Australia’s Steady March Towards Space

The list of countries to achieve their own successful orbital space launch is a short one, almost as small as the exclusive club of states that possess nuclear weapons. The Soviet Union was first off the rank in 1957, with the United States close behind in 1958, and a gaggle of other aerospace-adept states followed in the 1960s, 1970s, and 1980s. Italy, Iran, North Korea and South Korea have all joined the list since the dawn of the new millennium.

Absent from the list stands Australia. The proud island nation has never stood out as a player in the field of space exploration, despite offering ground station assistance to many missions from other nations over the years. However, the country has continued to inch its way to the top of the atmosphere, establishing its own space agency in 2018. Since then, development has continued apace, and the country’s first orbital launch appears to be just around the corner.

Continue reading “Australia’s Steady March Towards Space”

Pocket Device Tracks Planets And The ISS

Ever been at a party and landed in a heated argument about exactly where the International Space Station (ISS) is passing over at that very instant? Me neither, but it’s probably happened to someone. Assuming you were in that situation, and lacked access to your smartphone or any other form of internet connected device, you might like the pocket-sized Screen Tracker from [mars91].

The concept is simple. It’s a keychain-sized item that combines an ESP32, a Neopixel LED, and a small LCD screen on a compact PCB with a couple of buttons. It’s programmed to communicate over the ESP32’s WiFi connection to query a small custom website running on AWS. That website processes orbit data for the ISS and the positions of the planets, so they can be displayed on the LCD screen above a map of the Earth. We’re not sure what font it uses, but it looks pretty cool—like something out of a 90s sci-fi movie.

It’s a great little curio, and these sort of projects can have great educational value to boot. Creating something like this will teach you about basic orbits, as well as how to work with screens and APIs and getting embedded devices online. It may sound trivial when you’ve done it before, but you can learn all kinds of skills pursuing builds like these.

Continue reading “Pocket Device Tracks Planets And The ISS”

Space Monitor Points Out Celestial Objects

Logically we understand that the other planets in the solar system, as well as humanity’s contributions to the cosmos such as the Hubble Space Telescope and the International Space Station, are zipping around us somewhere — but it can be difficult to conceptualize. Is Jupiter directly above your desk? Is the ISS currently underneath you?

If you’ve ever found yourself wondering such things, you might want to look into making something like Space Monitor. Designed by [Kevin Assen], this little gadget is able to literally point out the locations of objects in space. Currently it’s limited to the ISS and Mars, but adding new objects to track is just a matter of loading in the appropriate orbital data.

In addition to slewing around its 3D printed indicator, the Space Monitor also features a round LCD that displays the object currently being tracked, as well as the weather. Reading through the list of features and capabilities of the ESP32-powered device, we get the impression that [Kevin] is using it as a sort of development platform for various concepts. Features like remote firmware updates and the ability to point smartphones to the device’s configuration page via on-screen QR aren’t necessarily needed on a personal-use device, but its great practice for when you do eventually send one of your creations out into the scary world beyond your workbench.

If you’re interested in something a bit more elaborate, check out this impressive multi-level satellite tracker we covered back in 2018.

Continue reading “Space Monitor Points Out Celestial Objects”

Single-Stage-to-Orbit: The Launch Technology We Wish Was Real

Reaching orbit around Earth is an incredibly difficult feat. It’s a common misconception that getting into orbit just involves getting very high above the ground — the real trick is going sideways very, very fast. Thus far, the most viable way we’ve found to do this is with big, complicated multi-stage rockets that shed bits of themselves as they roar out of the atmosphere.

Single-stage-to-orbit (SSTO) launch vehicles represent a revolutionary step in space travel. They promise a simpler, more cost-effective way to reach orbit compared to traditional multi-stage rockets. Today, we’ll explore the incredible potential offered by SSTO vehicles, and why building a practical example is all but impossible with our current technology.

A Balancing Act

The SSTO concept doesn’t describe any one single spacecraft design. Instead, it refers to any spacecraft that’s capable of achieving orbit using a single, unified propulsion system and without jettisoning any part of the vehicle.