Neat Techniques To Make Interactive Light Sculptures

[Voria Labs] has created a whole bunch of artworks referred to as Lumanoi Interactive Light Sculptures. A new video explains the hardware behind these beautiful glowing pieces, as well as the magic that makes their interactivity work.

The basic architecture of the Lumanoi pieces starts with a custom main control board, based around the ESP-32-S3-WROOM-2. It’s got two I2C buses onboard, as well as an extension port with some GPIO breakouts. The controller also has lots of protection features and can shut down the whole sculpture if needed. The main control board works in turn with a series of daisy-chained “cell” boards attached via a 20-pin ribbon cable. The cable carries 24-volt power, a bunch of grounds, and LED and UART data that can be passed from cell to cell. The cells are responsible for spitting out data to addressable LEDs that light the sculpture, and also have their own microcontrollers and photodiodes, allowing them to do all kinds of neat tricks.

Continue reading “Neat Techniques To Make Interactive Light Sculptures”

One-Way Data Extraction For Logging On Airgapped Systems

If you want to protect a system from being hacked, a great way to do that is with an airgap. This term specifically refers to keeping a system off any sort of network or external connection — there is literally air in between it and other systems. Of course, this can be limiting if you want to monitor or export logs from such systems. [Nelop Systems] decided to whip up a simple workaround for this issue, creating a bespoke one-way data extraction method.

The concept is demonstrated with a pair of Raspberry Pi computers. One is hooked up to critical industrial control systems, and is airgapped to protect it against outside intruders. It’s fitted with an optocoupler, with a UART hooked up to the LED side of the device. The other side of the optocoupler is hooked up to another Raspberry Pi, which is itself on a network and handles monitoring and logging duties.

This method creates a reliable one-way transmission method from the airgapped machine to the outside world, without allowing data to flow in the other direction. Indeed, there is no direct electrical connection at all, since the data is passing through the optocoupler, which provides isolation between the two computers. Security aficionados will argue that the machine is no longer really airgapped because there is some connection between it and the outside world. Regardless, it would be hard to gain any sort of access through the one-way optocoupler connection. If you can conceive of a way that would work, drop it down in the comments.

Optocouplers are very useful things; we’ve seen them used and abused for all sorts of different applications. If you’ve found some nifty use for these simple parts, be sure to drop us a line!

Researching Glow-Powder Left A Few Scars

Content warning: Human alteration and scalpels.
General warning: We are not speaking as doctors. Or lawyers.

If you watch sci-fi, you probably do not have to think hard to conjure a scene in a trendy bar where the patrons have glowing make-up or tattoos. That bit of futuristic flair was possible years ago with UV-reactive tattoo ink, but it has the unfortunate tendency to permanently fade faster than traditional ink. [Miana], a biohacker, wanted something that could last forever and glow on its own. After months of research and testing, she presents a technique with a silica-coated powder and scarification. Reddit post with graphic content.

Continue reading “Researching Glow-Powder Left A Few Scars”

Schematic of quantum measurement basis on whiteboard

Shedding Light On Quantum Measurement With Calcite

Have you ever struggled with the concept of quantum measurement, feeling it’s unnecessarily abstract? You’re not alone. Enter this guide by [Mithuna] from Looking Glass Universe, where she circles back on the concept of  measurement basis in quantum mechanics using a rather simple piece of calcite crystal. We wrote about similar endeavours in reflection on Shanni Prutchi’s talk at the Hackaday SuperConference in 2015. If that memory got a bit dusty in your mind, here’s a quick course to make things click again.

In essence, calcite splits a beam of light into two dots based on polarization. By aligning filters and rotating angles, you can observe how light behaves when forced into ‘choices’. The dots you see are a direct representation of the light’s polarization states. Now this isn’t just a neat trick for photons; it’s a practical window into the probability-driven nature of quantum systems.

Even with just one photon passing through per second, the calcite setup demonstrates how light ‘chooses’ a path, revealing the probabilistic essence of quantum mechanics. Using common materials (laser pointers, polarizing filters, and calcite), anyone can reproduce this experiment at home.

If this sparks curiosity, explore Hackaday’s archives for quantum mechanics. Or just find yourself a good slice of calcite online, steal the laser pointer from your cat’s toy bin, and get going!

Continue reading “Shedding Light On Quantum Measurement With Calcite”