Skip to main content

Advertisement

Springer Nature Link
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Public Key Cryptography – PKC 2012
  3. Conference paper

Solving Underdetermined Systems of Multivariate Quadratic Equations Revisited

  • Conference paper
  • pp 156–171
  • Cite this conference paper
Public Key Cryptography – PKC 2012 (PKC 2012)
Solving Underdetermined Systems of Multivariate Quadratic Equations Revisited
  • Enrico Thomae19 &
  • Christopher Wolf19 

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7293))

Included in the following conference series:

  • International Workshop on Public Key Cryptography
  • 4471 Accesses

  • 52 Citations

Abstract

Solving systems of m \(\mathcal M\)ultivariate \(\mathcal Q\)uadratic (\(\mathcal{MQ}\)) equations in n variables is one of the main challenges of algebraic cryptanalysis. Although the associated \(\mathcal{MQ}\)-problem is proven to be NP-complete, we know that it is solvable in polynomial time over fields of even characteristic if either m ≥ n(n − 1)/2 (overdetermined) or n ≥ m(m + 1) (underdetermined). It is widely believed that m = n has worst case complexity. Actually in the overdetermined case Gröbner Bases algorithms show a gradual decrease in complexity from m = n to m ≥ n(n − 1)/2 as more and more equations are available. For the underdetermined case no similar behavior was known. Up to now the best way to deal with the case m < n < m(m + 1) was to randomly guess variables until m = n. This article shows how to smartly use additional variables and thus obtain a gradual change of complexity over even characteristics also for the underdetermined case. Namely, we show how a linear change of variables can be used to reduce the overall complexity of solving a \(\mathcal{MQ}\)-system with m equations and n = ωm variables for some ω ∈ ℚ> 1 to the complexity of solving a \(\mathcal{MQ}\)-system with only \((m-\left\lfloor \omega\right\rfloor+1)\) equations and variables, respectively. Our algorithm can be seen as an extension of the previously known algorithm from Kipnis-Patarin-Goubin (extended version of Eurocrypt ’99) and improves an algorithm of Courtois et al. which eliminates \(\left\lfloor \mbox{log}_2\omega\right\rfloor\) variables. For small ω we also adapt our algorithm to fields of odd characteristic. We apply our result to break current instances of the Unbalanced Oil and Vinegar public key signature scheme that uses n = 3m and hence ω = 3.

Download to read the full chapter text

Chapter PDF

Similar content being viewed by others

Improving Thomae-Wolf Algorithm for Solving Underdetermined Multivariate Quadratic Polynomial Problem

Chapter © 2021

Extension Field Cancellation: A New Central Trapdoor for Multivariate Quadratic Systems

Chapter © 2016

Multivariate Cryptosystem Based on a Quadratic Equation to Eliminate the Outliers Using Homomorphic Encryption Scheme

Chapter © 2023

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Algorithmic Complexity
  • Algorithm Analysis and Problem Complexity
  • Algebra
  • Computational Complexity
  • Linear Algebra
  • Mathematics of Algorithmic Complexity

References

  1. Bardet, M., Faugère, J.-C., Salvy, B., Yang, B.-Y.: Asymptotic behaviour of the degree of regularity of semi-regular polynomial systems. In: Gianni, P. (ed.) MEGA 2005, Sardinia, Italy (2005)

    Google Scholar 

  2. Bettale, L., Faugère, J.-C., Perret, L.: Hybrid approach for solving multivariate systems over finite fields. Journal of Mathematical Cryptology 3, 177–197 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Braeken, A., Wolf, C., Preneel, B.: A Study of the Security of Unbalanced Oil and Vinegar Signature Schemes. In: Menezes, A.J. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 29–43. Springer, Heidelberg (2005), http://eprint.iacr.org/2004/222/

    Chapter  Google Scholar 

  4. Computational Algebra Group, University of Sydney. The MAGMA Computational Algebra System for Algebra, Number Theory and Geometry, http://magma.maths.usyd.edu.au/magma/

  5. Courtois, N.T.: Higher Order Correlation Attacks, XL Algorithm and Cryptanalysis of Toyocrypt. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 182–199. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Courtois, N., Goubin, L., Meier, W., Tacier, J.-D.: Solving Underdefined Systems of Multivariate Quadratic Equations. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 211–227. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  7. Courtois, N.T., Daum, M., Felke, P.: On the Security of HFE, HFEv- and Quartz. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 337–350. Springer, Heidelberg (2003), http://eprint.iacr.org/2002/138

    Chapter  Google Scholar 

  8. Courtois, N.T., Klimov, A.B., Patarin, J., Shamir, A.: Efficient Algorithms for Solving Overdefined Systems of Multivariate Polynomial Equations. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000), Extended Version: http://www.minrank.org/xlfull.pdf

    Chapter  Google Scholar 

  9. Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases (F 4). Journal of Pure anNational Institute of Standards and Technologyd Applied Algebra 139, 61–88 (1999)

    Article  MATH  Google Scholar 

  10. Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases without reduction to zero (F 5). In: International Symposium on Symbolic and Algebraic Computation — ISSAC 2002, pp. 75–83. ACM Press (July 2002)

    Google Scholar 

  11. Faugère, J.-C., Joux, A.: Algebraic Cryptanalysis of Hidden Field Equation (HFE) Cryptosystems Using Gröbner Bases. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 44–60. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  12. Faugère, J.-C., Otmani, A., Perret, L., Tillich, J.-P.: Algebraic Cryptanalysis of McEliece Variants with Compact Keys. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 279–298. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  13. Fischer, S., Meier, W.: Algebraic Immunity of S-Boxes and Augmented Functions. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 366–381. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Garey, M.R., Johnson, D.S.: Computers and Intractability — A Guide to the Theory of NP-Completeness. W.H. Freeman and Company (1979)

    Google Scholar 

  15. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced Oil and Vinegar signature schemes — extended version, 17 pages (June 11, 2003), http://www.citeseer/231623.html

    Google Scholar 

  16. Murphy, S., Robshaw, M.J.: Essential Algebraic Structure within the AES. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 1–16. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  17. Patarin, J.: The oil and vinegar signature scheme. Presented at the Dagstuhl Workshop on Cryptography (September 1997), transparencies

    Google Scholar 

  18. Petzoldt, A., Thomae, E., Bulygin, S., Wolf, C.: Small Public Keys and Fast Verification for \(\mathcal{M}\)ultivariate \(\mathcal{Q}\)uadratic Public Key Systems. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 475–490. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  19. Sugita, M., Kawazoe, M., Perret, L., Imai, H.: Algebraic Cryptanalysis of 58-Round SHA-1. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 349–365. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  20. Wolf, C., Preneel, B.: Equivalent Keys in HFE, C*, and Variations. In: Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS, vol. 3715, pp. 33–49. Springer, Heidelberg (2005); Extended version, http://eprint.iacr.org/2004/360/ , 15 pages

  21. Wolf, C., Preneel, B.: Equivalent keys in multivariate quadratic public key systems. Journal of Mathematical Cryptology 4(4), 375–415 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Horst Görtz Institute for IT-security, Faculty of Mathematics, Ruhr-University of Bochum, 44780, Bochum, Germany

    Enrico Thomae & Christopher Wolf

Authors
  1. Enrico Thomae
    View author publications

    Search author on:PubMed Google Scholar

  2. Christopher Wolf
    View author publications

    Search author on:PubMed Google Scholar

Editor information

Editors and Affiliations

  1. Department of Computer Science, Cryptography and Complexity Theory, Darmstadt University of Technology, Mornewegstr. 30, 64293, Darmstadt, Germany

    Marc Fischlin

  2. Department of Computer Science, Darmstadt University of Technology, Hochschulstraße 10, 64289, Darmstadt, Germany

    Johannes Buchmann

  3. Department of Computing, University of Surrey, GU2 7XH, Guildford, Surrey, UK

    Mark Manulis

Rights and permissions

Reprints and permissions

Copyright information

© 2012 International Association for Cryptologic Research

About this paper

Cite this paper

Thomae, E., Wolf, C. (2012). Solving Underdetermined Systems of Multivariate Quadratic Equations Revisited. In: Fischlin, M., Buchmann, J., Manulis, M. (eds) Public Key Cryptography – PKC 2012. PKC 2012. Lecture Notes in Computer Science, vol 7293. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30057-8_10

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-642-30057-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30056-1

  • Online ISBN: 978-3-642-30057-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Underdetermined Multivariate Equations
  • UOV Signature Scheme

Publish with us

Policies and ethics

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

172.69.130.13

ICE Institution of Civil Engineers (3000167333) - Institution of Civil Engineers Library (2000027800)

Springer Nature

© 2025 Springer Nature