module RubyVM::MJIT class InsnCompiler # @param ocb [CodeBlock] # @param exit_compiler [RubyVM::MJIT::ExitCompiler] def initialize(cb, ocb, exit_compiler) @ocb = ocb @exit_compiler = exit_compiler @full_cfunc_return = Assembler.new.then do |asm| @exit_compiler.compile_full_cfunc_return(asm) @ocb.write(asm) end # freeze # workaround a binding.irb issue. TODO: resurrect this end # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] # @param insn `RubyVM::MJIT::Instruction` def compile(jit, ctx, asm, insn) asm.incr_counter(:mjit_insns_count) asm.comment("Insn: #{insn.name}") # 56/101 case insn.name when :nop then nop(jit, ctx, asm) when :getlocal then getlocal(jit, ctx, asm) when :setlocal then setlocal(jit, ctx, asm) # getblockparam # setblockparam # getblockparamproxy # getspecial # setspecial when :getinstancevariable then getinstancevariable(jit, ctx, asm) when :setinstancevariable then setinstancevariable(jit, ctx, asm) # getclassvariable # setclassvariable when :opt_getconstant_path then opt_getconstant_path(jit, ctx, asm) # getconstant # setconstant # getglobal # setglobal when :putnil then putnil(jit, ctx, asm) when :putself then putself(jit, ctx, asm) when :putobject then putobject(jit, ctx, asm) # putspecialobject when :putstring then putstring(jit, ctx, asm) # concatstrings # anytostring # toregexp # intern when :newarray then newarray(jit, ctx, asm) # newarraykwsplat when :duparray then duparray(jit, ctx, asm) # duphash when :expandarray then expandarray(jit, ctx, asm) # concatarray when :splatarray then splatarray(jit, ctx, asm) # newhash # newrange when :pop then pop(jit, ctx, asm) when :dup then dup(jit, ctx, asm) when :dupn then dupn(jit, ctx, asm) # swap # opt_reverse when :topn then topn(jit, ctx, asm) when :setn then setn(jit, ctx, asm) when :adjuststack then adjuststack(jit, ctx, asm) # defined # checkmatch # checkkeyword # checktype # defineclass # definemethod # definesmethod # send when :opt_send_without_block then opt_send_without_block(jit, ctx, asm) # objtostring # opt_str_freeze when :opt_nil_p then opt_nil_p(jit, ctx, asm) # opt_str_uminus # opt_newarray_max # opt_newarray_min # invokesuper # invokeblock when :leave then leave(jit, ctx, asm) # throw when :jump then jump(jit, ctx, asm) when :branchif then branchif(jit, ctx, asm) when :branchunless then branchunless(jit, ctx, asm) # branchnil # once # opt_case_dispatch when :opt_plus then opt_plus(jit, ctx, asm) when :opt_minus then opt_minus(jit, ctx, asm) when :opt_mult then opt_mult(jit, ctx, asm) when :opt_div then opt_div(jit, ctx, asm) when :opt_mod then opt_mod(jit, ctx, asm) when :opt_eq then opt_eq(jit, ctx, asm) when :opt_neq then opt_neq(jit, ctx, asm) when :opt_lt then opt_lt(jit, ctx, asm) when :opt_le then opt_le(jit, ctx, asm) when :opt_gt then opt_gt(jit, ctx, asm) when :opt_ge then opt_ge(jit, ctx, asm) when :opt_ltlt then opt_ltlt(jit, ctx, asm) when :opt_and then opt_and(jit, ctx, asm) when :opt_or then opt_or(jit, ctx, asm) when :opt_aref then opt_aref(jit, ctx, asm) when :opt_aset then opt_aset(jit, ctx, asm) # opt_aset_with # opt_aref_with when :opt_length then opt_length(jit, ctx, asm) when :opt_size then opt_size(jit, ctx, asm) when :opt_empty_p then opt_empty_p(jit, ctx, asm) when :opt_succ then opt_succ(jit, ctx, asm) when :opt_not then opt_not(jit, ctx, asm) when :opt_regexpmatch2 then opt_regexpmatch2(jit, ctx, asm) # invokebuiltin when :opt_invokebuiltin_delegate then opt_invokebuiltin_delegate(jit, ctx, asm) when :opt_invokebuiltin_delegate_leave then opt_invokebuiltin_delegate_leave(jit, ctx, asm) when :getlocal_WC_0 then getlocal_WC_0(jit, ctx, asm) when :getlocal_WC_1 then getlocal_WC_1(jit, ctx, asm) when :setlocal_WC_0 then setlocal_WC_0(jit, ctx, asm) when :setlocal_WC_1 then setlocal_WC_1(jit, ctx, asm) when :putobject_INT2FIX_0_ then putobject_INT2FIX_0_(jit, ctx, asm) when :putobject_INT2FIX_1_ then putobject_INT2FIX_1_(jit, ctx, asm) else CantCompile end end private # # Insns # # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def nop(jit, ctx, asm) # Do nothing KeepCompiling end # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def getlocal(jit, ctx, asm) idx = jit.operand(0) level = jit.operand(1) jit_getlocal_generic(jit, ctx, asm, idx:, level:) end # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def setlocal(jit, ctx, asm) idx = jit.operand(0) level = jit.operand(1) jit_setlocal_generic(jit, ctx, asm, idx:, level:) end # getblockparam # setblockparam # getblockparamproxy # getspecial # setspecial # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def getinstancevariable(jit, ctx, asm) # Specialize on a compile-time receiver, and split a block for chain guards unless jit.at_current_insn? defer_compilation(jit, ctx, asm) return EndBlock end id = jit.operand(0) comptime_obj = jit.peek_at_self jit_getivar(jit, ctx, asm, comptime_obj, id) end # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def setinstancevariable(jit, ctx, asm) id = jit.operand(0) ivc = jit.operand(1) # rb_vm_setinstancevariable could raise exceptions jit_prepare_routine_call(jit, ctx, asm) val_opnd = ctx.stack_pop asm.comment('rb_vm_setinstancevariable') asm.mov(:rdi, jit.iseq.to_i) asm.mov(:rsi, [CFP, C.rb_control_frame_t.offsetof(:self)]) asm.mov(:rdx, id) asm.mov(:rcx, val_opnd) asm.mov(:r8, ivc) asm.call(C.rb_vm_setinstancevariable) KeepCompiling end # getclassvariable # setclassvariable # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def opt_getconstant_path(jit, ctx, asm) # Cut the block for invalidation unless jit.at_current_insn? defer_compilation(jit, ctx, asm) return EndBlock end ic = C.iseq_inline_constant_cache.new(jit.operand(0)) idlist = ic.segments # Make sure there is an exit for this block as the interpreter might want # to invalidate this block from rb_mjit_constant_ic_update(). # For now, we always take an entry exit even if it was a side exit. Invariants.ensure_block_entry_exit(jit, cause: 'opt_getconstant_path') # See vm_ic_hit_p(). The same conditions are checked in yjit_constant_ic_update(). ice = ic.entry if ice.nil? # In this case, leave a block that unconditionally side exits # for the interpreter to invalidate. asm.incr_counter(:optgetconst_not_cached) return CantCompile end if ice.ic_cref # with cref # Not supported yet asm.incr_counter(:optgetconst_cref) return CantCompile else # without cref # TODO: implement this # Optimize for single ractor mode. # if !assume_single_ractor_mode(jit, ocb) # return CantCompile # end # Invalidate output code on any constant writes associated with # constants referenced within the current block. #assume_stable_constant_names(jit, ocb, idlist); putobject(jit, ctx, asm, val: ice.value) end jump_to_next_insn(jit, ctx, asm) EndBlock end # getconstant # setconstant # getglobal # setglobal # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def putnil(jit, ctx, asm) putobject(jit, ctx, asm, val: Qnil) end # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def putself(jit, ctx, asm) stack_top = ctx.stack_push asm.mov(:rax, [CFP, C.rb_control_frame_t.offsetof(:self)]) asm.mov(stack_top, :rax) KeepCompiling end # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def putobject(jit, ctx, asm, val: jit.operand(0)) # Push it to the stack stack_top = ctx.stack_push if asm.imm32?(val) asm.mov(stack_top, val) else # 64-bit immediates can't be directly written to memory asm.mov(:rax, val) asm.mov(stack_top, :rax) end # TODO: GC offsets? KeepCompiling end # putspecialobject # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def putstring(jit, ctx, asm) put_val = jit.operand(0, ruby: true) # Save the PC and SP because the callee will allocate jit_prepare_routine_call(jit, ctx, asm) asm.mov(C_ARGS[0], EC) asm.mov(C_ARGS[1], to_value(put_val)) asm.call(C.rb_ec_str_resurrect) stack_top = ctx.stack_push asm.mov(stack_top, C_RET) KeepCompiling end # concatstrings # anytostring # toregexp # intern # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def newarray(jit, ctx, asm) n = jit.operand(0) # Save the PC and SP because we are allocating jit_prepare_routine_call(jit, ctx, asm) # If n is 0, then elts is never going to be read, so we can just pass null if n == 0 values_ptr = 0 else asm.comment('load pointer to array elts') offset_magnitude = C.VALUE.size * n values_opnd = ctx.sp_opnd(-(offset_magnitude)) asm.lea(:rax, values_opnd) values_ptr = :rax end # call rb_ec_ary_new_from_values(struct rb_execution_context_struct *ec, long n, const VALUE *elts); asm.mov(C_ARGS[0], EC) asm.mov(C_ARGS[1], n) asm.mov(C_ARGS[2], values_ptr) asm.call(C.rb_ec_ary_new_from_values) ctx.stack_pop(n) stack_ret = ctx.stack_push asm.mov(stack_ret, C_RET) KeepCompiling end # newarraykwsplat # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def duparray(jit, ctx, asm) ary = jit.operand(0) # Save the PC and SP because we are allocating jit_prepare_routine_call(jit, ctx, asm) # call rb_ary_resurrect(VALUE ary); asm.comment('call rb_ary_resurrect') asm.mov(C_ARGS[0], ary) asm.call(C.rb_ary_resurrect) stack_ret = ctx.stack_push asm.mov(stack_ret, C_RET) KeepCompiling end # duphash # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def expandarray(jit, ctx, asm) # Both arguments are rb_num_t which is unsigned num = jit.operand(0) flag = jit.operand(1) # If this instruction has the splat flag, then bail out. if flag & 0x01 != 0 asm.incr_counter(:expandarray_splat) return CantCompile end # If this instruction has the postarg flag, then bail out. if flag & 0x02 != 0 asm.incr_counter(:expandarray_postarg) return CantCompile end side_exit = side_exit(jit, ctx) array_opnd = ctx.stack_pop(1) # num is the number of requested values. If there aren't enough in the # array then we're going to push on nils. # TODO: implement this # Move the array from the stack and check that it's an array. asm.mov(:rax, array_opnd) guard_object_is_heap(asm, :rax, counted_exit(side_exit, :expandarray_not_array)) guard_object_is_array(asm, :rax, :rcx, counted_exit(side_exit, :expandarray_not_array)) # If we don't actually want any values, then just return. if num == 0 return KeepCompiling end jit_array_len(asm, :rax, :rcx) # Only handle the case where the number of values in the array is greater # than or equal to the number of values requested. asm.cmp(:rcx, num) asm.jl(counted_exit(side_exit, :expandarray_rhs_too_small)) # Conditionally load the address of the heap array into REG1. # (struct RArray *)(obj)->as.heap.ptr #asm.mov(:rax, array_opnd) asm.mov(:rcx, [:rax, C.RBasic.offsetof(:flags)]) asm.test(:rcx, C.RARRAY_EMBED_FLAG); asm.mov(:rcx, [:rax, C.RArray.offsetof(:as, :heap, :ptr)]) # Load the address of the embedded array into REG1. # (struct RArray *)(obj)->as.ary asm.lea(:rax, [:rax, C.RArray.offsetof(:as, :ary)]) asm.cmovnz(:rcx, :rax) # Loop backward through the array and push each element onto the stack. (num - 1).downto(0).each do |i| top = ctx.stack_push asm.mov(:rax, [:rcx, i * C.VALUE.size]) asm.mov(top, :rax) end KeepCompiling end # concatarray # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def splatarray(jit, ctx, asm) flag = jit.operand(0) # Save the PC and SP because the callee may allocate # Note that this modifies REG_SP, which is why we do it first jit_prepare_routine_call(jit, ctx, asm) # Get the operands from the stack ary_opnd = ctx.stack_pop(1) # Call rb_vm_splat_array(flag, ary) asm.mov(C_ARGS[0], flag) asm.mov(C_ARGS[1], ary_opnd) asm.call(C.rb_vm_splat_array) stack_ret = ctx.stack_push asm.mov(stack_ret, C_RET) KeepCompiling end # newhash # newrange # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def pop(jit, ctx, asm) ctx.stack_pop KeepCompiling end # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def dup(jit, ctx, asm) val1 = ctx.stack_opnd(0) val2 = ctx.stack_push asm.mov(:rax, val1) asm.mov(val2, :rax) KeepCompiling end # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def dupn(jit, ctx, asm) n = jit.operand(0) # In practice, seems to be only used for n==2 if n != 2 return CantCompile end opnd1 = ctx.stack_opnd(1) opnd0 = ctx.stack_opnd(0) dst1 = ctx.stack_push asm.mov(:rax, opnd1) asm.mov(dst1, :rax) dst0 = ctx.stack_push asm.mov(:rax, opnd0) asm.mov(dst0, :rax) KeepCompiling end # swap # opt_reverse # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def topn(jit, ctx, asm) n = jit.operand(0) top_n_val = ctx.stack_opnd(n) loc0 = ctx.stack_push asm.mov(:rax, top_n_val) asm.mov(loc0, :rax) KeepCompiling end # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def setn(jit, ctx, asm) n = jit.operand(0) top_val = ctx.stack_pop(0) dst_opnd = ctx.stack_opnd(n) asm.mov(:rax, top_val) asm.mov(dst_opnd, :rax) KeepCompiling end # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def adjuststack(jit, ctx, asm) n = jit.operand(0) ctx.stack_pop(n) KeepCompiling end # defined # checkmatch # checkkeyword # checktype # defineclass # definemethod # definesmethod # send # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] # @param cd `RubyVM::MJIT::CPointer::Struct_rb_call_data` def opt_send_without_block(jit, ctx, asm) cd = C.rb_call_data.new(jit.operand(0)) jit_call_general(jit, ctx, asm, cd) end # objtostring # opt_str_freeze # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def opt_nil_p(jit, ctx, asm) opt_send_without_block(jit, ctx, asm) end # opt_str_uminus # opt_newarray_max # opt_newarray_min # invokesuper # invokeblock # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def leave(jit, ctx, asm) assert_equal(ctx.stack_size, 1) jit_check_ints(jit, ctx, asm) asm.comment('pop stack frame') asm.lea(:rax, [CFP, C.rb_control_frame_t.size]) asm.mov(CFP, :rax) asm.mov([EC, C.rb_execution_context_t.offsetof(:cfp)], :rax) # Return a value (for compile_leave_exit) ret_opnd = ctx.stack_pop asm.mov(:rax, ret_opnd) # Set caller's SP and push a value to its stack (for JIT) asm.mov(SP, [CFP, C.rb_control_frame_t.offsetof(:sp)]) # Note: SP is in the position after popping a receiver and arguments asm.mov([SP], :rax) # Jump to cfp->jit_return asm.jmp([CFP, -C.rb_control_frame_t.size + C.rb_control_frame_t.offsetof(:jit_return)]) EndBlock end # throw # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def jump(jit, ctx, asm) # Check for interrupts, but only on backward branches that may create loops jump_offset = jit.operand(0, signed: true) if jump_offset < 0 jit_check_ints(jit, ctx, asm) end pc = jit.pc + C.VALUE.size * (jit.insn.len + jump_offset) stub_next_block(jit.iseq, pc, ctx, asm) EndBlock end # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def branchif(jit, ctx, asm) # Check for interrupts, but only on backward branches that may create loops jump_offset = jit.operand(0, signed: true) if jump_offset < 0 jit_check_ints(jit, ctx, asm) end # TODO: skip check for known truthy # This `test` sets ZF only for Qnil and Qfalse, which let jz jump. val = ctx.stack_pop asm.test(val, ~Qnil) # Set stubs branch_stub = BranchStub.new( iseq: jit.iseq, shape: Default, target0: BranchTarget.new(ctx:, pc: jit.pc + C.VALUE.size * (jit.insn.len + jump_offset)), # branch target target1: BranchTarget.new(ctx:, pc: jit.pc + C.VALUE.size * jit.insn.len), # fallthrough ) branch_stub.target0.address = Assembler.new.then do |ocb_asm| @exit_compiler.compile_branch_stub(ctx, ocb_asm, branch_stub, true) @ocb.write(ocb_asm) end branch_stub.target1.address = Assembler.new.then do |ocb_asm| @exit_compiler.compile_branch_stub(ctx, ocb_asm, branch_stub, false) @ocb.write(ocb_asm) end # Jump to target0 on jnz branch_stub.compile = proc do |branch_asm| branch_asm.comment("branchif #{branch_stub.shape}") branch_asm.stub(branch_stub) do case branch_stub.shape in Default branch_asm.jnz(branch_stub.target0.address) branch_asm.jmp(branch_stub.target1.address) in Next0 branch_asm.jz(branch_stub.target1.address) in Next1 branch_asm.jnz(branch_stub.target0.address) end end end branch_stub.compile.call(asm) EndBlock end # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def branchunless(jit, ctx, asm) # Check for interrupts, but only on backward branches that may create loops jump_offset = jit.operand(0, signed: true) if jump_offset < 0 jit_check_ints(jit, ctx, asm) end # TODO: skip check for known truthy # This `test` sets ZF only for Qnil and Qfalse, which let jz jump. val = ctx.stack_pop asm.test(val, ~Qnil) # Set stubs branch_stub = BranchStub.new( iseq: jit.iseq, shape: Default, target0: BranchTarget.new(ctx:, pc: jit.pc + C.VALUE.size * (jit.insn.len + jump_offset)), # branch target target1: BranchTarget.new(ctx:, pc: jit.pc + C.VALUE.size * jit.insn.len), # fallthrough ) branch_stub.target0.address = Assembler.new.then do |ocb_asm| @exit_compiler.compile_branch_stub(ctx, ocb_asm, branch_stub, true) @ocb.write(ocb_asm) end branch_stub.target1.address = Assembler.new.then do |ocb_asm| @exit_compiler.compile_branch_stub(ctx, ocb_asm, branch_stub, false) @ocb.write(ocb_asm) end # Jump to target0 on jz branch_stub.compile = proc do |branch_asm| branch_asm.comment("branchunless #{branch_stub.shape}") branch_asm.stub(branch_stub) do case branch_stub.shape in Default branch_asm.jz(branch_stub.target0.address) branch_asm.jmp(branch_stub.target1.address) in Next0 branch_asm.jnz(branch_stub.target1.address) in Next1 branch_asm.jz(branch_stub.target0.address) end end end branch_stub.compile.call(asm) EndBlock end # branchnil # once # opt_case_dispatch # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def opt_plus(jit, ctx, asm) unless jit.at_current_insn? defer_compilation(jit, ctx, asm) return EndBlock end comptime_recv = jit.peek_at_stack(1) comptime_obj = jit.peek_at_stack(0) if fixnum?(comptime_recv) && fixnum?(comptime_obj) # Generate a side exit before popping operands side_exit = side_exit(jit, ctx) unless Invariants.assume_bop_not_redefined(jit, C.INTEGER_REDEFINED_OP_FLAG, C.BOP_PLUS) return CantCompile end obj_opnd = ctx.stack_pop recv_opnd = ctx.stack_pop asm.comment('guard recv is fixnum') # TODO: skip this with type information asm.test(recv_opnd, C.RUBY_FIXNUM_FLAG) asm.jz(side_exit) asm.comment('guard obj is fixnum') # TODO: skip this with type information asm.test(obj_opnd, C.RUBY_FIXNUM_FLAG) asm.jz(side_exit) asm.mov(:rax, recv_opnd) asm.sub(:rax, 1) # untag asm.mov(:rcx, obj_opnd) asm.add(:rax, :rcx) asm.jo(side_exit) dst_opnd = ctx.stack_push asm.mov(dst_opnd, :rax) KeepCompiling else opt_send_without_block(jit, ctx, asm) end end # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def opt_minus(jit, ctx, asm) unless jit.at_current_insn? defer_compilation(jit, ctx, asm) return EndBlock end comptime_recv = jit.peek_at_stack(1) comptime_obj = jit.peek_at_stack(0) if fixnum?(comptime_recv) && fixnum?(comptime_obj) # Generate a side exit before popping operands side_exit = side_exit(jit, ctx) unless Invariants.assume_bop_not_redefined(jit, C.INTEGER_REDEFINED_OP_FLAG, C.BOP_MINUS) return CantCompile end obj_opnd = ctx.stack_pop recv_opnd = ctx.stack_pop asm.comment('guard recv is fixnum') # TODO: skip this with type information asm.test(recv_opnd, C.RUBY_FIXNUM_FLAG) asm.jz(side_exit) asm.comment('guard obj is fixnum') # TODO: skip this with type information asm.test(obj_opnd, C.RUBY_FIXNUM_FLAG) asm.jz(side_exit) asm.mov(:rax, recv_opnd) asm.mov(:rcx, obj_opnd) asm.sub(:rax, :rcx) asm.jo(side_exit) asm.add(:rax, 1) # re-tag dst_opnd = ctx.stack_push asm.mov(dst_opnd, :rax) KeepCompiling else opt_send_without_block(jit, ctx, asm) end end # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def opt_mult(jit, ctx, asm) opt_send_without_block(jit, ctx, asm) end # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def opt_div(jit, ctx, asm) opt_send_without_block(jit, ctx, asm) end # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def opt_mod(jit, ctx, asm) unless jit.at_current_insn? defer_compilation(jit, ctx, asm) return EndBlock end if two_fixnums_on_stack?(jit) # Create a side-exit to fall back to the interpreter # Note: we generate the side-exit before popping operands from the stack side_exit = side_exit(jit, ctx) unless Invariants.assume_bop_not_redefined(jit, C.INTEGER_REDEFINED_OP_FLAG, C.BOP_MOD) return CantCompile end # Check that both operands are fixnums guard_two_fixnums(jit, ctx, asm, side_exit) # Get the operands and destination from the stack arg1 = ctx.stack_pop(1) arg0 = ctx.stack_pop(1) # Check for arg0 % 0 asm.cmp(arg1, 0) asm.je(side_exit) # Call rb_fix_mod_fix(VALUE recv, VALUE obj) asm.mov(C_ARGS[0], arg0) asm.mov(C_ARGS[1], arg1) asm.call(C.rb_fix_mod_fix) # Push the return value onto the stack stack_ret = ctx.stack_push asm.mov(stack_ret, C_RET) KeepCompiling else opt_send_without_block(jit, ctx, asm) end end # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def opt_eq(jit, ctx, asm) unless jit.at_current_insn? defer_compilation(jit, ctx, asm) return EndBlock end if jit_equality_specialized(jit, ctx, asm) jump_to_next_insn(jit, ctx, asm) EndBlock else opt_send_without_block(jit, ctx, asm) end end # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def opt_neq(jit, ctx, asm) # opt_neq is passed two rb_call_data as arguments: # first for ==, second for != neq_cd = C.rb_call_data.new(jit.operand(1)) jit_call_general(jit, ctx, asm, neq_cd) end # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def opt_lt(jit, ctx, asm) jit_fixnum_cmp(jit, ctx, asm, opcode: :cmovl, bop: C.BOP_LT) end # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def opt_le(jit, ctx, asm) jit_fixnum_cmp(jit, ctx, asm, opcode: :cmovle, bop: C.BOP_LE) end # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def opt_gt(jit, ctx, asm) jit_fixnum_cmp(jit, ctx, asm, opcode: :cmovg, bop: C.BOP_GT) end # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def opt_ge(jit, ctx, asm) jit_fixnum_cmp(jit, ctx, asm, opcode: :cmovge, bop: C.BOP_GE) end # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def opt_ltlt(jit, ctx, asm) opt_send_without_block(jit, ctx, asm) end # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def opt_and(jit, ctx, asm) unless jit.at_current_insn? defer_compilation(jit, ctx, asm) return EndBlock end if two_fixnums_on_stack?(jit) # Create a side-exit to fall back to the interpreter # Note: we generate the side-exit before popping operands from the stack side_exit = side_exit(jit, ctx) unless Invariants.assume_bop_not_redefined(jit, C.INTEGER_REDEFINED_OP_FLAG, C.BOP_AND) return CantCompile end # Check that both operands are fixnums guard_two_fixnums(jit, ctx, asm, side_exit) # Get the operands and destination from the stack arg1 = ctx.stack_pop(1) arg0 = ctx.stack_pop(1) asm.comment('bitwise and') asm.mov(:rax, arg0) asm.and(:rax, arg1) # Push the return value onto the stack dst = ctx.stack_push asm.mov(dst, :rax) KeepCompiling else opt_send_without_block(jit, ctx, asm) end end # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def opt_or(jit, ctx, asm) unless jit.at_current_insn? defer_compilation(jit, ctx, asm) return EndBlock end if two_fixnums_on_stack?(jit) # Create a side-exit to fall back to the interpreter # Note: we generate the side-exit before popping operands from the stack side_exit = side_exit(jit, ctx) unless Invariants.assume_bop_not_redefined(jit, C.INTEGER_REDEFINED_OP_FLAG, C.BOP_OR) return CantCompile end # Check that both operands are fixnums guard_two_fixnums(jit, ctx, asm, side_exit) # Get the operands and destination from the stack asm.comment('bitwise or') arg1 = ctx.stack_pop(1) arg0 = ctx.stack_pop(1) # Do the bitwise or arg0 | arg1 asm.mov(:rax, arg0) asm.or(:rax, arg1) # Push the return value onto the stack dst = ctx.stack_push asm.mov(dst, :rax) KeepCompiling else opt_send_without_block(jit, ctx, asm) end end # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def opt_aref(jit, ctx, asm) cd = C.rb_call_data.new(jit.operand(0)) argc = C.vm_ci_argc(cd.ci) if argc != 1 asm.incr_counter(:optaref_argc_not_one) return CantCompile end unless jit.at_current_insn? defer_compilation(jit, ctx, asm) return EndBlock end comptime_recv = jit.peek_at_stack(1) comptime_obj = jit.peek_at_stack(0) side_exit = side_exit(jit, ctx) if comptime_recv.class == Array && fixnum?(comptime_obj) unless Invariants.assume_bop_not_redefined(jit, C.ARRAY_REDEFINED_OP_FLAG, C.BOP_AREF) return CantCompile end idx_opnd = ctx.stack_opnd(0) recv_opnd = ctx.stack_opnd(1) not_array_exit = counted_exit(side_exit, :optaref_recv_not_array) if jit_guard_known_klass(jit, ctx, asm, comptime_recv.class, recv_opnd, comptime_recv, not_array_exit) == CantCompile return CantCompile end # Bail if idx is not a FIXNUM asm.mov(:rax, idx_opnd) asm.test(:rax, C.RUBY_FIXNUM_FLAG) asm.jz(counted_exit(side_exit, :optaref_arg_not_fixnum)) # Call VALUE rb_ary_entry_internal(VALUE ary, long offset). # It never raises or allocates, so we don't need to write to cfp->pc. asm.sar(:rax, 1) # Convert fixnum to int asm.mov(C_ARGS[0], recv_opnd) asm.mov(C_ARGS[1], :rax) asm.call(C.rb_ary_entry_internal) # Pop the argument and the receiver ctx.stack_pop(2) # Push the return value onto the stack stack_ret = ctx.stack_push asm.mov(stack_ret, C_RET) # Let guard chains share the same successor jump_to_next_insn(jit, ctx, asm) EndBlock elsif comptime_recv.class == Hash unless Invariants.assume_bop_not_redefined(jit, C.HASH_REDEFINED_OP_FLAG, C.BOP_AREF) return CantCompile end recv_opnd = ctx.stack_opnd(1) # Guard that the receiver is a Hash not_hash_exit = counted_exit(side_exit, :optaref_recv_not_hash) if jit_guard_known_klass(jit, ctx, asm, comptime_recv.class, recv_opnd, comptime_recv, not_hash_exit) == CantCompile return CantCompile end # Prepare to call rb_hash_aref(). It might call #hash on the key. jit_prepare_routine_call(jit, ctx, asm) asm.comment('call rb_hash_aref') key_opnd = ctx.stack_opnd(0) recv_opnd = ctx.stack_opnd(1) asm.mov(:rdi, recv_opnd) asm.mov(:rsi, key_opnd) asm.call(C.rb_hash_aref) # Pop the key and the receiver ctx.stack_pop(2) stack_ret = ctx.stack_push asm.mov(stack_ret, C_RET) # Let guard chains share the same successor jump_to_next_insn(jit, ctx, asm) EndBlock else opt_send_without_block(jit, ctx, asm) end end # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def opt_aset(jit, ctx, asm) # Defer compilation so we can specialize on a runtime `self` unless jit.at_current_insn? defer_compilation(jit, ctx, asm) return EndBlock end comptime_recv = jit.peek_at_stack(2) comptime_key = jit.peek_at_stack(1) # Get the operands from the stack recv = ctx.stack_opnd(2) key = ctx.stack_opnd(1) _val = ctx.stack_opnd(0) if comptime_recv.class == Array && fixnum?(comptime_key) side_exit = side_exit(jit, ctx) # Guard receiver is an Array if jit_guard_known_klass(jit, ctx, asm, comptime_recv.class, recv, comptime_recv, side_exit) == CantCompile return CantCompile end # Guard key is a fixnum if jit_guard_known_klass(jit, ctx, asm, comptime_key.class, key, comptime_key, side_exit) == CantCompile return CantCompile end # We might allocate or raise jit_prepare_routine_call(jit, ctx, asm) asm.comment('call rb_ary_store') recv = ctx.stack_opnd(2) key = ctx.stack_opnd(1) val = ctx.stack_opnd(0) asm.mov(:rax, key) asm.sar(:rax, 1) # FIX2LONG(key) asm.mov(C_ARGS[0], recv) asm.mov(C_ARGS[1], :rax) asm.mov(C_ARGS[2], val) asm.call(C.rb_ary_store) # rb_ary_store returns void # stored value should still be on stack val = ctx.stack_opnd(0) # Push the return value onto the stack ctx.stack_pop(3) stack_ret = ctx.stack_push asm.mov(:rax, val) asm.mov(stack_ret, :rax) jump_to_next_insn(jit, ctx, asm) EndBlock elsif comptime_recv.class == Hash side_exit = side_exit(jit, ctx) # Guard receiver is a Hash if jit_guard_known_klass(jit, ctx, asm, comptime_recv.class, recv, comptime_recv, side_exit) == CantCompile return CantCompile end # We might allocate or raise jit_prepare_routine_call(jit, ctx, asm) # Call rb_hash_aset recv = ctx.stack_opnd(2) key = ctx.stack_opnd(1) val = ctx.stack_opnd(0) asm.mov(C_ARGS[0], recv) asm.mov(C_ARGS[1], key) asm.mov(C_ARGS[2], val) asm.call(C.rb_hash_aset) # Push the return value onto the stack ctx.stack_pop(3) stack_ret = ctx.stack_push asm.mov(stack_ret, C_RET) jump_to_next_insn(jit, ctx, asm) EndBlock else opt_send_without_block(jit, ctx, asm) end end # opt_aset_with # opt_aref_with # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def opt_length(jit, ctx, asm) opt_send_without_block(jit, ctx, asm) end # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def opt_size(jit, ctx, asm) opt_send_without_block(jit, ctx, asm) end # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def opt_empty_p(jit, ctx, asm) opt_send_without_block(jit, ctx, asm) end # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def opt_succ(jit, ctx, asm) opt_send_without_block(jit, ctx, asm) end # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def opt_not(jit, ctx, asm) opt_send_without_block(jit, ctx, asm) end # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def opt_regexpmatch2(jit, ctx, asm) opt_send_without_block(jit, ctx, asm) end # invokebuiltin def opt_invokebuiltin_delegate(jit, ctx, asm) bf = C.rb_builtin_function.new(jit.operand(0)) bf_argc = bf.argc start_index = jit.operand(1) # ec, self, and arguments if bf_argc + 2 > C_ARGS.size return CantCompile end # If the calls don't allocate, do they need up to date PC, SP? jit_prepare_routine_call(jit, ctx, asm) # Call the builtin func (ec, recv, arg1, arg2, ...) asm.comment('call builtin func') asm.mov(C_ARGS[0], EC) asm.mov(C_ARGS[1], [CFP, C.rb_control_frame_t.offsetof(:self)]) # Copy arguments from locals if bf_argc > 0 # Load environment pointer EP from CFP asm.mov(:rax, [CFP, C.rb_control_frame_t.offsetof(:ep)]) bf_argc.times do |i| table_size = jit.iseq.body.local_table_size offs = -table_size - C.VM_ENV_DATA_SIZE + 1 + start_index + i asm.mov(C_ARGS[2 + i], [:rax, offs * C.VALUE.size]) end end asm.call(bf.func_ptr) # Push the return value stack_ret = ctx.stack_push asm.mov(stack_ret, C_RET) KeepCompiling end # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def opt_invokebuiltin_delegate_leave(jit, ctx, asm) opt_invokebuiltin_delegate(jit, ctx, asm) # opt_invokebuiltin_delegate is always followed by leave insn end # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def getlocal_WC_0(jit, ctx, asm) # Get operands idx = jit.operand(0) level = 0 # Get EP asm.mov(:rax, [CFP, C.rb_control_frame_t.offsetof(:ep)]) # Get a local variable asm.mov(:rax, [:rax, -idx * C.VALUE.size]) # Push it to the stack stack_top = ctx.stack_push asm.mov(stack_top, :rax) KeepCompiling end # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def getlocal_WC_1(jit, ctx, asm) idx = jit.operand(0) jit_getlocal_generic(jit, ctx, asm, idx:, level: 1) end # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def setlocal_WC_0(jit, ctx, asm) slot_idx = jit.operand(0) local_idx = slot_to_local_idx(jit.iseq, slot_idx) # Load environment pointer EP (level 0) from CFP ep_reg = :rax jit_get_ep(asm, 0, reg: ep_reg) # Write barriers may be required when VM_ENV_FLAG_WB_REQUIRED is set, however write barriers # only affect heap objects being written. If we know an immediate value is being written we # can skip this check. # flags & VM_ENV_FLAG_WB_REQUIRED flags_opnd = [ep_reg, C.VALUE.size * C.VM_ENV_DATA_INDEX_FLAGS] asm.test(flags_opnd, C.VM_ENV_FLAG_WB_REQUIRED) # Create a side-exit to fall back to the interpreter side_exit = side_exit(jit, ctx) # if (flags & VM_ENV_FLAG_WB_REQUIRED) != 0 asm.jnz(side_exit) # Pop the value to write from the stack stack_top = ctx.stack_pop(1) # Write the value at the environment pointer asm.mov(:rcx, stack_top) asm.mov([ep_reg, -8 * slot_idx], :rcx) KeepCompiling end # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def setlocal_WC_1(jit, ctx, asm) idx = jit.operand(0) jit_setlocal_generic(jit, ctx, asm, idx:, level: 1) end # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def putobject_INT2FIX_0_(jit, ctx, asm) putobject(jit, ctx, asm, val: C.to_value(0)) end # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def putobject_INT2FIX_1_(jit, ctx, asm) putobject(jit, ctx, asm, val: C.to_value(1)) end # # Helpers # def jit_getlocal_generic(jit, ctx, asm, idx:, level:) # Load environment pointer EP at level ep_reg = :rax jit_get_ep(asm, level, reg: ep_reg) # Get a local variable asm.mov(:rax, [ep_reg, -idx * C.VALUE.size]) # Push it to the stack stack_top = ctx.stack_push asm.mov(stack_top, :rax) KeepCompiling end def jit_setlocal_generic(jit, ctx, asm, idx:, level:) # Load environment pointer EP at level ep_reg = :rax jit_get_ep(asm, level, reg: ep_reg) # Write barriers may be required when VM_ENV_FLAG_WB_REQUIRED is set, however write barriers # only affect heap objects being written. If we know an immediate value is being written we # can skip this check. # flags & VM_ENV_FLAG_WB_REQUIRED flags_opnd = [ep_reg, C.VALUE.size * C.VM_ENV_DATA_INDEX_FLAGS] asm.test(flags_opnd, C.VM_ENV_FLAG_WB_REQUIRED) # Create a side-exit to fall back to the interpreter side_exit = side_exit(jit, ctx) # if (flags & VM_ENV_FLAG_WB_REQUIRED) != 0 asm.jnz(side_exit) # Pop the value to write from the stack stack_top = ctx.stack_pop(1) # Write the value at the environment pointer asm.mov(:rcx, stack_top) asm.mov([ep_reg, -(C.VALUE.size * idx)], :rcx) KeepCompiling end # Compute the index of a local variable from its slot index def slot_to_local_idx(iseq, slot_idx) # Layout illustration # This is an array of VALUE # | VM_ENV_DATA_SIZE | # v v # low addr <+-------+-------+-------+-------+------------------+ # |local 0|local 1| ... |local n| .... | # +-------+-------+-------+-------+------------------+ # ^ ^ ^ ^ # +-------+---local_table_size----+ cfp->ep--+ # | | # +------------------slot_idx----------------+ # # See usages of local_var_name() from iseq.c for similar calculation. local_table_size = iseq.body.local_table_size op = slot_idx - C.VM_ENV_DATA_SIZE local_table_size - op - 1 end # @param asm [RubyVM::MJIT::Assembler] def guard_object_is_heap(asm, object_opnd, side_exit) asm.comment('guard object is heap') # Test that the object is not an immediate asm.test(object_opnd, C.RUBY_IMMEDIATE_MASK) asm.jnz(side_exit) # Test that the object is not false asm.cmp(object_opnd, Qfalse) asm.je(side_exit) end # @param asm [RubyVM::MJIT::Assembler] def guard_object_is_array(asm, object_reg, flags_reg, side_exit) asm.comment('guard object is array') # Pull out the type mask asm.mov(flags_reg, [object_reg, C.RBasic.offsetof(:flags)]) asm.and(flags_reg, C.RUBY_T_MASK) # Compare the result with T_ARRAY asm.cmp(flags_reg, C.RUBY_T_ARRAY) asm.jne(side_exit) end # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def jit_chain_guard(opcode, jit, ctx, asm, side_exit, limit: 10) opcode => :je | :jne | :jnz | :jz if ctx.chain_depth < limit deeper = ctx.dup deeper.chain_depth += 1 branch_stub = BranchStub.new( iseq: jit.iseq, shape: Default, target0: BranchTarget.new(ctx: deeper, pc: jit.pc), ) branch_stub.target0.address = Assembler.new.then do |ocb_asm| @exit_compiler.compile_branch_stub(deeper, ocb_asm, branch_stub, true) @ocb.write(ocb_asm) end branch_stub.compile = proc do |branch_asm| # Not using `asm.comment` here since it's usually put before cmp/test before this. branch_asm.stub(branch_stub) do case branch_stub.shape in Default branch_asm.public_send(opcode, branch_stub.target0.address) end end end branch_stub.compile.call(asm) else asm.public_send(opcode, side_exit) end end # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def jit_guard_known_klass(jit, ctx, asm, known_klass, obj_opnd, comptime_obj, side_exit, limit: 5) # Only memory operand is supported for now assert_equal(true, obj_opnd.is_a?(Array)) if known_klass == NilClass asm.comment('guard object is nil') asm.cmp(obj_opnd, Qnil) jit_chain_guard(:jne, jit, ctx, asm, side_exit, limit:) elsif known_klass == TrueClass asm.comment('guard object is true') asm.cmp(obj_opnd, Qtrue) jit_chain_guard(:jne, jit, ctx, asm, side_exit, limit:) elsif known_klass == FalseClass asm.comment('guard object is false') asm.cmp(obj_opnd, Qfalse) jit_chain_guard(:jne, jit, ctx, asm, side_exit, limit:) elsif known_klass == Integer && fixnum?(comptime_obj) asm.comment('guard object is fixnum') asm.test(obj_opnd, C.RUBY_FIXNUM_FLAG) jit_chain_guard(:jz, jit, ctx, asm, side_exit, limit:) elsif known_klass == Symbol && static_symbol?(comptime_obj) # We will guard STATIC vs DYNAMIC as though they were separate classes # DYNAMIC symbols can be handled by the general else case below asm.comment('guard object is static symbol') assert_equal(8, C.RUBY_SPECIAL_SHIFT) asm.cmp(BytePtr[*obj_opnd], C.RUBY_SYMBOL_FLAG) jit_chain_guard(:jne, jit, ctx, asm, side_exit, limit:) elsif known_klass == Float asm.incr_counter(:send_guard_float) return CantCompile elsif known_klass.singleton_class? asm.comment('guard known object with singleton class') asm.mov(:rax, C.to_value(comptime_obj)) asm.cmp(obj_opnd, :rax) jit_chain_guard(:jne, jit, ctx, asm, side_exit, limit:) else # Load memory to a register asm.mov(:rax, obj_opnd) obj_opnd = :rax # Check that the receiver is a heap object # Note: if we get here, the class doesn't have immediate instances. asm.comment('guard not immediate') asm.test(obj_opnd, C.RUBY_IMMEDIATE_MASK) jit_chain_guard(:jnz, jit, ctx, asm, side_exit, limit:) asm.cmp(obj_opnd, Qfalse) jit_chain_guard(:je, jit, ctx, asm, side_exit, limit:) # Bail if receiver class is different from known_klass klass_opnd = [obj_opnd, C.RBasic.offsetof(:klass)] asm.comment("guard known class #{known_klass}") asm.mov(:rcx, to_value(known_klass)) asm.cmp(klass_opnd, :rcx) jit_chain_guard(:jne, jit, ctx, asm, side_exit, limit:) end end # @param jit [RubyVM::MJIT::JITState] def two_fixnums_on_stack?(jit) comptime_recv = jit.peek_at_stack(1) comptime_arg = jit.peek_at_stack(0) return fixnum?(comptime_recv) && fixnum?(comptime_arg) end # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def guard_two_fixnums(jit, ctx, asm, side_exit) # Get stack operands without popping them arg1 = ctx.stack_opnd(0) arg0 = ctx.stack_opnd(1) asm.comment('guard arg0 fixnum') asm.test(arg0, C.RUBY_FIXNUM_FLAG) jit_chain_guard(:jz, jit, ctx, asm, side_exit) # TODO: upgrade type, and skip the check when possible asm.comment('guard arg1 fixnum') asm.test(arg1, C.RUBY_FIXNUM_FLAG) jit_chain_guard(:jz, jit, ctx, asm, side_exit) # TODO: upgrade type, and skip the check when possible end # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def jit_fixnum_cmp(jit, ctx, asm, opcode:, bop:) opcode => :cmovl | :cmovle | :cmovg | :cmovge unless jit.at_current_insn? defer_compilation(jit, ctx, asm) return EndBlock end comptime_recv = jit.peek_at_stack(1) comptime_obj = jit.peek_at_stack(0) if fixnum?(comptime_recv) && fixnum?(comptime_obj) # Generate a side exit before popping operands side_exit = side_exit(jit, ctx) unless Invariants.assume_bop_not_redefined(jit, C.INTEGER_REDEFINED_OP_FLAG, bop) return CantCompile end obj_opnd = ctx.stack_pop recv_opnd = ctx.stack_pop asm.comment('guard recv is fixnum') # TODO: skip this with type information asm.test(recv_opnd, C.RUBY_FIXNUM_FLAG) asm.jz(side_exit) asm.comment('guard obj is fixnum') # TODO: skip this with type information asm.test(obj_opnd, C.RUBY_FIXNUM_FLAG) asm.jz(side_exit) asm.mov(:rax, obj_opnd) asm.cmp(recv_opnd, :rax) asm.mov(:rax, Qfalse) asm.mov(:rcx, Qtrue) asm.public_send(opcode, :rax, :rcx) dst_opnd = ctx.stack_push asm.mov(dst_opnd, :rax) KeepCompiling else opt_send_without_block(jit, ctx, asm) end end # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def jit_equality_specialized(jit, ctx, asm) # Create a side-exit to fall back to the interpreter side_exit = side_exit(jit, ctx) a_opnd = ctx.stack_opnd(1) b_opnd = ctx.stack_opnd(0) comptime_a = jit.peek_at_stack(1) comptime_b = jit.peek_at_stack(0) if two_fixnums_on_stack?(jit) unless Invariants.assume_bop_not_redefined(jit, C.INTEGER_REDEFINED_OP_FLAG, C.BOP_EQ) return false end guard_two_fixnums(jit, ctx, asm, side_exit) asm.comment('check fixnum equality') asm.mov(:rax, a_opnd) asm.mov(:rcx, b_opnd) asm.cmp(:rax, :rcx) asm.mov(:rax, Qfalse) asm.mov(:rcx, Qtrue) asm.cmove(:rax, :rcx) # Push the output on the stack ctx.stack_pop(2) dst = ctx.stack_push asm.mov(dst, :rax) true elsif comptime_a.class == String && comptime_b.class == String unless Invariants.assume_bop_not_redefined(jit, C.STRING_REDEFINED_OP_FLAG, C.BOP_EQ) # if overridden, emit the generic version return false end # Guard that a is a String if jit_guard_known_klass(jit, ctx, asm, comptime_a.class, a_opnd, comptime_a, side_exit) == CantCompile return false end equal_label = asm.new_label(:equal) ret_label = asm.new_label(:ret) # If they are equal by identity, return true asm.mov(:rax, a_opnd) asm.mov(:rcx, b_opnd) asm.cmp(:rax, :rcx) asm.je(equal_label) # Otherwise guard that b is a T_STRING (from type info) or String (from runtime guard) # Note: any T_STRING is valid here, but we check for a ::String for simplicity # To pass a mutable static variable (rb_cString) requires an unsafe block if jit_guard_known_klass(jit, ctx, asm, comptime_b.class, b_opnd, comptime_b, side_exit) == CantCompile return false end asm.comment('call rb_str_eql_internal') asm.mov(C_ARGS[0], a_opnd) asm.mov(C_ARGS[1], b_opnd) asm.call(C.rb_str_eql_internal) # Push the output on the stack ctx.stack_pop(2) dst = ctx.stack_push asm.mov(dst, C_RET) asm.jmp(ret_label) asm.write_label(equal_label) asm.mov(dst, Qtrue) asm.write_label(ret_label) true else false end end # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def jit_prepare_routine_call(jit, ctx, asm) jit.record_boundary_patch_point = true jit_save_pc(jit, asm) jit_save_sp(jit, ctx, asm) end # @param jit [RubyVM::MJIT::JITState] # @param asm [RubyVM::MJIT::Assembler] def jit_save_pc(jit, asm, comment: 'save PC to CFP') next_pc = jit.pc + jit.insn.len * C.VALUE.size # Use the next one for backtrace and side exits asm.comment(comment) asm.mov(:rax, next_pc) asm.mov([CFP, C.rb_control_frame_t.offsetof(:pc)], :rax) end # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def jit_save_sp(jit, ctx, asm) if ctx.sp_offset != 0 asm.comment('save SP to CFP') asm.lea(SP, ctx.sp_opnd) asm.mov([CFP, C.rb_control_frame_t.offsetof(:sp)], SP) ctx.sp_offset = 0 end end # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def jump_to_next_insn(jit, ctx, asm) reset_depth = ctx.dup reset_depth.chain_depth = 0 next_pc = jit.pc + jit.insn.len * C.VALUE.size # We are at the end of the current instruction. Record the boundary. if jit.record_boundary_patch_point exit_pos = Assembler.new.then do |ocb_asm| @exit_compiler.compile_side_exit(next_pc, ctx, ocb_asm) @ocb.write(ocb_asm) end Invariants.record_global_inval_patch(asm, exit_pos) jit.record_boundary_patch_point = false end stub_next_block(jit.iseq, next_pc, reset_depth, asm, comment: 'jump_to_next_insn') end # rb_vm_check_ints # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def jit_check_ints(jit, ctx, asm) asm.comment('RUBY_VM_CHECK_INTS(ec)') asm.mov(:eax, [EC, C.rb_execution_context_t.offsetof(:interrupt_flag)]) asm.test(:eax, :eax) asm.jnz(side_exit(jit, ctx)) end # vm_get_ep # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def jit_get_ep(asm, level, reg:) asm.mov(reg, [CFP, C.rb_control_frame_t.offsetof(:ep)]) level.times do # GET_PREV_EP: ep[VM_ENV_DATA_INDEX_SPECVAL] & ~0x03 asm.mov(reg, [reg, C.VALUE.size * C.VM_ENV_DATA_INDEX_SPECVAL]) asm.and(reg, ~0x03) end end # vm_getivar # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def jit_getivar(jit, ctx, asm, comptime_obj, ivar_id, obj_opnd = nil) side_exit = side_exit(jit, ctx) starting_ctx = ctx.dup # copy for jit_chain_guard # Guard not special const if C.SPECIAL_CONST_P(comptime_obj) asm.incr_counter(:getivar_special_const) return CantCompile end if obj_opnd.nil? # getivar asm.mov(:rax, [CFP, C.rb_control_frame_t.offsetof(:self)]) else # attr_reader asm.mov(:rax, obj_opnd) end guard_object_is_heap(asm, :rax, counted_exit(side_exit, :getivar_not_heap)) case C.BUILTIN_TYPE(comptime_obj) when C.T_OBJECT # This is the only supported case for now (ROBJECT_IVPTR) else asm.incr_counter(:getivar_not_t_object) return CantCompile end shape_id = C.rb_shape_get_shape_id(comptime_obj) if shape_id == C.OBJ_TOO_COMPLEX_SHAPE_ID asm.incr_counter(:getivar_too_complex) return CantCompile end asm.comment('guard shape') asm.cmp(DwordPtr[:rax, C.rb_shape_id_offset], shape_id) jit_chain_guard(:jne, jit, starting_ctx, asm, counted_exit(side_exit, :getivar_megamorphic)) index = C.rb_shape_get_iv_index(shape_id, ivar_id) if index asm.comment('ROBJECT_IVPTR') if C.FL_TEST_RAW(comptime_obj, C.ROBJECT_EMBED) # Access embedded array asm.mov(:rax, [:rax, C.RObject.offsetof(:as, :ary) + (index * C.VALUE.size)]) else # Pull out an ivar table on heap asm.mov(:rax, [:rax, C.RObject.offsetof(:as, :heap, :ivptr)]) # Read the table asm.mov(:rax, [:rax, index * C.VALUE.size]) end val_opnd = :rax else val_opnd = Qnil end if obj_opnd ctx.stack_pop # pop receiver for attr_reader end stack_opnd = ctx.stack_push asm.mov(stack_opnd, val_opnd) # Let guard chains share the same successor jump_to_next_insn(jit, ctx, asm) EndBlock end # vm_call_general (vm_sendish -> vm_call_general) # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def jit_call_general(jit, ctx, asm, cd) ci = cd.ci mid = C.vm_ci_mid(ci) argc = C.vm_ci_argc(ci) flags = C.vm_ci_flag(ci) jit_call_method(jit, ctx, asm, mid, argc, flags) end # vm_call_method # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] # @param send_shift [Integer] The number of shifts needed for VM_CALL_OPT_SEND def jit_call_method(jit, ctx, asm, mid, argc, flags, send_shift: 0) # Specialize on a compile-time receiver, and split a block for chain guards unless jit.at_current_insn? defer_compilation(jit, ctx, asm) return EndBlock end # Generate a side exit side_exit = side_exit(jit, ctx) # kw_splat is not supported yet if flags & C.VM_CALL_KW_SPLAT != 0 asm.incr_counter(:send_kw_splat) return CantCompile end # Get a compile-time receiver and its class recv_idx = argc + (flags & C.VM_CALL_ARGS_BLOCKARG != 0 ? 1 : 0) recv_idx += send_shift comptime_recv = jit.peek_at_stack(recv_idx) comptime_recv_klass = C.rb_class_of(comptime_recv) # Guard the receiver class (part of vm_search_method_fastpath) recv_opnd = ctx.stack_opnd(recv_idx) megamorphic_exit = counted_exit(side_exit, :send_klass_megamorphic) if jit_guard_known_klass(jit, ctx, asm, comptime_recv_klass, recv_opnd, comptime_recv, megamorphic_exit) == CantCompile return CantCompile end # Do method lookup (vm_cc_cme(cc) != NULL) cme = C.rb_callable_method_entry(comptime_recv_klass, mid) if cme.nil? asm.incr_counter(:send_missing_cme) return CantCompile # We don't support vm_call_method_name end # The main check of vm_call_method before vm_call_method_each_type case C.METHOD_ENTRY_VISI(cme) when C.METHOD_VISI_PUBLIC # You can always call public methods when C.METHOD_VISI_PRIVATE # Allow only callsites without a receiver if flags & C.VM_CALL_FCALL == 0 asm.incr_counter(:send_private) return CantCompile end when C.METHOD_VISI_PROTECTED asm.incr_counter(:send_protected) return CantCompile # TODO: support this else # TODO: Change them to a constant and use case-in instead raise 'unreachable' end # Invalidate on redefinition (part of vm_search_method_fastpath) Invariants.assume_method_lookup_stable(jit, cme) jit_call_method_each_type(jit, ctx, asm, argc, flags, cme, comptime_recv, recv_opnd, send_shift:) end # vm_call_method_each_type # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def jit_call_method_each_type(jit, ctx, asm, argc, flags, cme, comptime_recv, recv_opnd, send_shift:) case cme.def.type when C.VM_METHOD_TYPE_ISEQ jit_call_iseq_setup(jit, ctx, asm, cme, flags, argc, send_shift:) when C.VM_METHOD_TYPE_NOTIMPLEMENTED asm.incr_counter(:send_notimplemented) return CantCompile when C.VM_METHOD_TYPE_CFUNC jit_call_cfunc(jit, ctx, asm, cme, flags, argc, send_shift:) when C.VM_METHOD_TYPE_ATTRSET asm.incr_counter(:send_attrset) return CantCompile when C.VM_METHOD_TYPE_IVAR jit_call_ivar(jit, ctx, asm, cme, flags, argc, comptime_recv, recv_opnd, send_shift:) when C.VM_METHOD_TYPE_MISSING asm.incr_counter(:send_missing) return CantCompile when C.VM_METHOD_TYPE_BMETHOD asm.incr_counter(:send_bmethod) return CantCompile when C.VM_METHOD_TYPE_ALIAS asm.incr_counter(:send_alias) return CantCompile when C.VM_METHOD_TYPE_OPTIMIZED jit_call_optimized(jit, ctx, asm, cme, flags, argc, send_shift:) when C.VM_METHOD_TYPE_UNDEF asm.incr_counter(:send_undef) return CantCompile when C.VM_METHOD_TYPE_ZSUPER asm.incr_counter(:send_zsuper) return CantCompile when C.VM_METHOD_TYPE_REFINED asm.incr_counter(:send_refined) return CantCompile else asm.incr_counter(:send_unknown_type) return CantCompile end end # vm_call_iseq_setup # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def jit_call_iseq_setup(jit, ctx, asm, cme, flags, argc, send_shift:) iseq = def_iseq_ptr(cme.def) opt_pc = jit_callee_setup_arg(jit, ctx, asm, flags, argc, iseq) if opt_pc == CantCompile # We hit some unsupported path of vm_callee_setup_arg return CantCompile end if flags & C.VM_CALL_TAILCALL != 0 # We don't support vm_call_iseq_setup_tailcall asm.incr_counter(:send_tailcall) return CantCompile end jit_call_iseq_setup_normal(jit, ctx, asm, cme, flags, argc, iseq, send_shift:) end # vm_call_iseq_setup_normal (vm_call_iseq_setup_2 -> vm_call_iseq_setup_normal) # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def jit_call_iseq_setup_normal(jit, ctx, asm, cme, flags, argc, iseq, send_shift:) # We will not have side exits from here. Adjust the stack. if flags & C.VM_CALL_OPT_SEND != 0 jit_call_opt_send_shift_stack(ctx, asm, argc, send_shift:) end # Save caller SP and PC before pushing a callee frame for backtrace and side exits asm.comment('save SP to caller CFP') recv_idx = argc + (flags & C.VM_CALL_ARGS_BLOCKARG != 0 ? 1 : 0) # Skip setting this to SP register. This cfp->sp will be copied to SP on leave insn. asm.lea(:rax, ctx.sp_opnd(C.VALUE.size * -(1 + recv_idx))) # Pop receiver and arguments to prepare for side exits asm.mov([CFP, C.rb_control_frame_t.offsetof(:sp)], :rax) jit_save_pc(jit, asm, comment: 'save PC to caller CFP') frame_type = C.VM_FRAME_MAGIC_METHOD | C.VM_ENV_FLAG_LOCAL jit_push_frame( jit, ctx, asm, cme, flags, argc, frame_type, iseq: iseq, local_size: iseq.body.local_table_size - iseq.body.param.size, stack_max: iseq.body.stack_max, ) # Jump to a stub for the callee ISEQ callee_ctx = Context.new stub_next_block(iseq, iseq.body.iseq_encoded.to_i, callee_ctx, asm) EndBlock end # vm_call_cfunc # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def jit_call_cfunc(jit, ctx, asm, cme, flags, argc, send_shift:) if jit_caller_setup_arg(jit, ctx, asm, flags) == CantCompile return CantCompile end if jit_caller_remove_empty_kw_splat(jit, ctx, asm, flags) == CantCompile return CantCompile end jit_call_cfunc_with_frame(jit, ctx, asm, cme, flags, argc, send_shift:) end # jit_call_cfunc_with_frame # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def jit_call_cfunc_with_frame(jit, ctx, asm, cme, flags, argc, send_shift:) cfunc = cme.def.body.cfunc if argc + 1 > 6 asm.incr_counter(:send_cfunc_too_many_args) return CantCompile end frame_type = C.VM_FRAME_MAGIC_CFUNC | C.VM_FRAME_FLAG_CFRAME | C.VM_ENV_FLAG_LOCAL if flags & C.VM_CALL_KW_SPLAT != 0 frame_type |= C.VM_FRAME_FLAG_CFRAME_KW end # EXEC_EVENT_HOOK: RUBY_EVENT_C_CALL and RUBY_EVENT_C_RETURN if C.rb_mjit_global_events & (C.RUBY_EVENT_C_CALL | C.RUBY_EVENT_C_RETURN) != 0 asm.incr_counter(:send_c_tracing) return CantCompile end # rb_check_arity if cfunc.argc >= 0 && argc != cfunc.argc asm.incr_counter(:send_arity) return CantCompile end if cfunc.argc == -2 asm.incr_counter(:send_cfunc_ruby_array_varg) return CantCompile end # We will not have side exits from here. Adjust the stack. if flags & C.VM_CALL_OPT_SEND != 0 jit_call_opt_send_shift_stack(ctx, asm, argc, send_shift:) end # Check interrupts before SP motion to safely side-exit with the original SP. jit_check_ints(jit, ctx, asm) # Save caller SP and PC before pushing a callee frame for backtrace and side exits asm.comment('save SP to caller CFP') sp_index = -(1 + argc) # Pop receiver and arguments for side exits # TODO: subtract one more for VM_CALL_ARGS_BLOCKARG asm.lea(SP, ctx.sp_opnd(C.VALUE.size * sp_index)) asm.mov([CFP, C.rb_control_frame_t.offsetof(:sp)], SP) ctx.sp_offset = -sp_index jit_save_pc(jit, asm, comment: 'save PC to caller CFP') # Push a callee frame. SP register and ctx are not modified inside this. jit_push_frame(jit, ctx, asm, cme, flags, argc, frame_type) asm.comment('call C function') case cfunc.argc in (0..) # Non-variadic method # Push receiver and args (1 + argc).times do |i| asm.mov(C_ARGS[i], ctx.stack_opnd(argc - i)) # TODO: +1 for VM_CALL_ARGS_BLOCKARG end in -1 # Variadic method: rb_f_puts(int argc, VALUE *argv, VALUE recv) asm.mov(C_ARGS[0], argc) asm.lea(C_ARGS[1], ctx.stack_opnd(argc - 1)) # argv asm.mov(C_ARGS[2], ctx.stack_opnd(argc)) # recv end asm.mov(:rax, cfunc.func) asm.call(:rax) # TODO: use rel32 if close enough ctx.stack_pop(1 + argc) Invariants.record_global_inval_patch(asm, @full_cfunc_return) asm.comment('push the return value') stack_ret = ctx.stack_push asm.mov(stack_ret, C_RET) asm.comment('pop the stack frame') asm.mov([EC, C.rb_execution_context_t.offsetof(:cfp)], CFP) # Let guard chains share the same successor (ctx.sp_offset == 1) assert_equal(1, ctx.sp_offset) jump_to_next_insn(jit, ctx, asm) EndBlock end # vm_call_ivar (+ part of vm_call_method_each_type) # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def jit_call_ivar(jit, ctx, asm, cme, flags, argc, comptime_recv, recv_opnd, send_shift:) if flags & C.VM_CALL_ARGS_SPLAT != 0 asm.incr_counter(:send_ivar_splat) return CantCompile end if argc != 0 asm.incr_counter(:send_arity) return CantCompile end # We don't support jit_call_opt_send_shift_stack for this yet. if flags & C.VM_CALL_OPT_SEND != 0 asm.incr_counter(:send_ivar_opt_send) return CantCompile end ivar_id = cme.def.body.attr.id if flags & C.VM_CALL_ARGS_BLOCKARG != 0 asm.incr_counter(:send_ivar_blockarg) return CantCompile end jit_getivar(jit, ctx, asm, comptime_recv, ivar_id, recv_opnd) end # vm_call_optimized # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def jit_call_optimized(jit, ctx, asm, cme, flags, argc, send_shift:) case cme.def.body.optimized.type when C.OPTIMIZED_METHOD_TYPE_SEND jit_call_opt_send(jit, ctx, asm, cme, flags, argc, send_shift:) when C.OPTIMIZED_METHOD_TYPE_CALL asm.incr_counter(:send_optimized_call) return CantCompile when C.OPTIMIZED_METHOD_TYPE_BLOCK_CALL asm.incr_counter(:send_optimized_block_call) return CantCompile when C.OPTIMIZED_METHOD_TYPE_STRUCT_AREF asm.incr_counter(:send_optimized_struct_aref) return CantCompile when C.OPTIMIZED_METHOD_TYPE_STRUCT_ASET asm.incr_counter(:send_optimized_struct_aset) return CantCompile else asm.incr_counter(:send_optimized_unknown_type) return CantCompile end end # vm_call_opt_send # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def jit_call_opt_send(jit, ctx, asm, cme, flags, argc, send_shift:) if jit_caller_setup_arg(jit, ctx, asm, flags) == CantCompile return CantCompile end if argc == 0 asm.incr_counter(:send_optimized_send_no_args) return CantCompile end argc -= 1 # We aren't handling `send(:send, ...)` yet. This might work, but not tested yet. if send_shift > 0 asm.incr_counter(:send_optimized_send_send) return CantCompile end # Ideally, we want to shift the stack here, but it's not safe until you reach the point # where you never exit. `send_shift` signals to lazily shift the stack by this amount. send_shift += 1 kw_splat = flags & C.VM_CALL_KW_SPLAT != 0 jit_call_symbol(jit, ctx, asm, cme, C.VM_CALL_FCALL, argc, kw_splat, send_shift:) end # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def jit_call_opt_send_shift_stack(ctx, asm, argc, send_shift:) # We don't support `send(:send, ...)` for now. assert_equal(1, send_shift) asm.comment('shift stack') (0...argc).reverse_each do |i| opnd = ctx.stack_opnd(i) opnd2 = ctx.stack_opnd(i + 1) asm.mov(:rax, opnd) asm.mov(opnd2, :rax) end ctx.stack_pop(1) end # vm_call_symbol # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def jit_call_symbol(jit, ctx, asm, cme, flags, argc, kw_splat, send_shift:) flags |= C.VM_CALL_OPT_SEND | (kw_splat ? C.VM_CALL_KW_SPLAT : 0) comptime_symbol = jit.peek_at_stack(argc) if comptime_symbol.class != String && !static_symbol?(comptime_symbol) asm.incr_counter(:send_optimized_send_not_sym_or_str) return CantCompile end mid = C.get_symbol_id(comptime_symbol) if mid == 0 asm.incr_counter(:send_optimized_send_null_mid) return CantCompile end asm.comment("Guard #{comptime_symbol.inspect} is on stack") mid_changed_exit = counted_exit(side_exit(jit, ctx), :send_optimized_send_mid_changed) if jit_guard_known_klass(jit, ctx, asm, comptime_symbol.class, ctx.stack_opnd(argc), comptime_symbol, mid_changed_exit) == CantCompile return CantCompile end asm.mov(C_ARGS[0], ctx.stack_opnd(argc)) asm.call(C.rb_get_symbol_id) asm.cmp(C_RET, mid) jit_chain_guard(:jne, jit, ctx, asm, mid_changed_exit) if flags & C.VM_CALL_FCALL != 0 return jit_call_method(jit, ctx, asm, mid, argc, flags, send_shift:) end raise NotImplementedError # unreachable for now end # vm_push_frame # # Frame structure: # | args | locals | cme/cref | block_handler/prev EP | frame type (EP here) | stack bottom (SP here) # # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def jit_push_frame(jit, ctx, asm, cme, flags, argc, frame_type, iseq: nil, local_size: 0, stack_max: 0) # CHECK_VM_STACK_OVERFLOW0: next_cfp <= sp + (local_size + stack_max) asm.comment('stack overflow check') asm.lea(:rax, ctx.sp_opnd(C.rb_control_frame_t.size + C.VALUE.size * (local_size + stack_max))) asm.cmp(CFP, :rax) asm.jbe(counted_exit(side_exit(jit, ctx), :send_stackoverflow)) local_size.times do |i| asm.comment('set local variables') if i == 0 local_index = ctx.sp_offset + i asm.mov([SP, C.VALUE.size * local_index], Qnil) end asm.comment('set up EP with managing data') ep_offset = ctx.sp_offset + local_size + 2 asm.mov(:rax, cme.to_i) asm.mov([SP, C.VALUE.size * (ep_offset - 2)], :rax) asm.mov([SP, C.VALUE.size * (ep_offset - 1)], C.VM_BLOCK_HANDLER_NONE) asm.mov([SP, C.VALUE.size * (ep_offset - 0)], frame_type) asm.comment('set up new frame') cfp_offset = -C.rb_control_frame_t.size # callee CFP # For ISEQ, JIT code will set it as needed. However, C func needs 0 there for svar frame detection. if iseq.nil? asm.mov([CFP, cfp_offset + C.rb_control_frame_t.offsetof(:pc)], 0) end asm.mov(:rax, iseq.to_i) asm.mov([CFP, cfp_offset + C.rb_control_frame_t.offsetof(:iseq)], :rax) self_index = ctx.sp_offset - (1 + argc) # TODO: +1 for VM_CALL_ARGS_BLOCKARG asm.mov(:rax, [SP, C.VALUE.size * self_index]) asm.mov([CFP, cfp_offset + C.rb_control_frame_t.offsetof(:self)], :rax) asm.lea(:rax, [SP, C.VALUE.size * ep_offset]) asm.mov([CFP, cfp_offset + C.rb_control_frame_t.offsetof(:ep)], :rax) asm.mov([CFP, cfp_offset + C.rb_control_frame_t.offsetof(:block_code)], 0) # Update SP register only for ISEQ calls. SP-relative operations should be done above this. sp_reg = iseq ? SP : :rax asm.lea(sp_reg, [SP, C.VALUE.size * (ctx.sp_offset + local_size + 3)]) asm.mov([CFP, cfp_offset + C.rb_control_frame_t.offsetof(:sp)], sp_reg) asm.mov([CFP, cfp_offset + C.rb_control_frame_t.offsetof(:__bp__)], sp_reg) # TODO: get rid of this!! # cfp->jit_return is used only for ISEQs if iseq # Stub cfp->jit_return return_ctx = ctx.dup return_ctx.stack_size -= argc # Pop args # TODO: subtract 1 more for VM_CALL_ARGS_BLOCKARG return_ctx.sp_offset = 1 # SP is in the position after popping a receiver and arguments branch_stub = BranchStub.new( iseq: jit.iseq, shape: Default, target0: BranchTarget.new(ctx: return_ctx, pc: jit.pc + jit.insn.len * C.VALUE.size), ) branch_stub.target0.address = Assembler.new.then do |ocb_asm| @exit_compiler.compile_branch_stub(return_ctx, ocb_asm, branch_stub, true) @ocb.write(ocb_asm) end branch_stub.compile = proc do |branch_asm| branch_asm.comment('set jit_return to callee CFP') branch_asm.stub(branch_stub) do case branch_stub.shape in Default branch_asm.mov(:rax, branch_stub.target0.address) branch_asm.mov([CFP, cfp_offset + C.rb_control_frame_t.offsetof(:jit_return)], :rax) end end end branch_stub.compile.call(asm) end asm.comment('switch to callee CFP') # Update CFP register only for ISEQ calls cfp_reg = iseq ? CFP : :rax asm.lea(cfp_reg, [CFP, cfp_offset]) asm.mov([EC, C.rb_execution_context_t.offsetof(:cfp)], cfp_reg) end # vm_callee_setup_arg: Set up args and return opt_pc (or CantCompile) # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def jit_callee_setup_arg(jit, ctx, asm, flags, argc, iseq) if flags & C.VM_CALL_KW_SPLAT == 0 if C.rb_simple_iseq_p(iseq) if jit_caller_setup_arg(jit, ctx, asm, flags) == CantCompile return CantCompile end if jit_caller_remove_empty_kw_splat(jit, ctx, asm, flags) == CantCompile return CantCompile end if argc != iseq.body.param.lead_num # argument_arity_error return CantCompile end return 0 else # We don't support the remaining `else if`s yet. asm.incr_counter(:send_iseq_not_simple) return CantCompile end end # We don't support setup_parameters_complex asm.incr_counter(:send_iseq_kw_splat) return CantCompile end # CALLER_SETUP_ARG: Return CantCompile if not supported # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def jit_caller_setup_arg(jit, ctx, asm, flags) if flags & C.VM_CALL_ARGS_SPLAT != 0 # We don't support vm_caller_setup_arg_splat asm.incr_counter(:send_args_splat) return CantCompile end if flags & (C.VM_CALL_KWARG | C.VM_CALL_KW_SPLAT) != 0 # We don't support keyword args either asm.incr_counter(:send_kwarg) return CantCompile end end # CALLER_REMOVE_EMPTY_KW_SPLAT: Return CantCompile if not supported # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def jit_caller_remove_empty_kw_splat(jit, ctx, asm, flags) if (flags & C.VM_CALL_KW_SPLAT) > 0 # We don't support removing the last Hash argument asm.incr_counter(:send_kw_splat) return CantCompile end end # Generate RARRAY_LEN. For array_opnd, use Opnd::Reg to reduce memory access, # and use Opnd::Mem to save registers. def jit_array_len(asm, array_reg, len_reg) asm.comment('get array length for embedded or heap') # Pull out the embed flag to check if it's an embedded array. asm.mov(len_reg, [array_reg, C.RBasic.offsetof(:flags)]) # Get the length of the array asm.and(len_reg, C.RARRAY_EMBED_LEN_MASK) asm.sar(len_reg, C.RARRAY_EMBED_LEN_SHIFT) # Conditionally move the length of the heap array asm.test([array_reg, C.RBasic.offsetof(:flags)], C.RARRAY_EMBED_FLAG) # Select the array length value asm.cmovz(len_reg, [array_reg, C.RArray.offsetof(:as, :heap, :len)]) end def assert_equal(left, right) if left != right raise "'#{left.inspect}' was not '#{right.inspect}'" end end def fixnum?(obj) (C.to_value(obj) & C.RUBY_FIXNUM_FLAG) == C.RUBY_FIXNUM_FLAG end def static_symbol?(obj) (C.to_value(obj) & 0xff) == C.RUBY_SYMBOL_FLAG end # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] # @param asm [RubyVM::MJIT::Assembler] def defer_compilation(jit, ctx, asm) # Make a stub to compile the current insn stub_next_block(jit.iseq, jit.pc, ctx, asm, comment: 'defer_compilation') end def stub_next_block(iseq, pc, ctx, asm, comment: 'stub_next_block') branch_stub = BranchStub.new( iseq:, shape: Default, target0: BranchTarget.new(ctx:, pc:), ) branch_stub.target0.address = Assembler.new.then do |ocb_asm| @exit_compiler.compile_branch_stub(ctx, ocb_asm, branch_stub, true) @ocb.write(ocb_asm) end branch_stub.compile = proc do |branch_asm| branch_asm.comment(comment) branch_asm.stub(branch_stub) do case branch_stub.shape in Default branch_asm.jmp(branch_stub.target0.address) in Next0 # Just write the block without a jump end end end branch_stub.compile.call(asm) end # @param jit [RubyVM::MJIT::JITState] # @param ctx [RubyVM::MJIT::Context] def side_exit(jit, ctx) if side_exit = jit.side_exits[jit.pc] return side_exit end asm = Assembler.new @exit_compiler.compile_side_exit(jit.pc, ctx, asm) jit.side_exits[jit.pc] = @ocb.write(asm) end def counted_exit(side_exit, name) asm = Assembler.new asm.incr_counter(name) asm.jmp(side_exit) @ocb.write(asm) end def def_iseq_ptr(cme_def) C.rb_iseq_check(cme_def.body.iseq.iseqptr) end def to_value(obj) GC_REFS << obj C.to_value(obj) end end end