Namespaces
Variants
Views
Actions

Difference between revisions of "cpp/numeric/special functions/laguerre"

From cppreference.com
m ({enwiki})
(Applied P1467R9.)
Line 3: Line 3:
 
{{dcl begin}}
 
{{dcl begin}}
 
{{dcl header|cmath}}
 
{{dcl header|cmath}}
{{dcl|num=1|since=c++17|
+
{{dcl |num=1|=c++17|
double      laguerre ( unsigned int n, double x );
+
 
float      laguerre ( unsigned int n, float x );
 
float      laguerre ( unsigned int n, float x );
 +
 
long double laguerre ( unsigned int n, long double x );
 
long double laguerre ( unsigned int n, long double x );
 +
 +
 +
 +
 +
 
float      laguerref( unsigned int n, float x );
 
float      laguerref( unsigned int n, float x );
 +
 +
 
long double laguerrel( unsigned int n, long double x );
 
long double laguerrel( unsigned int n, long double x );
 
}}
 
}}
{{dcl|num=2|since=c++17|
+
double      laguerre ( unsigned int n, IntegralType x );
+
 +
{{dcl|num=|since=c++17|
 +
 +
double      laguerre ( unsigned int n, x );
 
}}
 
}}
 
{{dcl end}}
 
{{dcl end}}
  
@1@ Computes the non-associated {{enwiki|Laguerre polynomials}} of the degree {{tt|n}} and argument {{tt|x}}
+
@1@ Computes the non-associated {{enwiki|Laguerre polynomials}} of the degree {{|n}} and argument {{|x}}overloads of |type {{|}}
@2@ A set of overloads or a function template accepting an argument of any [[cpp/types/is_integral|integral type]]. Equivalent to {{v|1}} after casting the argument to {{c|double}}.
+
{{c|double}}.
  
 
===Parameters===
 
===Parameters===
 
{{par begin}}
 
{{par begin}}
{{par|n|the degree of the polynomial, a value of unsigned integer type}}
+
{{par|n|the degree of the polynomial, unsigned integer }}
{{par|x|the argument, a value of a floating-point or integral type}}
+
{{par|x|the argument, a floating-point or }}
 
{{par end}}
 
{{par end}}
  
 
===Return value===
 
===Return value===
If no errors occur, value of the nonassociated Laguerre polynomial of {{tt|x}}, that is {{math|{{mfrac|{{mexp|x}}|n!}}{{mfrac|d{{su|p=n}}|dx{{su|p=n}}}}(x{{su|p=n}}{{mexp|-x}})}}, is returned.
+
If no errors occur, value of the nonassociated Laguerre polynomial of {{|x}}, that is {{math|{{mfrac|{{mexp|x}}|n!}}{{mfrac|d{{su|p=n}}|dx{{su|p=n}}}}(x{{su|p=n}}{{mexp|-x}})}}, is returned.
  
 
===Error handling===
 
===Error handling===
 
Errors may be reported as specified in {{lc|math_errhandling}}
 
Errors may be reported as specified in {{lc|math_errhandling}}
 
 
* If the argument is NaN, NaN is returned and domain error is not reported
 
* If the argument is NaN, NaN is returned and domain error is not reported
* If {{tt|x}} is negative, a domain error may occur
+
* If {{|x}} is negative, a domain error may occur
* If {{tt|n}} is greater or equal than 128, the behavior is implementation-defined
+
* If {{|n}} is greater or equal than 128, the behavior is implementation-defined
  
 
===Notes===
 
===Notes===
{{cpp/numeric/special_functions/older_impl_note}}
+
{{cpp/numeric//}}
  
An implementation of this function is also [https://www.boost.org/doc/libs/release/libs/math/doc/html/math_toolkit/sf_poly/laguerre.html available in boost.math]
+
An implementation of this function is also [https://www.boost.org/doc/libs/release/libs/math/doc/html/math_toolkit/sf_poly/laguerre.html available in boost.math]
  
The Laguerre polynomials are the polynomial solutions of the equation {{math|xy{{su|p=,,}}+(1-x)y{{su|p=,}}+ny = 0}}
+
The Laguerre polynomials are the polynomial solutions of the equation {{math|xy{{su|p=,,}}+(1-x)y{{su|p=,}}+ny = 0}}
  
 
The first few are:
 
The first few are:
* {{tt|laguerre(0, x)}} {{=}} 1
+
* {{tt|laguerre(0, x)}} = 1
* {{tt|laguerre(1, x)}} {{=}} {{math|-x + 1}}
+
* {{tt|laguerre(1, x)}} = {{math|-x + 1}}
* {{tt|laguerre(2, x)}} {{=}} {{math|{{mfrac|1|2}}[x{{su|p=2}}-4x+2]}}
+
* {{tt|laguerre(2, x)}} = {{math|{{mfrac|1|2}}[x{{su|p=2}}-4x+2]}}
* {{tt|laguerre(3, x)}} {{=}} {{math|{{mfrac|1|6}}[-x{{su|p=3}}-9x{{su|p=2}}-18x+6]}}
+
* {{tt|laguerre(3, x)}} = {{math|{{mfrac|1|6}}[-x{{su|p=3}}-9x{{su|p=2}}-18x+6]
 +
 
 +
}}
  
 
===Example===
 
===Example===
{{example|code=
+
{{example
 +
|code=
 
#include <cmath>
 
#include <cmath>
 
#include <iostream>
 
#include <iostream>
  
double L1(double x) { return -x + 1; }
+
double L1(double x)
double L2(double x) { return 0.5 * (x * x - 4 * x + 2); }
+
{
 +
return -x + 1;
 +
}
 +
 
 +
double L2(double x)
 +
{
 +
return 0.5 * (x * x - 4 * x + 2);
 +
}
  
 
int main()
 
int main()

Revision as of 18:46, 22 March 2023

 
 
 
 
Defined in header <cmath>
(1)
float       laguerre ( unsigned int n, float x );

double      laguerre ( unsigned int n, double x );

long double laguerre ( unsigned int n, long double x );
(since C++17)
(until C++23)
/* floating-point-type */ laguerre( unsigned int n,
                                    /* floating-point-type */ x );
(since C++23)
float       laguerref( unsigned int n, float x );
(2) (since C++17)
long double laguerrel( unsigned int n, long double x );
(3) (since C++17)
Defined in header <cmath>
template< class Integer >
double      laguerre ( unsigned int n, Integer x );
(A) (since C++17)
1-3) Computes the non-associated Laguerre polynomials of the degree n and argument x. The library provides overloads of std::laguerre for all cv-unqualified floating-point types as the type of the parameter x.(since C++23)
A) Additional overloads are provided for all integer types, which are treated as double.

Contents

Parameters

n - the degree of the polynomial, an unsigned integer value
x - the argument, a floating-point or integer value

Return value

If no errors occur, value of the nonassociated Laguerre polynomial of x, that is
ex
n!
dn
dxn
(xn
e-x)
, is returned.

Error handling

Errors may be reported as specified in math_errhandling

  • If the argument is NaN, NaN is returned and domain error is not reported
  • If x is negative, a domain error may occur
  • If n is greater or equal than 128, the behavior is implementation-defined

Notes

Implementations that do not support C++17, but support ISO 29124:2010, provide this function if __STDCPP_MATH_SPEC_FUNCS__ is defined by the implementation to a value at least 201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__ before including any standard library headers.

Implementations that do not support ISO 29124:2010 but support TR 19768:2007 (TR1), provide this function in the header tr1/cmath and namespace std::tr1.

An implementation of this function is also available in boost.math.

The Laguerre polynomials are the polynomial solutions of the equation .

The first few are:

  • laguerre(0, x) = 1
  • laguerre(1, x) = -x + 1
  • laguerre(2, x) =
    1
    2
    [x2
    -4x+2]
  • laguerre(3, x) =
    1
    6
    [-x3
    -9x2
    -18x+6]

The additional overloads are not required to be provided exactly as (A). They only need to be sufficient to ensure that for their argument num of integer type, std::laguerre(int_num, num) has the same effect as std::laguerre(int_num, static_cast<double>(num)).

Example

#include <cmath>
#include <iostream>
 
double L1(double x)
{
    return -x + 1;
}
 
double L2(double x)
{
    return 0.5 * (x * x - 4 * x + 2);
}
 
int main()
{
    // spot-checks
    std::cout << std::laguerre(1, 0.5) << '=' << L1(0.5) << '\n'
              << std::laguerre(2, 0.5) << '=' << L2(0.5) << '\n'
              << std::laguerre(3, 0.0) << '=' << 1.0 << '\n';
}

Output:

0.5=0.5
0.125=0.125
1=1

See also

associated Laguerre polynomials
(function) [edit]

External links

Weisstein, Eric W. "Laguerre Polynomial." From MathWorld — A Wolfram Web Resource.