summaryrefslogtreecommitdiff
path: root/ext
diff options
context:
space:
mode:
Diffstat (limited to 'ext')
-rw-r--r--ext/Setup1
-rw-r--r--ext/Setup.atheos1
-rw-r--r--ext/Setup.dj1
-rw-r--r--ext/Setup.emx1
-rw-r--r--ext/Setup.nt1
-rw-r--r--ext/Setup.x681
-rw-r--r--ext/rational/extconf.rb3
-rw-r--r--ext/rational/lib/rational.rb560
-rw-r--r--ext/rational/rational.c42
9 files changed, 611 insertions, 0 deletions
diff --git a/ext/Setup b/ext/Setup
index d0d6317a5e..c7c419f687 100644
--- a/ext/Setup
+++ b/ext/Setup
@@ -20,6 +20,7 @@
#pty
#openssl
#racc/cparse
+#rational
#readline
#sdbm
#socket
diff --git a/ext/Setup.atheos b/ext/Setup.atheos
index 6bda3a4cfb..07cfd9bee6 100644
--- a/ext/Setup.atheos
+++ b/ext/Setup.atheos
@@ -20,6 +20,7 @@ nkf
pty
#openssl
racc/parse
+rational
readline
sdbm
socket
diff --git a/ext/Setup.dj b/ext/Setup.dj
index 4f94788886..ebc433f3aa 100644
--- a/ext/Setup.dj
+++ b/ext/Setup.dj
@@ -20,6 +20,7 @@ nkf
#pty
#openssl
racc/cparse
+rational
readline
sdbm
#socket
diff --git a/ext/Setup.emx b/ext/Setup.emx
index afc5923577..a50a18e79b 100644
--- a/ext/Setup.emx
+++ b/ext/Setup.emx
@@ -20,6 +20,7 @@ nkf
#pty
#openssl
racc/cparse
+rational
#readline
#sdbm
socket
diff --git a/ext/Setup.nt b/ext/Setup.nt
index 9f8abf9b8d..2e699c049d 100644
--- a/ext/Setup.nt
+++ b/ext/Setup.nt
@@ -20,6 +20,7 @@ nkf
#pty
#openssl
racc/cparse
+rational
#readline
sdbm
socket
diff --git a/ext/Setup.x68 b/ext/Setup.x68
index 0966e737e9..c5fd204d56 100644
--- a/ext/Setup.x68
+++ b/ext/Setup.x68
@@ -20,6 +20,7 @@ nkf
#pty
#openssl
racc/cparse
+rational
#readline
#sdbm
#socket
diff --git a/ext/rational/extconf.rb b/ext/rational/extconf.rb
new file mode 100644
index 0000000000..bc4c835f8e
--- /dev/null
+++ b/ext/rational/extconf.rb
@@ -0,0 +1,3 @@
+require 'mkmf'
+
+create_makefile('rational')
diff --git a/ext/rational/lib/rational.rb b/ext/rational/lib/rational.rb
new file mode 100644
index 0000000000..cf8e90b2c1
--- /dev/null
+++ b/ext/rational/lib/rational.rb
@@ -0,0 +1,560 @@
+#
+# rational.rb -
+# $Release Version: 0.5 $
+# $Revision: 1.7 $
+# $Date: 1999/08/24 12:49:28 $
+# by Keiju ISHITSUKA(SHL Japan Inc.)
+#
+# Documentation by Kevin Jackson and Gavin Sinclair.
+#
+# Performance improvements by Kurt Stephens.
+#
+# When you <tt>require 'rational'</tt>, all interactions between numbers
+# potentially return a rational result. For example:
+#
+# 1.quo(2) # -> 0.5
+# require 'rational'
+# 1.quo(2) # -> Rational(1,2)
+#
+# See Rational for full documentation.
+#
+
+# Pull in some optimization
+require "rational.so"
+
+#
+# Creates a Rational number (i.e. a fraction). +a+ and +b+ should be Integers:
+#
+# Rational(1,3) # -> 1/3
+#
+# Note: trying to construct a Rational with floating point or real values
+# produces errors:
+#
+# Rational(1.1, 2.3) # -> NoMethodError
+#
+def Rational(a, b = 1)
+ if a.kind_of?(Rational) && b == 1
+ a
+ else
+ Rational.reduce(a, b)
+ end
+end
+
+#
+# Rational implements a rational class for numbers.
+#
+# <em>A rational number is a number that can be expressed as a fraction p/q
+# where p and q are integers and q != 0. A rational number p/q is said to have
+# numerator p and denominator q. Numbers that are not rational are called
+# irrational numbers.</em> (http://mathworld.wolfram.com/RationalNumber.html)
+#
+# To create a Rational Number:
+# Rational(a,b) # -> a/b
+# Rational.new!(a,b) # -> a/b
+#
+# Examples:
+# Rational(5,6) # -> 5/6
+# Rational(5) # -> 5/1
+#
+# Rational numbers are reduced to their lowest terms:
+# Rational(6,10) # -> 3/5
+#
+# But not if you use the unusual method "new!":
+# Rational.new!(6,10) # -> 6/10
+#
+# Division by zero is obviously not allowed:
+# Rational(3,0) # -> ZeroDivisionError
+#
+class Rational < Numeric
+ @RCS_ID='-$Id: rational.rb,v 1.7 1999/08/24 12:49:28 keiju Exp keiju $-'
+
+ #
+ # Reduces the given numerator and denominator to their lowest terms. Use
+ # Rational() instead.
+ #
+ def Rational.reduce(num, den = 1)
+ raise ZeroDivisionError, "denominator is zero" if den == 0
+
+ if den < 0
+ num = -num
+ den = -den
+ end
+ gcd = num.gcd(den)
+ num = num.div(gcd)
+ den = den.div(gcd)
+ if den == 1 && defined?(Unify)
+ num
+ else
+ new!(num, den)
+ end
+ end
+
+ #
+ # Implements the constructor. This method does not reduce to lowest terms or
+ # check for division by zero. Therefore #Rational() should be preferred in
+ # normal use.
+ #
+ def Rational.new!(num, den = 1)
+ new(num, den)
+ end
+
+ private_class_method :new
+
+ #
+ # This method is actually private.
+ #
+ def initialize(num, den)
+ if den < 0
+ num = -num
+ den = -den
+ end
+ @numerator = num.to_i
+ @denominator = den.to_i
+ end
+
+ #
+ # Returns the addition of this value and +a+.
+ #
+ # Examples:
+ # r = Rational(3,4) # -> Rational(3,4)
+ # r + 1 # -> Rational(7,4)
+ # r + 0.5 # -> 1.25
+ #
+ def + (a)
+ case a
+ when Rational # => Rational | Integer
+ Rational(@numerator * a.denominator + a.numerator * @denominator, @denominator * a.denominator)
+ when Integer # => Rational
+ Rational.reduce(@numerator + a * @denominator, @denominator)
+ when Float
+ self.to_f + a
+ else
+ x, y = a.coerce(self) rescue raise TypeError, "#{a.class} can't be coerced into #{self.class}"
+ x + y
+ end
+ end
+
+ #
+ # Returns the difference of this value and +a+.
+ # subtracted.
+ #
+ # Examples:
+ # r = Rational(3,4) # -> Rational(3,4)
+ # r - 1 # -> Rational(-1,4)
+ # r - 0.5 # -> 0.25
+ #
+ def - (a)
+ case a
+ when Rational # => Rational | Integer
+ Rational(@numerator * a.denominator - a.numerator * @denominator, @denominator * a.denominator)
+ when Integer # => Rational
+ Rational.reduce(@numerator - a * @denominator, @denominator)
+ when Float
+ self.to_f - a
+ else
+ x, y = a.coerce(self) rescue raise TypeError, "#{a.class} can't be coerced into #{self.class}"
+ x - y
+ end
+ end
+
+ #
+ # Unary Minus--Returns the receiver's value, negated.
+ #
+ def -@
+ Rational.new!(-@numerator, @denominator)
+ end
+
+ #
+ # Returns the product of this value and +a+.
+ #
+ # Examples:
+ # r = Rational(3,4) # -> Rational(3,4)
+ # r * 2 # -> Rational(3,2)
+ # r * 4 # -> Rational(3,1)
+ # r * 0.5 # -> 0.375
+ # r * Rational(1,2) # -> Rational(3,8)
+ #
+ def * (a)
+ case a
+ when Rational
+ Rational(@numerator * a.numerator, @denominator * a.denominator)
+ when Integer
+ Rational(@numerator * a, @denominator)
+ when Float
+ self.to_f * a
+ else
+ x, y = a.coerce(self) rescue raise TypeError, "#{a.class} can't be coerced into #{self.class}"
+ x * y
+ end
+ end
+
+ #
+ # Returns the quotient of this value and +a+.
+ # r = Rational(3,4) # -> Rational(3,4)
+ # r / 2 # -> Rational(3,8)
+ # r / 2.0 # -> 0.375
+ # r / Rational(1,2) # -> Rational(3,2)
+ #
+ def / (a)
+ case a
+ when Rational
+ Rational(@numerator * a.denominator, @denominator * a.numerator)
+ when Integer
+ raise ZeroDivisionError, "division by zero" if a == 0
+ Rational(@numerator, @denominator * a)
+ when Float
+ self.to_f / a
+ else
+ x, y = a.coerce(self) rescue raise TypeError, "#{a.class} can't be coerced into #{self.class}"
+ x / y
+ end
+ end
+
+ #
+ # Returns this value raised to the given power.
+ #
+ # Examples:
+ # r = Rational(3,4) # -> Rational(3,4)
+ # r ** 2 # -> Rational(9,16)
+ # r ** 2.0 # -> 0.5625
+ # r ** Rational(1,2) # -> 0.866025403784439
+ #
+ def ** (other)
+ case other
+ when Rational, Float
+ self.to_f ** other
+ when Integer
+ if other > 0
+ Rational.new!(@numerator ** other, @denominator ** other)
+ elsif other < 0
+ Rational.new!(@denominator ** -other, @numerator ** -other)
+ else
+ Rational.new!(1, 1) # why not Fixnum 1?
+ end
+ else
+ x, y = other.coerce(self) rescue raise TypeError, "#{a.class} can't be coerced into #{self.class}"
+ x ** y
+ end
+ end
+
+ def div(other)
+ (self / other).floor
+ end
+
+ #
+ # Returns the remainder when this value is divided by +other+.
+ #
+ # Examples:
+ # r = Rational(7,4) # -> Rational(7,4)
+ # r % Rational(1,2) # -> Rational(1,4)
+ # r % 1 # -> Rational(3,4)
+ # r % Rational(1,7) # -> Rational(1,28)
+ # r % 0.26 # -> 0.19
+ #
+ def % (other)
+ value = (self / other).floor
+ self - other * value
+ end
+
+ #
+ # Returns the quotient _and_ remainder.
+ #
+ # Examples:
+ # r = Rational(7,4) # -> Rational(7,4)
+ # r.divmod Rational(1,2) # -> [3, Rational(1,4)]
+ #
+ def divmod(other)
+ value = (self / other).floor
+ [value, self - other * value]
+ end
+
+ #
+ # Returns the absolute value.
+ #
+ def abs
+ if @numerator > 0
+ self
+ else
+ Rational.new!(-@numerator, @denominator)
+ end
+ end
+
+ # Returns true or false.
+ def zero?
+ @numerator.zero?
+ end
+
+ # See Numeric#nonzero?
+ def nonzero?
+ @numerator.nonzero? ? self : nil
+ end
+
+
+ #
+ # Returns +true+ iff this value is numerically equal to +other+.
+ #
+ # But beware:
+ # Rational(1,2) == Rational(4,8) # -> true
+ # Rational(1,2) == Rational.new!(4,8) # -> false
+ #
+ # Don't use Rational.new!
+ #
+ def == (other)
+ case other
+ when Rational
+ @numerator == other.numerator && @denominator == other.denominator
+ when Integer
+ @numerator == other && @denominator == 1
+ when Float
+ self.to_f == other
+ else
+ other == self
+ end
+ end
+
+ #
+ # Standard comparison operator.
+ #
+ def <=> (other)
+ case other
+ when Rational
+ @numerator * other.denominator <=> other.numerator * @denominator
+ when Integer
+ @numerator <=> other * @denominator
+ when Float
+ self.to_f <=> other
+ else
+ x, y = other.coerce(self) rescue return nil
+ x <=> y
+ end
+ end
+
+ def coerce(other)
+ case other
+ when Float
+ return other, self.to_f
+ when Integer
+ return Rational.new!(other, 1), self
+ else
+ super
+ end
+ end
+
+ #
+ # Converts the rational to an Integer. Not the _nearest_ integer, the
+ # truncated integer. Study the following example carefully:
+ # Rational(+7,4).to_i # -> 1
+ # Rational(-7,4).to_i # -> -1
+ # (-1.75).to_i # -> -1
+ #
+ # In other words:
+ # Rational(-7,4) == -1.75 # -> true
+ # Rational(-7,4).to_i == (-1.75).to_i # -> true
+ #
+
+
+ def floor()
+ @numerator.div(@denominator)
+ end
+
+ def ceil()
+ -((-@numerator).div(@denominator))
+ end
+
+ def truncate()
+ if @numerator < 0
+ -((-@numerator).div(@denominator))
+ else
+ @numerator.div(@denominator)
+ end
+ end
+
+ alias_method :to_i, :truncate
+
+ def round()
+ if @numerator < 0
+ -((@numerator * -2 + @denominator).div(@denominator * 2))
+ else
+ ((@numerator * 2 + @denominator).div(@denominator * 2))
+ end
+ end
+
+ #
+ # Converts the rational to a Float.
+ #
+ def to_f
+ @numerator.to_f/@denominator.to_f
+ end
+
+ #
+ # Returns a string representation of the rational number.
+ #
+ # Example:
+ # Rational(3,4).to_s # "3/4"
+ # Rational(8).to_s # "8"
+ #
+ def to_s
+ if @denominator == 1
+ @numerator.to_s
+ else
+ "#{@numerator}/#{@denominator}"
+ end
+ end
+
+ #
+ # Returns +self+.
+ #
+ def to_r
+ self
+ end
+
+ #
+ # Returns a reconstructable string representation:
+ #
+ # Rational(5,8).inspect # -> "Rational(5, 8)"
+ #
+ def inspect
+ "Rational(#{@numerator.inspect}, #{@denominator.inspect})"
+ end
+
+ #
+ # Returns a hash code for the object.
+ #
+ def hash
+ @numerator.hash ^ @denominator.hash
+ end
+
+ attr :numerator
+ attr :denominator
+
+ private :initialize
+end
+
+class Integer
+ #
+ # In an integer, the value _is_ the numerator of its rational equivalent.
+ # Therefore, this method returns +self+.
+ #
+ def numerator
+ self
+ end
+
+ #
+ # In an integer, the denominator is 1. Therefore, this method returns 1.
+ #
+ def denominator
+ 1
+ end
+
+ #
+ # Returns a Rational representation of this integer.
+ #
+ def to_r
+ Rational(self, 1)
+ end
+
+ #
+ # Returns the <em>greatest common denominator</em> of the two numbers (+self+
+ # and +n+).
+ #
+ # Examples:
+ # 72.gcd 168 # -> 24
+ # 19.gcd 36 # -> 1
+ #
+ # The result is positive, no matter the sign of the arguments.
+ #
+ def gcd(other)
+ min = self.abs
+ max = other.abs
+ while min > 0
+ tmp = min
+ min = max % min
+ max = tmp
+ end
+ max
+ end
+
+ #
+ # Returns the <em>lowest common multiple</em> (LCM) of the two arguments
+ # (+self+ and +other+).
+ #
+ # Examples:
+ # 6.lcm 7 # -> 42
+ # 6.lcm 9 # -> 18
+ #
+ def lcm(other)
+ if self.zero? or other.zero?
+ 0
+ else
+ (self.div(self.gcd(other)) * other).abs
+ end
+ end
+
+ #
+ # Returns the GCD _and_ the LCM (see #gcd and #lcm) of the two arguments
+ # (+self+ and +other+). This is more efficient than calculating them
+ # separately.
+ #
+ # Example:
+ # 6.gcdlcm 9 # -> [3, 18]
+ #
+ def gcdlcm(other)
+ gcd = self.gcd(other)
+ if self.zero? or other.zero?
+ [gcd, 0]
+ else
+ [gcd, (self.div(gcd) * other).abs]
+ end
+ end
+end
+
+class Fixnum
+ remove_method :quo
+
+ # If Rational is defined, returns a Rational number instead of a Float.
+ def quo(other)
+ Rational.new!(self, 1) / other
+ end
+ alias rdiv quo
+
+ # Returns a Rational number if the result is in fact rational (i.e. +other+ < 0).
+ def rpower (other)
+ if other >= 0
+ self.power!(other)
+ else
+ Rational.new!(self, 1)**other
+ end
+ end
+
+end
+
+class Bignum
+ remove_method :quo
+
+ # If Rational is defined, returns a Rational number instead of a Float.
+ def quo(other)
+ Rational.new!(self, 1) / other
+ end
+ alias rdiv quo
+
+ # Returns a Rational number if the result is in fact rational (i.e. +other+ < 0).
+ def rpower (other)
+ if other >= 0
+ self.power!(other)
+ else
+ Rational.new!(self, 1)**other
+ end
+ end
+
+end
+
+unless defined? 1.power!
+ class Fixnum
+ alias power! **
+ alias ** rpower
+ end
+ class Bignum
+ alias power! **
+ alias ** rpower
+ end
+end
diff --git a/ext/rational/rational.c b/ext/rational/rational.c
new file mode 100644
index 0000000000..18024e9497
--- /dev/null
+++ b/ext/rational/rational.c
@@ -0,0 +1,42 @@
+#include "ruby.h"
+
+/*
+ * call-seq:
+ * fixnum.gcd(fixnum) -> fixnum
+ *
+ * Fixnum-specific optimized version of Integer#gcd. Delegates to
+ * Integer#gcd as necessary.
+ */
+static VALUE
+fix_gcd(self, other)
+ VALUE self, other;
+{
+ long a, b, min, max;
+
+ /*
+ * Note: Cannot handle values <= FIXNUM_MIN here due to overflow during negation.
+ */
+ if (!FIXNUM_P(other) ||
+ (a = FIX2LONG(self)) <= FIXNUM_MIN ||
+ (b = FIX2LONG(other)) <= FIXNUM_MIN ) {
+ /* Delegate to Integer#gcd */
+ return rb_call_super(1, &other);
+ }
+
+ min = a < 0 ? -a : a;
+ max = b < 0 ? -b : b;
+
+ while (min > 0) {
+ long tmp = min;
+ min = max % min;
+ max = tmp;
+ }
+
+ return LONG2FIX(max);
+}
+
+void
+Init_rational()
+{
+ rb_define_method(rb_cFixnum, "gcd", fix_gcd, 1);
+}