Techniques represent 'how' an adversary achieves a tactical goal by performing an action. For example, an adversary may dump credentials to achieve credential access.
ID | Name | Description | |
T0800 | Activate Firmware Update Mode | Adversaries may activate firmware update mode on devices to prevent expected response functions from engaging in reaction to an emergency or process malfunction. For example, devices such as protection relays may have an operation mode designed for firmware installation. This mode may halt process monitoring and related functions to allow new firmware to be loaded. A device left in update mode may be placed in an inactive holding state if no firmware is provided to it. By entering and leaving a device in this mode, the adversary may deny its usual functionalities. | |
T0830 | Adversary-in-the-Middle | Adversaries with privileged network access may seek to modify network traffic in real time using adversary-in-the-middle (AiTM) attacks. This type of attack allows the adversary to intercept traffic to and/or from a particular device on the network. If a AiTM attack is established, then the adversary has the ability to block, log, modify, or inject traffic into the communication stream. There are several ways to accomplish this attack, but some of the most-common are Address Resolution Protocol (ARP) poisoning and the use of a proxy. | |
T0878 | Alarm Suppression | Adversaries may target protection function alarms to prevent them from notifying operators of critical conditions. Alarm messages may be a part of an overall reporting system and of particular interest for adversaries. Disruption of the alarm system does not imply the disruption of the reporting system as a whole. | |
T0802 | Automated Collection | Adversaries may automate collection of industrial environment information using tools or scripts. This automated collection may leverage native control protocols and tools available in the control systems environment. For example, the OPC protocol may be used to enumerate and gather information. Access to a system or interface with these native protocols may allow collection and enumeration of other attached, communicating servers and devices. | |
T0895 | Autorun Image | Adversaries may leverage AutoRun functionality or scripts to execute malicious code. Devices configured to enable AutoRun functionality or legacy operating systems may be susceptible to abuse of these features to run malicious code stored on various forms of removeable media (i.e., USB, Disk Images [.ISO]). Commonly, AutoRun or AutoPlay are disabled in many operating systems configurations to mitigate against this technique. If a device is configured to enable AutoRun or AutoPlay, adversaries may execute code on the device by mounting the removable media to the device, either through physical or virtual means. This may be especially relevant for virtual machine environments where disk images may be dynamically mapped to a guest system on a hypervisor. | |
T0803 | Block Command Message | Adversaries may block a command message from reaching its intended target to prevent command execution. In OT networks, command messages are sent to provide instructions to control system devices. A blocked command message can inhibit response functions from correcting a disruption or unsafe condition. | |
T0804 | Block Reporting Message | Adversaries may block or prevent a reporting message from reaching its intended target. In control systems, reporting messages contain telemetry data (e.g., I/O values) pertaining to the current state of equipment and the industrial process. By blocking these reporting messages, an adversary can potentially hide their actions from an operator. | |
T0805 | Block Serial COM | Adversaries may block access to serial COM to prevent instructions or configurations from reaching target devices. Serial Communication ports (COM) allow communication with control system devices. Devices can receive command and configuration messages over such serial COM. Devices also use serial COM to send command and reporting messages. Blocking device serial COM may also block command messages and block reporting messages. | |
T0806 | Brute Force I/O | Adversaries may repetitively or successively change I/O point values to perform an action. Brute Force I/O may be achieved by changing either a range of I/O point values or a single point value repeatedly to manipulate a process function. The adversary's goal and the information they have about the target environment will influence which of the options they choose. In the case of brute forcing a range of point values, the adversary may be able to achieve an impact without targeting a specific point. In the case where a single point is targeted, the adversary may be able to generate instability on the process function associated with that particular point. | |
T0892 | Change Credential | Adversaries may modify software and device credentials to prevent operator and responder access. Depending on the device, the modification or addition of this password could prevent any device configuration actions from being accomplished and may require a factory reset or replacement of hardware. These credentials are often built-in features provided by the device vendors as a means to restrict access to management interfaces. | |
T0858 | Change Operating Mode | Adversaries may change the operating mode of a controller to gain additional access to engineering functions such as Program Download. Programmable controllers typically have several modes of operation that control the state of the user program and control access to the controllers API. Operating modes can be physically selected using a key switch on the face of the controller but may also be selected with calls to the controllers API. Operating modes and the mechanisms by which they are selected often vary by vendor and product line. Some commonly implemented operating modes are described below: | |
T0807 | Command-Line Interface | Adversaries may utilize command-line interfaces (CLIs) to interact with systems and execute commands. CLIs provide a means of interacting with computer systems and are a common feature across many types of platforms and devices within control systems environments. Adversaries may also use CLIs to install and run new software, including malicious tools that may be installed over the course of an operation. | |
T0885 | Commonly Used Port | Adversaries may communicate over a commonly used port to bypass firewalls or network detection systems and to blend in with normal network activity, to avoid more detailed inspection. They may use the protocol associated with the port, or a completely different protocol. They may use commonly open ports, such as the examples provided below. | |
T0884 | Connection Proxy | Adversaries may use a connection proxy to direct network traffic between systems or act as an intermediary for network communications. | |
T0879 | Damage to Property | Adversaries may cause damage and destruction of property to infrastructure, equipment, and the surrounding environment when attacking control systems. This technique may result in device and operational equipment breakdown, or represent tangential damage from other techniques used in an attack. Depending on the severity of physical damage and disruption caused to control processes and systems, this technique may result in Loss of Safety. Operations that result in Loss of Control may also cause damage to property, which may be directly or indirectly motivated by an adversary seeking to cause impact in the form of Loss of Productivity and Revenue. | |
T0809 | Data Destruction | Adversaries may perform data destruction over the course of an operation. The adversary may drop or create malware, tools, or other non-native files on a target system to accomplish this, potentially leaving behind traces of malicious activities. Such non-native files and other data may be removed over the course of an intrusion to maintain a small footprint or as a standard part of the post-intrusion cleanup process. | |
T0811 | Data from Information Repositories | Adversaries may target and collect data from information repositories. This can include sensitive data such as specifications, schematics, or diagrams of control system layouts, devices, and processes. Examples of information repositories include reference databases in the process environment, as well as databases in the corporate network that might contain information about the ICS. | |
T0893 | Data from Local System | Adversaries may target and collect data from local system sources, such as file systems, configuration files, or local databases. This can include sensitive data such as specifications, schematics, or diagrams of control system layouts, devices, and processes. | |
T0812 | Default Credentials | Adversaries may leverage manufacturer or supplier set default credentials on control system devices. These default credentials may have administrative permissions and may be necessary for initial configuration of the device. It is general best practice to change the passwords for these accounts as soon as possible, but some manufacturers may have devices that have passwords or usernames that cannot be changed. | |
T0813 | Denial of Control | Adversaries may cause a denial of control to temporarily prevent operators and engineers from interacting with process controls. An adversary may attempt to deny process control access to cause a temporary loss of communication with the control device or to prevent operator adjustment of process controls. An affected process may still be operating during the period of control loss, but not necessarily in a desired state. | |
T0814 | Denial of Service | Adversaries may perform Denial-of-Service (DoS) attacks to disrupt expected device functionality. Examples of DoS attacks include overwhelming the target device with a high volume of requests in a short time period and sending the target device a request it does not know how to handle. Disrupting device state may temporarily render it unresponsive, possibly lasting until a reboot can occur. When placed in this state, devices may be unable to send and receive requests, and may not perform expected response functions in reaction to other events in the environment. | |
T0815 | Denial of View | Adversaries may cause a denial of view in attempt to disrupt and prevent operator oversight on the status of an ICS environment. This may manifest itself as a temporary communication failure between a device and its control source, where the interface recovers and becomes available once the interference ceases. | |
T0868 | Detect Operating Mode | Adversaries may gather information about a PLCs or controllers current operating mode. Operating modes dictate what change or maintenance functions can be manipulated and are often controlled by a key switch on the PLC (e.g., run, prog [program], and remote). Knowledge of these states may be valuable to an adversary to determine if they are able to reprogram the PLC. Operating modes and the mechanisms by which they are selected often vary by vendor and product line. Some commonly implemented operating modes are described below: | |
T0816 | Device Restart/Shutdown | Adversaries may forcibly restart or shutdown a device in an ICS environment to disrupt and potentially negatively impact physical processes. Methods of device restart and shutdown exist in some devices as built-in, standard functionalities. These functionalities can be executed using interactive device web interfaces, CLIs, and network protocol commands. | |
T0817 | Drive-by Compromise | Adversaries may gain access to a system during a drive-by compromise, when a user visits a website as part of a regular browsing session. With this technique, the user's web browser is targeted and exploited simply by visiting the compromised website. | |
T0871 | Execution through API | Adversaries may attempt to leverage Application Program Interfaces (APIs) used for communication between control software and the hardware. Specific functionality is often coded into APIs which can be called by software to engage specific functions on a device or other software. | |
T0819 | Exploit Public-Facing Application | Adversaries may leverage weaknesses to exploit internet-facing software for initial access into an industrial network. Internet-facing software may be user applications, underlying networking implementations, an assets operating system, weak defenses, etc. Targets of this technique may be intentionally exposed for the purpose of remote management and visibility. | |
T0820 | Exploitation for Evasion | Adversaries may exploit a software vulnerability to take advantage of a programming error in a program, service, or within the operating system software or kernel itself to evade detection. Vulnerabilities may exist in software that can be used to disable or circumvent security features. | |
T0890 | Exploitation for Privilege Escalation | Adversaries may exploit software vulnerabilities in an attempt to elevate privileges. Exploitation of a software vulnerability occurs when an adversary takes advantage of a programming error in a program, service, or within the operating system software or kernel itself to execute adversary-controlled code. Security constructs such as permission levels will often hinder access to information and use of certain techniques, so adversaries will likely need to perform privilege escalation to include use of software exploitation to circumvent those restrictions. | |
T0866 | Exploitation of Remote Services | Adversaries may exploit a software vulnerability to take advantage of a programming error in a program, service, or within the operating system software or kernel itself to enable remote service abuse. A common goal for post-compromise exploitation of remote services is for initial access into and lateral movement throughout the ICS environment to enable access to targeted systems. | |
T0822 | External Remote Services | Adversaries may leverage external remote services as a point of initial access into your network. These services allow users to connect to internal network resources from external locations. Examples are VPNs, Citrix, and other access mechanisms. Remote service gateways often manage connections and credential authentication for these services. | |
T0823 | Graphical User Interface | Adversaries may attempt to gain access to a machine via a Graphical User Interface (GUI) to enhance execution capabilities. Access to a GUI allows a user to interact with a computer in a more visual manner than a CLI. A GUI allows users to move a cursor and click on interface objects, with a mouse and keyboard as the main input devices, as opposed to just using the keyboard. | |
T0891 | Hardcoded Credentials | Adversaries may leverage credentials that are hardcoded in software or firmware to gain an unauthorized interactive user session to an asset. Examples credentials that may be hardcoded in an asset include: | |
T0874 | Hooking | Adversaries may hook into application programming interface (API) functions used by processes to redirect calls for execution and privilege escalation means. Windows processes often leverage these API functions to perform tasks that require reusable system resources. Windows API functions are typically stored in dynamic-link libraries (DLLs) as exported functions. | |
T0877 | I/O Image | Adversaries may seek to capture process values related to the inputs and outputs of a PLC. During the scan cycle, a PLC reads the status of all inputs and stores them in an image table. The image table is the PLCs internal storage location where values of inputs/outputs for one scan are stored while it executes the user program. After the PLC has solved the entire logic program, it updates the output image table. The contents of this output image table are written to the corresponding output points in I/O Modules. | |
T0872 |