Monad
Hint: if you're just looking for an introduction to monads, see Merely monadic or one of the other monad tutorials.
import Control.Monad |
The Monad
class
Monads can be viewed as a standard programming interface to various data or control structures, which is captured by Haskell's Monad
class. All the common monads are members of it:
class Monad m where
(>>=) :: m a -> ( a -> m b) -> m b
(>>) :: m a -> m b -> m b
return :: a -> m a
In addition to implementing the class functions, all instances of Monad
should satisfy the following equations, or monad laws:
return a >>= k = k a
m >>= return = m
m >>= (\x -> k x >>= h) = (m >>= k) >>= h
For more information, including an intuitive explanation of why the monad laws should be satisfied, see Monad laws.
As of GHC 7.10, the Applicative
typeclass is a superclass of Monad
, and the Functor
typeclass is a superclass of Applicative
. This means that all monads are applicatives, all applicatives are functors, and therefore all monads are also functors. For more information, see the Functor hierarchy proposal.
If the Monad
definitions are preferred, Functor
and Applicative
instances can be defined from them with:
fmap fab ma = do { a <- ma ; return (fab a) }
-- ma >>= (return . fab)
pure a = do { return a }
-- return a
mfab <*> ma = do { fab <- mfab ; a <- ma ; return (fab a) }
-- mfab >>= (\ fab -> ma >>= (return . fab))
-- mfab `ap` ma
although the recommended order is to define return
as pure
if the two would otherwise end up being the same.
Common monads
These include:
- Representing failure using
Maybe
monad - Nondeterminism using
List
monad to represent carrying multiple values - State using
State
monad - Read-only environment using
Reader
monad - I/O using
IO
monad
do
-notation
In order to improve the look of code that uses monads, Haskell provides a special form of syntactic sugar called do
-notation. For example, the following expression:
thing1 >>= (\x -> func1 x >>= (\y -> thing2
>>= (\_ -> func2 y >>= (\z -> return z))))
which can be written more clearly by breaking it into several lines and omitting parentheses:
thing1 >>= \x ->
func1 x >>= \y ->
thing2 >>= \_ ->
func2 y >>= \z ->
return z
can also be written using do
-notation:
do {
x <- thing1 ;
y <- func1 x ;
thing2 ;
z <- func2 y ;
return z
}
(the curly braces and the semicolons are optional when the indentation rules are observed).
Code written using do
-notation is transformed by the compiler to ordinary expressions that use the functions from the Monad
class (i.e. the two varieties of bind: (>>=)
and (>>)
).
When using do
-notation and a monad like State
or IO
, programs in Haskell look very much like programs written in an imperative language as each line contains a statement that can change the simulated global state of the program and optionally binds a (local) variable that can be used by the statements later in the code block.
It is possible to intermix the do
-notation with regular notation.
More on do
-notation can be found in a section of Monads as computation and in other tutorials.
Commutative monads
For monads which are commutative the order of actions makes no difference (i.e. they commute), so the following code:
do
a <- actA
b <- actB
m a b
is the same as:
do
b <- actB
a <- actA
m a b
Examples of commutative monads include:
Reader
monadMaybe
monad
Monad tutorials
Monads are known for being quite confusing to many people, so there are plenty of tutorials specifically related to monads. Each takes a different approach to monads, and hopefully everyone will find something useful.
See the Monad tutorials timeline for a comprehensive list of monad tutorials.
Monad reference guides
An explanation of the basic Monad
functions, with examples, can be found in the reference guide A tour of the Haskell Monad functions by Henk-Jan van Tuyl.
Monad research
A collection of research papers about monads.
Monads in other languages
Implementations of monads in other languages.