ResearchTargeted Threats

It’s Parliamentary KeyBoy and the targeting of the Tibetan Community

Key Findings

  • In this report we track a malware operation targeting members of the Tibetan Parliament over August and October 2016.
  • The operation uses known and patched exploits to deliver a custom backdoor known as KeyBoy.
  • We analyze multiple versions of KeyBoy revealing a development cycle focused on avoiding basic antivirus detection.
  • This operation is another example of a threat actor using “just enough” technical sophistication to exploit a target.

Introduction

The Tibetan community has been targeted for over a decade by espionage operations that use malware to infiltrate communications and gather information. They are often targeted simultaneously with other ethnic minorities and religious groups in China. Examples as early as 2008 document  malware operations against Tibetan non-governmental organizations (NGOs) that also targeted Falun Gong and Uyghur groups. More recently in 2016, Arbor Networks reported on connected malware operations continuing to target these same groups, which the Communist Party of China perceives as a threat to its power.

These types of operations have multiple components, each with their own associated costs to the operator. There is the exploit code and malware used to gain access to systems, the infrastructure that provides command and control to the malware operator, and the human elements – developers who create the malware, operators who deploy it, and analysts who extract value from the stolen information.

We anticipate that operators will attempt to balance the amount of information they expect to gather with the operational costs and risks of deploying different strategies and technologies. For example, in deploying a particular malware implant against a target the operator will balance the likelihood and cost of discovery with the perceived value of extracting information from that target. If a toolkit is exposed inadvertently, the target may increase defenses and the operator will have to spend more time and resources on development.

Civil society groups, due to their generally limited technical capacity and lack of security expertise and countermeasures, shift the risk/reward ratio in ways favourable to the malware operator. For example, we have observed frequent reuse of older (patched) exploits in malware operations against the Tibetan community. Up-to-date operating systems and software would block these threats, but the operators have probably discovered through experience that the their targets have unpatched systems and a general lack of security controls beyond antivirus programs. The continued use of old exploits is a cost reduction strategy: since they still work, there is little need to use more expensive exploits.

Moreover, many of the malware defenses used by the Tibetan diaspora involve individuals recognizing signs of a malicious email, such as exhortations to open attachments. This kind of behavioral strategy pushes the operators to change their social engineering tactics, but does not provide pressure to radically change their toolkits. This situation is different from a technical-indicator based institutional security environment. In practice, minimal code changes sufficient to bypass signature-based security controls such as antivirus may be all that are necessary.

This report analyzes an operation targeting members of the Tibetan Parliament. The actors used a new version of “KeyBoy,” a custom backdoor first disclosed by researchers at Rapid7 in June 2013. Their work outlined the capabilities of the backdoor, and exposed the protocols and algorithms used to hide the network communication and configuration data.

We observed operations in August and October 2016, shortly after an order in June to demolish the Larung Gar Buddhist Academy and days before organized protests on October 19 around the same issue. These operations involved highly targeted email lures with repurposed content and attachments that contained an updated version of KeyBoy. We assess that KeyBoy is the product of a development cycle that is iterated only as much as necessary to ensure the survival of the implant against antivirus detection and basic security controls.

This report is divided into two parts:

Part 1: The Parliamentarian Operation Analyzes an operation targeting the members of the Tibetan Parliament by repurposing legitimate content, and documents implanted with Keyboy.

Part 2: KeyBoy – Tracking Evolution Examines the KeyBoy development cycle revealing a focus on avoiding basic antivirus detection.

To assist other researchers, we include appendices and indicators of compromise that detail the KeyBoy samples we analyzed and provide an in-depth analysis of some features of the most recent implant.

Part 1: The Parliamentarian Operation

In August and October 2016 we observed a malware operation targeting members of the Tibetan Parliament (the highest legislative organ of the Tibetan government in exile, formally known as Central Tibetan Administration). We collected two emails sent to Parliamentarians that rapidly repurposed legitimate content in an attempt to entice recipients to open malicious documents. The first attempt leveraged an old vulnerability in the parsing of Rich-text-format (.rtf) files (CVE-2012-0158). The second attempt used a newer, but also patched, .rtf vulnerability (CVE-2015-1641). Both attempts used versions of KeyBoy and shared the same command and control infrastructure as well as other configuration details.

Attempt 1

On August 25, 2016, members of the Tibetan Parliament received an email with information on an upcoming conference relevant to the Tibetan community. This email had the same subject and attachment as a legitimate message sent to the same recipients just 15 hours prior, but in this case the attachment was crafted to exploit a frequently targeted vulnerability in Microsoft Office. The accompanying malware was a backdoor implant designed to surveil the computers of the Parliamentarians. This malicious attachment used the original, legitimate filename as a decoy (see: Figure 1).