DNS Proxy Implementation Guidelines
draft-ietf-dnsext-dnsproxy-06
The information below is for an old version of the document that is already published as an RFC.
| Document | Type |
This is an older version of an Internet-Draft that was ultimately published as RFC 5625.
|
|
|---|---|---|---|
| Author | Ray Bellis | ||
| Last updated | 2015-10-14 (Latest revision 2009-07-02) | ||
| Replaces | draft-bellis-dnsext-dnsproxy | ||
| RFC stream | Internet Engineering Task Force (IETF) | ||
| Intended RFC status | Best Current Practice | ||
| Formats | |||
| Reviews | |||
| Additional resources | Mailing list discussion | ||
| Stream | WG state | (None) | |
| Document shepherd | (None) | ||
| IESG | IESG state | Became RFC 5625 (Best Current Practice) | |
| Action Holders |
(None)
|
||
| Consensus boilerplate | Unknown | ||
| Telechat date | (None) | ||
| Responsible AD | Ralph Droms | ||
| Send notices to | (None) |
draft-ietf-dnsext-dnsproxy-06
DNSEXT R. Bellis
Internet-Draft Nominet UK
Intended status: BCP July 1, 2009
Expires: January 2, 2010
DNS Proxy Implementation Guidelines
draft-ietf-dnsext-dnsproxy-06
Status of this Memo
This Internet-Draft is submitted to IETF in full conformance with the
provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as Internet-
Drafts.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.
The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.
This Internet-Draft will expire on January 2, 2010.
Copyright Notice
Copyright (c) 2009 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents in effect on the date of
publication of this document (http://trustee.ietf.org/license-info).
Please review these documents carefully, as they describe your rights
and restrictions with respect to this document.
Abstract
This document provides guidelines for the implementation of DNS
proxies, as found in broadband gateways and other similar network
devices.
Bellis Expires January 2, 2010 [Page 1]
Internet-Draft DNS Proxy Implementation Guidelines July 2009
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 3
2. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 3
3. The Transparency Principle . . . . . . . . . . . . . . . . . . 3
4. Protocol Conformance . . . . . . . . . . . . . . . . . . . . . 4
4.1. Unexpected Flags and Data . . . . . . . . . . . . . . . . 4
4.2. Label Compression . . . . . . . . . . . . . . . . . . . . 4
4.3. Unknown Resource Record Types . . . . . . . . . . . . . . 5
4.4. Packet Size Limits . . . . . . . . . . . . . . . . . . . . 5
4.4.1. TCP Transport . . . . . . . . . . . . . . . . . . . . 6
4.4.2. Extension Mechanisms for DNS (EDNS0) . . . . . . . . . 6
4.4.3. IP Fragmentation . . . . . . . . . . . . . . . . . . . 6
4.5. Secret Key Transaction Authentication for DNS (TSIG) . . . 7
5. DHCP's Interaction with DNS . . . . . . . . . . . . . . . . . 7
5.1. Domain Name Server (DHCP Option 6) . . . . . . . . . . . . 8
5.2. Domain Name (DHCP Option 15) . . . . . . . . . . . . . . . 8
5.3. DHCP Leases . . . . . . . . . . . . . . . . . . . . . . . 9
6. Security Considerations . . . . . . . . . . . . . . . . . . . 9
6.1. Forgery Resilience . . . . . . . . . . . . . . . . . . . . 9
6.2. Interface Binding . . . . . . . . . . . . . . . . . . . . 10
6.3. Packet Filtering . . . . . . . . . . . . . . . . . . . . . 10
7. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 11
8. Change Log . . . . . . . . . . . . . . . . . . . . . . . . . . 11
9. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 12
10. References . . . . . . . . . . . . . . . . . . . . . . . . . . 12
10.1. Normative References . . . . . . . . . . . . . . . . . . . 12
10.2. Informative References . . . . . . . . . . . . . . . . . . 13
Author's Address . . . . . . . . . . . . . . . . . . . . . . . . . 13
Bellis Expires January 2, 2010 [Page 2]
Internet-Draft DNS Proxy Implementation Guidelines July 2009
1. Introduction
Research has found ([SAC035], [DOTSE]) that many commonly-used
broadband gateways (and similar devices) contain DNS proxies which
are incompatible in various ways with current DNS standards.
These proxies are usually simple DNS forwarders, but typically do not
have any caching capabilities. The proxy serves as a convenient
default DNS resolver for clients on the LAN, but relies on an
upstream resolver (e.g. at an ISP) to perform recursive DNS lookups.
Note that to ensure full DNS protocol interoperability it is
preferred that client stub resolvers should communicate directly with
full-feature upstream recursive resolvers wherever possible.
That notwithstanding, this document describes the incompatibilities
that have been discovered and offers guidelines to implementors on
how to provide better interoperability in those cases where the
client must use the broadband gateway's DNS proxy.
2. Terminology
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].
3. The Transparency Principle
It is not considered practical for a simple DNS proxy to implement
all current and future DNS features.
There are several reasons why this is the case:
o broadband gateways usually have limited hardware resources
o firmware upgrade cycles are long, and many users do not routinely
apply upgrades when they become available
o no-one knows what those future DNS features will be, nor how they
might be implemented
o it would substantially complicate the configuration UI of the
device
Furthermore some modern DNS protocol extensions (see e.g. EDNS0,
below) are intended to be used as "hop-by-hop" mechanisms. If the
DNS proxy is considered to be such a "hop" in the resolution chain,
then for it to function correctly, it would need to be fully
compliant with all such mechanisms.
Bellis Expires January 2, 2010 [Page 3]
Internet-Draft DNS Proxy Implementation Guidelines July 2009
[SAC035] shows that the more actively a proxy participates in the DNS
protocol then the more likely it is that it will somehow interfere
with the flow of messages between the DNS client and the upstream
recursive resolvers.
The role of the proxy should therefore be no more and no less than to
receive DNS requests from clients on the LAN side, forward those
verbatim to one of the known upstream recursive resolvers on the WAN
side, and ensure that the whole response is returned verbatim to the
original client.
It is RECOMMENDED that proxies should be as transparent as possible,
such that any "hop-by-hop" mechanisms or newly introduced protocol
extensions operate as if the proxy were not there.
Except when required to enforce an active security or network policy
(such as maintaining a pre-authentication "walled garden"), end-users
SHOULD be able to send their DNS queries to specified upstream
resolvers, thereby bypassing the proxy altogether. In this case, the
gateway SHOULD NOT modify the DNS request or response packets in any
way.
4. Protocol Conformance
4.1. Unexpected Flags and Data
The Transparency Principle above, when combined with Postel's
Robustness Principle [RFC0793], suggests that DNS proxies should not
arbitrarily reject or otherwise drop requests or responses based on
perceived non-compliance with standards.
For example, some proxies have been observed to drop any packet
containing either the "Authentic Data" (AD) or "Checking Disabled"
(CD) bits from DNSSEC [RFC4035]. This may be because [RFC1035]
originally specified that these unused "Z" flag bits "MUST" be zero.
However these flag bits were always intended to be reserved for
future use, so refusing to proxy any packet containing these flags
(now that uses for those flags have indeed been defined) is not
appropriate.
Therefore proxies MUST ignore any unknown DNS flags and proxy those
packets as usual.
4.2. Label Compression
Compression of labels as per Section 4.1.4 of [RFC1035] is optional.
Bellis Expires January 2, 2010 [Page 4]
Internet-Draft DNS Proxy Implementation Guidelines July 2009
Proxies MUST forward packets regardless of the presence or absence of
compressed labels therein.
4.3. Unknown Resource Record Types
[RFC3597] requires that resolvers MUST handle Resource Records (RRs)
of unknown type transparently.
All requests and responses MUST be proxied regardless of the values
of the QTYPE and QCLASS fields.
Similarly all responses MUST be proxied regardless of the values of
the TYPE and CLASS fields of any Resource Record therein.
4.4. Packet Size Limits
[RFC1035] specifies that the maximum size of the DNS payload in a UDP
packet is 512 octets. Where the required portions of a response
would not fit inside that limit the DNS server MUST set the
"TrunCation" (TC) bit in the DNS response header to indicate that
truncation has occurred. There are however two standard mechanisms
(described in Section 4.4.1 and Section 4.4.2) for transporting
responses larger than 512 octets.
Many proxies have been observed to truncate all responses at 512
octets, and others at a packet size related to the WAN MTU, in either
case doing so without correctly setting the TC bit.
Other proxies have been observed to remove the TC bit in server
responses which correctly had the TC bit set by the server.
If a DNS response is truncated but the TC bit is not set then client
failures may result. In particular a naive DNS client library might
suffer crashes due to reading beyond the end of the data actually
received.
Since UDP packets larger than 512 octets are now expected in normal
operation, proxies SHOULD NOT truncate UDP packets that exceed that
size. See Section 4.4.3 for recommendations for packet sizes
exceeding the WAN MTU.
If a proxy must unilaterally truncate a response then the proxy MUST
set the TC bit. Similarly, proxies MUST NOT remove the TC bit from
responses.
Bellis Expires January 2, 2010 [Page 5]
Internet-Draft DNS Proxy Implementation Guidelines July 2009
4.4.1. TCP Transport
Should a UDP query fail because of truncation, the standard fail-over
mechanism is to retry the query using TCP, as described in section
6.1.3.2 of [RFC1123].
Whilst TCP transport is not strictly mandatory, it is supported by
the vast majority of stub resolvers and recursive servers. Lack of
support in the proxy prevents this fail-over mechanism from working.
DNS proxies MUST therefore be prepared to receive and forward queries
over TCP.
Note that it is unlikely that a client would send a request over TCP
unless it had already received a truncated UDP response. Some
"smart" proxies have been observed to first forward any request
received over TCP to an upstream resolver over UDP, only for the
response to be truncated, causing the proxy to retry over TCP. Such
behaviour increases network traffic and causes delay in DNS
resolution since the initial UDP request is doomed to fail.
Therefore whenever a proxy receives a request over TCP, the proxy
SHOULD forward the query over TCP and SHOULD NOT attempt the same
query over UDP first.
4.4.2. Extension Mechanisms for DNS (EDNS0)
The Extension Mechanism for DNS [RFC2671] was introduced to allow the
transport of larger DNS packets over UDP and also to allow for
additional request and response flags.
A client may send an OPT Resource Record (OPT RR) in the Additional
Section of a request to indicate that it supports a specific receive
buffer size. The OPT RR also includes the "DNSSEC OK" (DO) flag used
by DNSSEC to indicate that DNSSEC-related RRs should be returned to
the client.
However some proxies have been observed to either reject (with a
FORMERR response code) or black-hole any packet containing an OPT RR.
As per Section 4.1 proxies MUST NOT refuse to proxy such packets.
4.4.3. IP Fragmentation
Support for UDP packet sizes exceeding the WAN MTU depends on the
gateway's algorithm for handling fragmented IP packets. Several
methods are possible:
Bellis Expires January 2, 2010 [Page 6]
Internet-Draft DNS Proxy Implementation Guidelines July 2009
1. fragments are dropped
2. fragments are forwarded individually as they're received
3. complete packets are reassembled on the gateway, and then re-
fragmented (if necessary) as they're forwarded to the client
Method 1 above will cause compatibility problems with EDNS0 unless
the DNS client is configured to advertise an EDNS0 buffer size
limited to the WAN MTU less the size of the IP header. Note that RFC
2671 does recommend that the path MTU should be taken into account
when using EDNS0.
Also, whilst the EDNS0 specification allows for a buffer size of up
to 65535 octets, most common DNS server implementations do not
support a buffer size above 4096 octets.
Therefore (irrespective of which of the methods above is in use)
proxies SHOULD be capable of forwarding UDP packets up to a payload
size of at least 4096 octets.
NB: in theory IP fragmentation may also occur if the LAN MTU is
smaller than the WAN MTU, although the author has not observed such a
configuration in use on any residential broadband service.
4.5. Secret Key Transaction Authentication for DNS (TSIG)
[RFC2845] defines TSIG, which is a mechanism for authenticating DNS
requests and responses at the packet level.
Any modifications made to the DNS portions of a TSIG-signed query or
response packet (with the exception of the Query ID) will cause a
TSIG authentication failure.
DNS proxies MUST implement Section 4.7 of [RFC2845] and either
forward packets unchanged (as recommended above) or fully implement
TSIG.
As per Section 4.3, DNS proxies MUST be capable of proxying packets
containing TKEY [RFC2930] Resource Records.
NB: any DNS proxy (such as those commonly found in WiFi hotspot
"walled gardens") which transparently intercepts all DNS queries, and
which returns unsigned responses to signed queries, will also cause
TSIG authentication failures.
5. DHCP's Interaction with DNS
Whilst this document is primarily about DNS proxies, most consumers
Bellis Expires January 2, 2010 [Page 7]
Internet-Draft DNS Proxy Implementation Guidelines July 2009
rely on DHCP [RFC2131] to obtain network configuration settings.
Such settings include the client machine's IP address, subnet mask
and default gateway, but also include DNS related settings.
It is therefore appropriate to examine how DHCP affects client DNS
configuration.
5.1. Domain Name Server (DHCP Option 6)
Most gateways default to supplying their own IP address in the DHCP
"Domain Name Server" option [RFC2132]. The net result is that
without explicit re-configuration many DNS clients will by default
send queries to the gateway's DNS proxy. This is understandable
behaviour given that the correct upstream settings are not usually
known at boot time.
Most gateways learn their own DNS settings via values supplied by an
ISP via DHCP or PPP over the WAN interface. However whilst many
gateways do allow the device administrator to override those values,
some gateways only use those supplied values to affect the proxy's
own forwarding function, and do not offer these values via DHCP.
When using such a device the only way to avoid using the DNS proxy is
to hard-code the required values in the client operating system.
This may be acceptable for a desktop system but it is inappropriate
for mobile devices which are regularly used on many different
networks.
As per Section 3, end-users SHOULD be able to send their DNS queries
directly to specified upstream resolvers, ideally without hard-coding
those settings in their stub resolver.
It is therefore RECOMMENDED that gateways SHOULD support device
administrator configuration of values for the "Domain Name Server"
DHCP option.
5.2. Domain Name (DHCP Option 15)
A significant amount of traffic to the DNS Root Name Servers is for
invalid top-level domain names, and some of that traffic can be
attributed to particular equipment vendors whose firmware defaults
this DHCP option to specific values.
Since no standard exists for a "local" scoped domain name suffix it
is RECOMMENDED that the default value for this option SHOULD be
empty, and that this option MUST NOT be sent to clients when no value
is configured.
Bellis Expires January 2, 2010 [Page 8]
Internet-Draft DNS Proxy Implementation Guidelines July 2009
5.3. DHCP Leases
It is noted that some DHCP servers in broadband gateways by default
offer their own IP address for the "Domain Name Server" option (as
described above) but then automatically start offering the upstream
servers' addresses once they've been learnt over the WAN interface.
In general this behaviour is highly desirable, but the effect for the
end-user is that the settings used depend on whether the DHCP lease
was obtained before or after the WAN link was established.
If the DHCP lease is obtained whilst the WAN link is down then the
DHCP client (and hence the DNS client) will not receive the correct
values until the DHCP lease is renewed.
Whilst no specific recommendations are given here, vendors may wish
to give consideration to the length of DHCP leases, and whether some
mechanism for forcing a DHCP lease renewal might be appropriate.
Another possibility is that the learnt upstream values might be
persisted in non-volatile memory such that on reboot the same values
can be automatically offered via DHCP. However this does run the
risk that incorrect values are initially offered if the device is
moved or connected to another ISP.
Alternatively, the DHCP server might only issue very short (i.e. 60
second) leases while the WAN link is down, only reverting to more
typical lease lengths once the WAN link is up and the upstream DNS
servers are known. Indeed with such a configuration it may be
possible to avoid the need to implement a DNS proxy function in the
broadband gateway at all.
6. Security Considerations
This document introduces no new protocols. However there are some
security related recommendations for vendors that are listed here.
6.1. Forgery Resilience
Whilst DNS proxies are not usually full-feature resolvers they
nevertheless share some characteristics with them.
Notwithstanding the recommendations above about transparency many DNS
proxies are observed to pick a new Query ID for outbound requests to
ensure that responses are directed to the correct client.
NB: Changing the Query ID is acceptable and compatible with proxying
Bellis Expires January 2, 2010 [Page 9]
Internet-Draft DNS Proxy Implementation Guidelines July 2009
TSIG-signed packets since the TSIG signature calculation is based on
the original message ID which is carried in the TSIG RR.
It has been standard guidance for many years that each DNS query
should use a randomly generated Query ID. However many proxies have
been observed picking sequential Query IDs for successive requests.
It is strongly RECOMMENDED that DNS proxies follow the relevant
recommendations in [RFC5452], particularly those in Section 9.2
relating to randomisation of Query IDs and source ports. This also
applies to source port selection within any NAT function.
If a DNS proxy is running on a broadband gateway with NAT that is
compliant with [RFC4787] then it SHOULD also follow the
recommendations in Section 10 of [RFC5452] concerning how long DNS
state is kept.
6.2. Interface Binding
Some gateways have been observed to have their DNS proxy listening on
both internal (LAN) and external (WAN) interfaces. In this
configuration it is possible for the proxy to be used to mount
reflector attacks as described in [RFC5358].
The DNS proxy in a gateway SHOULD NOT by default be accessible from
the WAN interfaces of the device.
6.3. Packet Filtering
The Transparency and Robustness Principles are not entirely
compatible with the deep packet inspection features of security
appliances such as firewalls which are intended to protect systems on
the inside of a network from rogue traffic.
However a clear distinction may be made between traffic that is
intrinsically malformed and that which merely contains unexpected
data.
Examples of malformed packets which MAY be dropped include:
o invalid compression pointers (i.e. those that point outside of the
current packet, or which might cause a parsing loop).
o incorrect counts for the Question, Answer, Authority and
Additional Sections (although care should be taken where
truncation is a possibility).
Dropped packets will cause the client to repeatedly retransmit the
original request, with the client only detecting the error after
Bellis Expires January 2, 2010 [Page 10]
Internet-Draft DNS Proxy Implementation Guidelines July 2009
several retransmit intervals.
In these circumstances proxies SHOULD synthesise a suitable DNS error
response to the client (i.e. SERVFAIL) instead of dropping the
packet completely. This will allow the client to detect the error
immediately.
7. IANA Considerations
This document requests no IANA actions.
8. Change Log
NB: to be removed by the RFC Editor before publication.
draft-ietf-dnsproxy-06pre (from IESG review)
Section 4.1 - cleaned up tautological language and changed SHOULD
to MUST (Adrian Farrel)
Section 4.4.1 - made TCP support mandatory (from Lars Eggert)
Section 4.4.2 - made EDNS0 pass-thru mandatory (from Jari Arkko)
Section 6.3 - clarified rationale for handling errors (from Robert
Sparks)
draft-ietf-dnsproxy-05
Removed specific reference to 28 byte IP headers (from Mark
Andrews)
draft-ietf-dnsproxy-04 - post WGLC
Introduction expanded
Section 5.2 - changed SHOULD to MUST
Section 4.5 - changed SHOULD to MUST (Alex Bligh)
Editorial nits (from Andrew Sullivan, Alfred Hones)
Clarificaton on end-user vs device administrator (Alan Barrett,
Paul Selkirk)
draft-ietf-dnsproxy-03
Editorial nits and mention of LAN MTU (from Alex Bligh)
draft-ietf-dnsproxy-02
Changed "router" to "gateway" throughout (David Oran)
Updated forgery resilience reference
Elaboration on bypassability (from Nicholas W.)
Elaboration on NAT source port randomisation (from Nicholas W.)
Mention of using short DHCP leases while the WAN link is down
(from Ralph Droms)
Bellis Expires January 2, 2010 [Page 11]
Internet-Draft DNS Proxy Implementation Guidelines July 2009
Further clarification on permissibility of altering QID when using
TSIG
draft-ietf-dnsproxy-01
Strengthened recommendations about truncation (from Shane Kerr)
New TSIG text (with help from Olafur)
Additional forgery resilience text (from Olafur)
Compression support (from Olafur)
Correction of text re: QID changes and compatibility with TSIG
draft-ietf-dnsproxy-00
Changed recommended DPI error to SERVFAIL (from Jelte)
Changed example for invalid compression pointers (from Wouter).
Note about TSIG implications of changing Query ID (from Wouter).
Clarified TC-bit text (from Wouter)
Extra text about proxy bypass (Nicholas W.)
draft-bellis-dnsproxy-00
Initial draft
9. Acknowledgements
The author would particularly like to acknowledge the assistance of
Lisa Phifer of Core Competence. In addition the author is grateful
for the feedback from the members of the DNSEXT Working Group.
10. References
10.1. Normative References
[RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, September 1981.
[RFC1035] Mockapetris, P., "Domain names - implementation and
specification", STD 13, RFC 1035, November 1987.
[RFC1123] Braden, R., "Requirements for Internet Hosts - Application
and Support", STD 3, RFC 1123, October 1989.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC2131] Droms, R., "Dynamic Host Configuration Protocol",
RFC 2131, March 1997.
[RFC2132] Alexander, S. and R. Droms, "DHCP Options and BOOTP Vendor
Bellis Expires January 2, 2010 [Page 12]
Internet-Draft DNS Proxy Implementation Guidelines July 2009
Extensions", RFC 2132, March 1997.
[RFC2671] Vixie, P., "Extension Mechanisms for DNS (EDNS0)",
RFC 2671, August 1999.
[RFC2845] Vixie, P., Gudmundsson, O., Eastlake, D., and B.
Wellington, "Secret Key Transaction Authentication for DNS
(TSIG)", RFC 2845, May 2000.
[RFC2930] Eastlake, D., "Secret Key Establishment for DNS (TKEY
RR)", RFC 2930, September 2000.
[RFC3597] Gustafsson, A., "Handling of Unknown DNS Resource Record
(RR) Types", RFC 3597, September 2003.
[RFC4035] Arends, R., Austein, R., Larson, M., Massey, D., and S.
Rose, "Protocol Modifications for the DNS Security
Extensions", RFC 4035, March 2005.
[RFC4787] Audet, F. and C. Jennings, "Network Address Translation
(NAT) Behavioral Requirements for Unicast UDP", BCP 127,
RFC 4787, January 2007.
[RFC5358] Damas, J. and F. Neves, "Preventing Use of Recursive
Nameservers in Reflector Attacks", BCP 140, RFC 5358,
October 2008.
[RFC5452] Hubert, A. and R. van Mook, "Measures for Making DNS More
Resilient against Forged Answers", RFC 5452, January 2009.
10.2. Informative References
[DOTSE] Ahlund and Wallstrom, "DNSSEC Tests of Consumer Broadband
Routers", February 2008,
<http://www.iis.se/docs/Routertester_en.pdf>.
[SAC035] Bellis, R. and L. Phifer, "Test Report: DNSSEC Impact on
Broadband Routers and Firewalls", September 2008,
<http://www.icann.org/committees/security/sac035.pdf>.
Bellis Expires January 2, 2010 [Page 13]
Internet-Draft DNS Proxy Implementation Guidelines July 2009
Author's Address
Ray Bellis
Nominet UK
Edmund Halley Road
Oxford OX4 4DQ
United Kingdom
Phone: +44 1865 332211
Email: ray.bellis@nominet.org.uk
URI: http://www.nominet.org.uk/
Bellis Expires January 2, 2010 [Page 14]