Instant Congestion Assessment Network (iCAN) for Traffic Engineering
draft-liu-ican-01
| Document | Type |
Expired Internet-Draft
(individual)
Expired & archived
|
|
|---|---|---|---|
| Authors | Joanna Dang , Bing Liu , Guangming Yang , Kyungtae Lee | ||
| Last updated | 2020-05-07 (Latest revision 2019-11-04) | ||
| RFC stream | (None) | ||
| Intended RFC status | (None) | ||
| Formats | |||
| Stream | Stream state | (No stream defined) | |
| Consensus boilerplate | Unknown | ||
| RFC Editor Note | (None) | ||
| IESG | IESG state | Expired | |
| Telechat date | (None) | ||
| Responsible AD | (None) | ||
| Send notices to | (None) |
This Internet-Draft is no longer active. A copy of the expired Internet-Draft is available in these formats:
Abstract
This draft proposes a new technology named iCAN (instant Congestion Assessment Network), which represents a set of mechanisms running directly on network nodes. These mechanisms allow the nodes adjusting the flows' paths based on real-time measurement of the candidate paths. The measurement is to reflect the congestion situation of each path, so that the nodes could decide which flows need to be switched from a path to another. This is something that current TE technologies can hardly achieve. In current TE, the paths are usually planned in a certralized controller, which is far from the data plane, thus neither be able to assess the real-time congestion situation of each path, nor able to assure the data plane always go as expected (especially in SRv6 scenarios). In a result, traditional TE is not able to adjust the flow paths in real-time to fit for the change of traffic instantly. iCAN can work with traditional TE perfectly: the controller plans multi-path transmission in relatively long period (e.g. minutes), and iCAN does the flow path optimization in a much shorter interval (e.g. milliseconds).
Authors
Joanna Dang
Bing Liu
Guangming Yang
Kyungtae Lee
(Note: The e-mail addresses provided for the authors of this Internet-Draft may no longer be valid.)