Smartwatches Could Flatten The Curve Of The Next Pandemic

While we’d like to think that pandemics and lockdowns are behind us, the reality is that a warming climate and the fast-paced travel of modern life are a perfect storm for nasty viruses. One thing that could help us curb the spread of the next pandemic may already be on your wrist.

Researchers at Aalto University, Stanford University, and Texas A&M have found that the illness detection features common to modern smartwatches are advanced enough to help people make the call to stay home or mask up and avoid getting others sick. They note we’re already at 88% accuracy for early detection of COVID-19 and 90% for the flu. Combining data from a number of other studies on smartwatch accuracy, epidemiology, behavior, and biology, the researchers were able to model the possible outcomes of this early detection on the spread of future diseases.

“Even just a 66-75 percent reduction in social contacts soon after detection by smartwatches — keeping in mind that that’s on a par with what you’d normally do if you had cold symptoms — can lead to a 40-65 percent decrease in disease transmission compared to someone isolating from the onset of symptoms,” says Märt Vesinurm.

We’ve got you covered if you’re looking for a smartwatch that looks a bit like a hospital wristband and we’ve also covered one that’s alive. That way, you’ll have a slimy friend when you’re avoiding other humans this time around. And when it’s time to develop a vaccine for whatever new bug is after us, how do MRNA vaccines work anyway?

New Documentary Details Ventilator Development Efforts During COVID

What would it be like to have to design and build a ventilator, suitable for clinical use, in ten days? One that could be built entirely from locally-sourced parts, and kept oxygen waste to a minimum? This is the challenge [John Dingley] and many others faced at the start of COVID-19 pandemic when very little was known for certain.

Back then it was not even known if a vaccine was possible, or how bad it would ultimately get. But it was known that hospitalized patients could not breathe without a ventilator, and based on projections it was possible that the UK as a whole could need as many as 30,000 ventilators within eight weeks. In this worst-case scenario the only option would be to build them locally, and towards that end groups were approached to design and build a ventilator, suitable for clinical use, in just ten days.