EnderSpark: Convert Your Broken Creality FDM Printer Into An EDM Machine!

EDM (Electrical Discharge Machining) is one of those specialised manufacturing processes that are traditionally expensive and therefore somewhat underrepresented in the DIY and hacker scenes. It’s with great delight that we present EnderSpark, a solution to not one but two problems. The first problem is how to perform CNC operations on hard-to-machine materials such as hardened metals (without breaking the bank). The second problem is what to do with all those broken and forgotten previous-generation Creality Ender 3D printers we know you have stashed away.

To be honest, there isn’t much to a cheap 3D printer, and once you ditch the bed and extruder assembly, you aren’t left with a lot. Anyway, the first job was to add a 51:1 reduction gearbox between the NEMA 17 motors and the drive pullies, giving the much-needed boost to positional accuracy. Next, the X and Y axes were beefed up with a pair of inexpensive MGN12H linear rails to help them cope with the weight of the water bath.

Continue reading “EnderSpark: Convert Your Broken Creality FDM Printer Into An EDM Machine!”

Betta Aims To Bring Wire EDM To The Desktop

Just as practical nuclear fusion has been “only 20 years away” for the last 80 years or so, the promise of electrical discharge machining (EDM) in the home shop seems to always be just around the corner. It’s hard to understand why this is so — EDM is electrically and mechanically more complicated than traditional subtractive manufacturing techniques, so a plug-and-play EDM setup seems always just out of reach.

Or perhaps not, if this 3D printed 4-axis wire EDM machine catches on. It comes to us from [John] at Rack Robotics and is built around the Powercore EDM power supply that we’ve previously featured. Since wire EDM is a process that requires the workpiece to be completely immersed in a dielectric solution, the machine, dubbed “Betta,” is designed to fit inside a 10-gallon aquarium — get it?

A lot of thought went into keeping costs down. for example, rather than use expensive sealed motors, [John] engineered the double CoreXY platform to keep the motors out of the water bath using long drive shafts and sealed bearings. The wire handling mechanism is also quite simple, at least compared to commercial WEDM machines, and uses standard brass EDM wire. The video below shows the machine going to town of everything from aluminum to steel, with fantastic results on thin or thick stock.

While Rack Robotics is going to be offering complete kits, they’re also planning on open-sourcing all the build files. We’re eager to see where this leads, and if people will latch onto EDM with the same gusto they did with 3D printing.

Continue reading “Betta Aims To Bring Wire EDM To The Desktop”

Glow Plug Turned Metal-Capable 3D Printer Hotend

At this point, most readers will be familiar with fused deposition modeling (FDM) 3D printers, and how a plastic filament is pushed through a heater and deposited as liquid through a nozzle. Most of us also know that there are a huge variety of materials that can be FDM printed, but there’s one which perhaps evades us: you can’t load a spool of metal wire into your printer and print in metal, or at least you can’t yet. It’s something [Rotoforge] is working on, with a project to make a hot end that can melt metal. Their starting point is a ceramic diesel engine glow plug, from which they expect 1300 C (2372 F).

The video below the break deals with the process of converting the glow plug, which mostly means stripping off the metal parts which make it a glow plug, and then delicately EDM drilling a hole through its ceramic tip. The video is well worth a watch for the in-depth examination of how they evolved the means to do this.

Sadly they aren’t at the point of printing metal with this thing, but we think the current progress is impressive enough to have a good chance of working. Definitely one to watch.

Previous metal 3D printers we’ve featured have often used a MIG welder.

Continue reading “Glow Plug Turned Metal-Capable 3D Printer Hotend”

Hackaday Prize 2023: Machining Metals With Sparks

Working with metals can present a lot of unique challenges even for those with a fairly well-equipped shop. Metals like aluminum and some types of steel can be cut readily with grinders and saws, but for thick materials or some hardened steels, or when more complex cuts need to be made, mechanical cutting needs to be reconsidered in favor of something electric like electrical discharge machining (EDM) or a plasma cutter. [Norbert] has been on the path of building his own EDM machine and walks us through the process of generating a spark and its effects on some test materials.

Armed with a microscope, a homemade high-voltage generator, drill bit, and a razor blade to act as the workpiece, [Norbert] begins by experimenting with electrical discharges by bringing the energized drill bit close to the razor to determine the distance needed for effective electrical machining. Eventually the voltage is turned up a bit to dive into the effects of higher voltage discharges on the workpiece. He also develops a flushing system using de-ionized water, and then finally a system to automate the discharges and the movement of the tool.

While not a complete system yet, the videos [Norbert] has created so far show a thorough investigation of this metalworking method as well as some of the tricks for getting a setup like this working. EDM can be a challenging method for cutting metal as we’ve seen before with this similar machine which uses wire as the cutting tool, but some other builds we’ve seen with more robust electrodes have shown some more promise.

Continue reading “Hackaday Prize 2023: Machining Metals With Sparks”

Exploring A New Frontier: Desktop EDM Is Coming

To say that desktop 3D printing had a transformative effect on our community would be something of an understatement. In just a decade or so, we went from creaky printers that could barely extrude a proper cube to reliable workhorses that don’t cost much more than a decent cordless drill. It’s gotten to the point that it’s almost surprising to see a project grace these pages that doesn’t include 3D printed components in some capacity.