Bicycle Adds Reliability With Second Chain

Ignoring the International Cycling Union‘s mostly arbitrary rules for what a bicycle is “supposed” to look like (at least if you want to race), there are actually reasons that the bicycling world has standardized around a few common parts and designs. Especially regarding the drivetrain, almost all bikes use a chain, a freewheel, and a derailleur if there are gears to shift because these parts are cheap, reliable, and easy to repair. But if you’re off grid in a place like Africa, even the most reliable bikes won’t quite cut it. That’s why a group called World Bicycle Relief designed and built the Buffalo bicycle, and the latest adds a second gear with a unique freewheel.

Bicycling YouTuber [Berm Peak] takes us through the design of this bike in his latest video which is also linked below. The original Buffalo bicycle was extremely rugged and durable, with a rear rack designed to carry up to 200 pounds and everything on the bike able to be repaired with little more than an adjustable wrench. The new freewheel adds a second gear to the bike which makes it easier to use it in hilly terrain, but rather than add a complicated and hard-to-repair derailleur the freewheel adds a second chain instead, and the rider can shift between the two gears by pedaling backwards slightly and then re-engaging the pedals.

Of course a few compromises had to be made here. While the new freewheel is nearly as rugged as the old one, it’s slightly more complex. However, they can be changed quite easily with simple tools and are small, affordable, and easy to ship as well. The bike also had to abandon the original coaster brake, but the new rim brakes are a style that are also easy to repair and also meant that the bike got a wheel upgrade as well. Bicycles like these are incredibly important in places where cars are rare or unaffordable, or where large infrastructure needed to support them is unreliable or nonexistent. We’ve seen other examples of bicycles like these being put to work in places like India as well.

Thanks to [Keith] for the tip!

Continue reading “Bicycle Adds Reliability With Second Chain”

An Atomic Pendulum Clock Accurate Enough For CERN

That big grandfather clock in the library might be an impressive piece of mechanical ingenuity, and an even better example of fine cabinetry, but we’d expect that the accuracy of a pendulum timepiece would be limited to a sizable fraction of a minute per day. Unless, of course, you work at CERN and built  “the most accurate pendulum clock on the planet.”

While we’re in no position to judge [Daniel Valuch]’s claim, we’re certainly inclined to believe him, mainly because the 1950s-era Czechoslovakian pendulum clock his project was based on, the Elektročas HH3, was built specifically as a master clock for labs, power plants, and broadcast use. The pendulum of this mid-century beauty is made of the alloy invar, selected for its exceptionally low coefficient of thermal expansion. This ensures the pendulum doesn’t change length with temperature, but it still only brings the clock into the 0.1 second/day range.

Clearly that’s not good enough for a clock at CERN, the European Laboratory for Nuclear Research, where [Daniel] works as an RF engineer. With access to a 10-MHz timebase from a cesium fountain atomic clock — no less a clock than the one that’s used to define the SI second, by the way — [Daniel] looked for ways to sync the clock up to it. Now, we know what you’re thinking — he must have used some kind of PLL to give an electromagnetic “kick” to the bob to trim the pendulum’s period. Good guess on the PLL, but the trimming method is a little cruder — [Daniel] uses a stepper motor attached to the clock’s frame to pay out or retract a length of fine chain into a cardboard dish attached to the pendulum’s rod. The change in mass changes the pendulum’s center of gravity, which changes its effective length, and allows the clock to be tuned a couple of seconds per day.

It seems like [Daniel] is claiming that his chain-corrected clock won’t drift more than a second from the cesium clock for 158 million years. Again, we’ll take his word for it, but it’s a wonderfully ad hoc approach to tuning the clock, and we appreciate its simplicity.