Benchmarking Chinese CPUs

When it comes to PCs, Westerners are most most familiar with x86/x64 processors from Intel and AMD, with Apple Silicon taking up a significant market share, too. However, in China, a relatively new CPU architecture is on the rise. A fabless semiconductor company called Loongson has been producing chips with its LoongArch architecture since 2021. These chips remain rare outside China, but some in the West have been benchmarking them.

[Daniel Lemire] has recently blogged about the performance of the Loongson 3A6000, which debuted in late 2023. The chip was put through a range of simple benchmarking tests, involving float processing and string transcoding operations. [Daniel] compared it to the Intel Xeon Gold 6338 from 2021, noting the Intel chip pretty much performed better across the board. No surprise given its extra clock rate. Meanwhile, the gang over at [Chips and Cheese] ran even more exhaustive tests on the same chip last year. The Loongson was put through typical tasks like  compressing archives and encoding video. The outlet came to the conclusion that the chip was a little weaker than older CPUs like AMD’s Zen 2 line and Intel’s 10th generation Core chips. It’s also limited as a four-core chip compared to modern Intel and AMD lines that often start at 6 cores as a minimum.

If you find yourself interested in Loongson’s product, don’t get too excited. They’re not exactly easy to lay your hands on outside of China, and even the company’s own website is difficult to access from beyond those shores. You might try reaching out to Loongson-oriented online communities if you seek such hardware.

Different CPU architectures have perhaps never been more relevant, particularly as we see the x86 stalwarts doing battle with the rise of desktop and laptop ARM processors. If you’ve found something interesting regarding another obscure kind of CPU, don’t hesitate to let the tipsline know!

The Fastest MS-DOS Gaming PC Ever

After [Andy]’s discovery of an old ISA soundcard at his parents’ place that once was inside the family PC, the onset of a wave of nostalgia for those old-school sounds drove him off the deep end. This is how we get [Andy] building the fastest MS-DOS gaming system ever, with ISA slot and full hardware compatibility. After some digging around, the fastest CPU for an Intel platform that still retained ISA compatibility turned out to be Intel’s 4th generation Core series i7-4790K CPU, along with an H81 chipset-based MiniITX mainboard.

Of note is that ISA slots on these newer boards are basically unheard of outside of niche industrial applications, ergo [Andy] had to tap into the LPC (low pin count) debug port & hunt down the LDRQ signal on the mainboard. LPC is a very compact version of the ISA bus that works great with ISA adapter boards, specially an LPC to ISA adapter like [Andy]’s dISAppointment board as used here.

A PCIe graphics card (NVidia 7600 GT, 256 MB VRAM), ISA soundcard, dodgy PSU and a SATA SSD were added into a period-correct case. After this Windows 98 was installed from a USB stick within a minute using [Eric Voirin]’s Windows 98 Quick Install. This gave access to MS-DOS and enabled the first tests, followed by benchmarking.

Benchmarking MS-DOS on a system this fast turned out to be somewhat messy with puzzling results. The reason for this was that the BIOS default settings under MS-DOS limited the CPU to non-turbo speeds. After this the system turned out to be actually really quite fast at MS-DOS (and Windows 98) games, to nobody’s surprise.

If you’d like to run MS-DOS on relatively modern hardware with a little less effort, you could always pick up a second-hand ThinkPad and rip through some Descent.

Continue reading “The Fastest MS-DOS Gaming PC Ever”

New 2 GB Raspberry Pi 5 Has Smaller Die And 30% Lower Idle Power Usage

Recently Raspberry Pi released the 2GB version of the Raspberry Pi 5 with a new BCM2712 SoC featuring the D0 stepping. As expected, [Jeff Geerling] got his mitts on one of these boards and ran it through its paces, with positive results. Well, mostly positive results — as the Geekbench test took offence to the mere 2 GB of RAM on the board and consistently ran out of memory by the multi-core Photo Filter test, as feared when we originally reported on this new SBC. Although using swap is an option, this would not have made for a very realistic SoC benchmark, ergo [Jeff] resorted to using sysbench instead.

Naturally some overclocking was also performed, to truly push the SoC to its limits. This boosted the clock speed from 2.4 GHz all the way up to 3.5 GHz with the sysbench score increasing from 4155 to 6068. At 3.6 GHz the system wouldn’t boot any more, but [Jeff] figured that delidding the SoC could enable even faster speeds. This procedure also enabled taking a look at the bare D0 stepping die, revealing it to be 32.5% smaller than the previous C1 stepping on presumably the same 16 nm process.

Although 3.5 GHz turns out to be a hard limit for now, the power usage was interesting with idle power being 0.9 watts lower (at 2.4 W) for the D0 stepping and the power and temperatures under load also looked better than the C1 stepping. Even when taking the power savings of half the RAM versus the 4 GB version into account, the D0 stepping seems significantly more optimized. The main question now is when we can expect to see it appear on the 4 and 8 GB versions of the SBC, though the answer there is likely ‘when current C1 stocks run out’.

Galaxy Users Accuse Samsung Of Throttling Performance And Benchmark Rigging

A lot of Samsung Galaxy users think that Samsung has been throttling smartphone performance, so much so that they don’t live up to their published specifications. At issue is the game optimizing service (GOS) which is intended to throttle the CPU while playing games to prevent overheating. S22 owners have recently discovered that it’s not only games that are throttled, but there’s a list of over 10,000 apps which are subject to GOS control, and there is no way to disable it.

What they’re really upset over is the fact that popular benchmarking apps are not subject to GOS throttling — something that’s hard to see as anything but a blatant attempt to game the system. In fact, this past weekend the folks at Geekbench banned four generations of Samsung Galaxy phones (S10, S20, S21, S22) for benchmark manipulation.

Admittedly, thermal management is critical on today’s incredibly powerful handheld devices, and the concept of throttling is an accepted solution in the industry. But people are upset at the opaqueness and lack of control of GOS, not to mention cherry picking apps in order to excel at benchmarks. Furthermore Samsung has removed their vapor chamber cooling system from recent models. This makes GOS even more important and looks like a cost-savings measure that may have backfired. Currently there’s a petition with the government claiming false advertising, and users are actively pursuing a lawsuit against Samsung.

A Close Look At USB Power

It’s not a stretch to say that most devices these days have settled on USB as their power source of choice. While we imagine you’ll still be running into the occasional wall wart and barrel jack for the foreseeable future, at least we’re getting closer to a unified charging and power delivery technology. But are all USB chargers and cables created equal?

The answer, of course, is no. But the anecdotal information we all have about dud USB gear is just that, which is why [Igor Brkić] wanted to take a more scientific approach. Inspired by the lighting bolt icon the Raspberry Pi will flash on screen when the voltage drops too low, he set out to make a proper examination of various USB chargers and cables to see which ones aren’t carrying their weight.