortunately, the audio side of such a trick generally sounds like gibberish to human ears.

Or at least, it used to. Students from the University of Michigan have found a way to use diffusion models to not only create a spectrogram image for a given prompt, but to do it with audio that actually makes sense given what the image shows. So for example if you asked for a spectrogram of a race car, you might get an audio track that sounds like a revving engine.

Continue reading “Feast Your Eyes On These AI-Generated Sounds”

Your Noisy Fingerprints Vulnerable To New Side-Channel Attack

Here’s a warning we never thought we’d have to give: when you’re in an audio or video call on your phone, avoid the temptation to doomscroll or use an app that requires a lot of swiping. Doing so just might save you from getting your identity stolen through the most improbable vector imaginable — by listening to the sound your fingerprints make on the phone’s screen (PDF).

Now, we love a good side-channel attack as much as anyone, and we’ve covered a lot of them over the years. But things like exfiltrating data by blinking hard drive lights or turning GPUs into radio transmitters always seemed a little far-fetched to be the basis of a field-practical exploit. But PrintListener, as [Man Zhou] et al dub their experimental system, seems much more feasible, even if it requires a ton of complex math and some AI help. At the heart of the attack are the nearly imperceptible sounds caused by friction between a user’s fingerprints and the glass screen on the phone. These sounds are recorded along with whatever else is going on at the time, such as a video conference or an online gaming session. The recordings are preprocessed to remove background noise and subjected to spectral analysis, which is sensitive enough to detect the whorls, loops, and arches of the unsuspecting user’s finger.

Once fingerprint patterns have been extracted, they’re used to synthesize a set of five similar fingerprints using MasterPrint, a generative adversarial network (GAN). MasterPrint can generate fingerprints that can unlock phones all by itself, but seeding the process with patterns from a specific user increases the odds of success. The researchers claim they can defeat Automatic Fingerprint Identification System (AFIS) readers between 9% and 30% of the time using PrintListener — not fabulous performance, but still pretty scary given how new this is.