1 | /****************************************************************************
|
---|
2 | **
|
---|
3 | ** Copyright (C) 2009 Nokia Corporation and/or its subsidiary(-ies).
|
---|
4 | ** Contact: Qt Software Information ([email protected])
|
---|
5 | **
|
---|
6 | ** This file is part of the QtGui module of the Qt Toolkit.
|
---|
7 | **
|
---|
8 | ** $QT_BEGIN_LICENSE:LGPL$
|
---|
9 | ** Commercial Usage
|
---|
10 | ** Licensees holding valid Qt Commercial licenses may use this file in
|
---|
11 | ** accordance with the Qt Commercial License Agreement provided with the
|
---|
12 | ** Software or, alternatively, in accordance with the terms contained in
|
---|
13 | ** a written agreement between you and Nokia.
|
---|
14 | **
|
---|
15 | ** GNU Lesser General Public License Usage
|
---|
16 | ** Alternatively, this file may be used under the terms of the GNU Lesser
|
---|
17 | ** General Public License version 2.1 as published by the Free Software
|
---|
18 | ** Foundation and appearing in the file LICENSE.LGPL included in the
|
---|
19 | ** packaging of this file. Please review the following information to
|
---|
20 | ** ensure the GNU Lesser General Public License version 2.1 requirements
|
---|
21 | ** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
|
---|
22 | **
|
---|
23 | ** In addition, as a special exception, Nokia gives you certain
|
---|
24 | ** additional rights. These rights are described in the Nokia Qt LGPL
|
---|
25 | ** Exception version 1.0, included in the file LGPL_EXCEPTION.txt in this
|
---|
26 | ** package.
|
---|
27 | **
|
---|
28 | ** GNU General Public License Usage
|
---|
29 | ** Alternatively, this file may be used under the terms of the GNU
|
---|
30 | ** General Public License version 3.0 as published by the Free Software
|
---|
31 | ** Foundation and appearing in the file LICENSE.GPL included in the
|
---|
32 | ** packaging of this file. Please review the following information to
|
---|
33 | ** ensure the GNU General Public License version 3.0 requirements will be
|
---|
34 | ** met: http://www.gnu.org/copyleft/gpl.html.
|
---|
35 | **
|
---|
36 | ** If you are unsure which license is appropriate for your use, please
|
---|
37 | ** contact the sales department at [email protected].
|
---|
38 | ** $QT_END_LICENSE$
|
---|
39 | **
|
---|
40 | ****************************************************************************/
|
---|
41 | #include "qtransform.h"
|
---|
42 |
|
---|
43 | #include "qdatastream.h"
|
---|
44 | #include "qdebug.h"
|
---|
45 | #include "qmatrix.h"
|
---|
46 | #include "qregion.h"
|
---|
47 | #include "qpainterpath.h"
|
---|
48 | #include "qvariant.h"
|
---|
49 | #include <qmath.h>
|
---|
50 |
|
---|
51 | QT_BEGIN_NAMESPACE
|
---|
52 |
|
---|
53 | #define Q_NEAR_CLIP 0.000001
|
---|
54 |
|
---|
55 |
|
---|
56 | #define MAP(x, y, nx, ny) \
|
---|
57 | do { \
|
---|
58 | qreal FX_ = x; \
|
---|
59 | qreal FY_ = y; \
|
---|
60 | switch(t) { \
|
---|
61 | case TxNone: \
|
---|
62 | nx = FX_; \
|
---|
63 | ny = FY_; \
|
---|
64 | break; \
|
---|
65 | case TxTranslate: \
|
---|
66 | nx = FX_ + affine._dx; \
|
---|
67 | ny = FY_ + affine._dy; \
|
---|
68 | break; \
|
---|
69 | case TxScale: \
|
---|
70 | nx = affine._m11 * FX_ + affine._dx; \
|
---|
71 | ny = affine._m22 * FY_ + affine._dy; \
|
---|
72 | break; \
|
---|
73 | case TxRotate: \
|
---|
74 | case TxShear: \
|
---|
75 | case TxProject: \
|
---|
76 | nx = affine._m11 * FX_ + affine._m21 * FY_ + affine._dx; \
|
---|
77 | ny = affine._m12 * FX_ + affine._m22 * FY_ + affine._dy; \
|
---|
78 | if (t == TxProject) { \
|
---|
79 | qreal w = 1./(m_13 * FX_ + m_23 * FY_ + m_33); \
|
---|
80 | nx *= w; \
|
---|
81 | ny *= w; \
|
---|
82 | } \
|
---|
83 | } \
|
---|
84 | } while (0)
|
---|
85 |
|
---|
86 | /*!
|
---|
87 | \class QTransform
|
---|
88 | \brief The QTransform class specifies 2D transformations of a coordinate system.
|
---|
89 | \since 4.3
|
---|
90 | \ingroup multimedia
|
---|
91 |
|
---|
92 | A transformation specifies how to translate, scale, shear, rotate
|
---|
93 | or project the coordinate system, and is typically used when
|
---|
94 | rendering graphics.
|
---|
95 |
|
---|
96 | QTransform differs from QMatrix in that it is a true 3x3 matrix,
|
---|
97 | allowing perspective transformations. QTransform's toAffine()
|
---|
98 | method allows casting QTransform to QMatrix. If a perspective
|
---|
99 | transformation has been specified on the matrix, then the
|
---|
100 | conversion to an affine QMatrix will cause loss of data.
|
---|
101 |
|
---|
102 | QTransform is the recommended transformation class in Qt.
|
---|
103 |
|
---|
104 | A QTransform object can be built using the setMatrix(), scale(),
|
---|
105 | rotate(), translate() and shear() functions. Alternatively, it
|
---|
106 | can be built by applying \l {QTransform#Basic Matrix
|
---|
107 | Operations}{basic matrix operations}. The matrix can also be
|
---|
108 | defined when constructed, and it can be reset to the identity
|
---|
109 | matrix (the default) using the reset() function.
|
---|
110 |
|
---|
111 | The QTransform class supports mapping of graphic primitives: A given
|
---|
112 | point, line, polygon, region, or painter path can be mapped to the
|
---|
113 | coordinate system defined by \e this matrix using the map()
|
---|
114 | function. In case of a rectangle, its coordinates can be
|
---|
115 | transformed using the mapRect() function. A rectangle can also be
|
---|
116 | transformed into a \e polygon (mapped to the coordinate system
|
---|
117 | defined by \e this matrix), using the mapToPolygon() function.
|
---|
118 |
|
---|
119 | QTransform provides the isIdentity() function which returns true if
|
---|
120 | the matrix is the identity matrix, and the isInvertible() function
|
---|
121 | which returns true if the matrix is non-singular (i.e. AB = BA =
|
---|
122 | I). The inverted() function returns an inverted copy of \e this
|
---|
123 | matrix if it is invertible (otherwise it returns the identity
|
---|
124 | matrix). In addition, QTransform provides the det() function
|
---|
125 | returning the matrix's determinant.
|
---|
126 |
|
---|
127 | Finally, the QTransform class supports matrix multiplication, and
|
---|
128 | objects of the class can be streamed as well as compared.
|
---|
129 |
|
---|
130 | \tableofcontents
|
---|
131 |
|
---|
132 | \section1 Rendering Graphics
|
---|
133 |
|
---|
134 | When rendering graphics, the matrix defines the transformations
|
---|
135 | but the actual transformation is performed by the drawing routines
|
---|
136 | in QPainter.
|
---|
137 |
|
---|
138 | By default, QPainter operates on the associated device's own
|
---|
139 | coordinate system. The standard coordinate system of a
|
---|
140 | QPaintDevice has its origin located at the top-left position. The
|
---|
141 | \e x values increase to the right; \e y values increase
|
---|
142 | downward. For a complete description, see the \l {The Coordinate
|
---|
143 | System}{coordinate system} documentation.
|
---|
144 |
|
---|
145 | QPainter has functions to translate, scale, shear and rotate the
|
---|
146 | coordinate system without using a QTransform. For example:
|
---|
147 |
|
---|
148 | \table 100%
|
---|
149 | \row
|
---|
150 | \o \inlineimage qtransform-simpletransformation.png
|
---|
151 | \o
|
---|
152 | \snippet doc/src/snippets/transform/main.cpp 0
|
---|
153 | \endtable
|
---|
154 |
|
---|
155 | Although these functions are very convenient, it can be more
|
---|
156 | efficient to build a QTransform and call QPainter::setTransform() if you
|
---|
157 | want to perform more than a single transform operation. For
|
---|
158 | example:
|
---|
159 |
|
---|
160 | \table 100%
|
---|
161 | \row
|
---|
162 | \o \inlineimage qtransform-combinedtransformation.png
|
---|
163 | \o
|
---|
164 | \snippet doc/src/snippets/transform/main.cpp 1
|
---|
165 | \endtable
|
---|
166 |
|
---|
167 | \section1 Basic Matrix Operations
|
---|
168 |
|
---|
169 | \image qtransform-representation.png
|
---|
170 |
|
---|
171 | A QTransform object contains a 3 x 3 matrix. The \c m31 (\c dx) and
|
---|
172 | \c m32 (\c dy) elements specify horizontal and vertical translation.
|
---|
173 | The \c m11 and \c m22 elements specify horizontal and vertical scaling.
|
---|
174 | The \c m21 and \c m12 elements specify horizontal and vertical \e shearing.
|
---|
175 | And finally, the \c m13 and \c m23 elements specify horizontal and vertical
|
---|
176 | projection, with \c m33 as an additional projection factor.
|
---|
177 |
|
---|
178 | QTransform transforms a point in the plane to another point using the
|
---|
179 | following formulas:
|
---|
180 |
|
---|
181 | \snippet doc/src/snippets/code/src_gui_painting_qtransform.cpp 0
|
---|
182 |
|
---|
183 | The point \e (x, y) is the original point, and \e (x', y') is the
|
---|
184 | transformed point. \e (x', y') can be transformed back to \e (x,
|
---|
185 | y) by performing the same operation on the inverted() matrix.
|
---|
186 |
|
---|
187 | The various matrix elements can be set when constructing the
|
---|
188 | matrix, or by using the setMatrix() function later on. They can also
|
---|
189 | be manipulated using the translate(), rotate(), scale() and
|
---|
190 | shear() convenience functions, The currently set values can be
|
---|
191 | retrieved using the m11(), m12(), m13(), m21(), m22(), m23(),
|
---|
192 | m31(), m32(), m33(), dx() and dy() functions.
|
---|
193 |
|
---|
194 | Translation is the simplest transformation. Setting \c dx and \c
|
---|
195 | dy will move the coordinate system \c dx units along the X axis
|
---|
196 | and \c dy units along the Y axis. Scaling can be done by setting
|
---|
197 | \c m11 and \c m22. For example, setting \c m11 to 2 and \c m22 to
|
---|
198 | 1.5 will double the height and increase the width by 50%. The
|
---|
199 | identity matrix has \c m11, \c m22, and \c m33 set to 1 (all others are set
|
---|
200 | to 0) mapping a point to itself. Shearing is controlled by \c m12
|
---|
201 | and \c m21. Setting these elements to values different from zero
|
---|
202 | will twist the coordinate system. Rotation is achieved by
|
---|
203 | carefully setting both the shearing factors and the scaling
|
---|
204 | factors. Perspective transformation is achieved by carefully setting
|
---|
205 | both the projection factors and the scaling factors.
|
---|
206 |
|
---|
207 | Here's the combined transformations example using basic matrix
|
---|
208 | operations:
|
---|
209 |
|
---|
210 | \table 100%
|
---|
211 | \row
|
---|
212 | \o \inlineimage qtransform-combinedtransformation2.png
|
---|
213 | \o
|
---|
214 | \snippet doc/src/snippets/transform/main.cpp 2
|
---|
215 | \endtable
|
---|
216 |
|
---|
217 | \sa QPainter, {The Coordinate System}, {demos/affine}{Affine
|
---|
218 | Transformations Demo}, {Transformations Example}
|
---|
219 | */
|
---|
220 |
|
---|
221 | /*!
|
---|
222 | \enum QTransform::TransformationType
|
---|
223 |
|
---|
224 | \value TxNone
|
---|
225 | \value TxTranslate
|
---|
226 | \value TxScale
|
---|
227 | \value TxRotate
|
---|
228 | \value TxShear
|
---|
229 | \value TxProject
|
---|
230 | */
|
---|
231 |
|
---|
232 | /*!
|
---|
233 | Constructs an identity matrix.
|
---|
234 |
|
---|
235 | All elements are set to zero except \c m11 and \c m22 (specifying
|
---|
236 | the scale) and \c m13 which are set to 1.
|
---|
237 |
|
---|
238 | \sa reset()
|
---|
239 | */
|
---|
240 | QTransform::QTransform()
|
---|
241 | : m_13(0), m_23(0), m_33(1)
|
---|
242 | , m_type(TxNone)
|
---|
243 | , m_dirty(TxNone)
|
---|
244 | {
|
---|
245 |
|
---|
246 | }
|
---|
247 |
|
---|
248 | /*!
|
---|
249 | \fn QTransform::QTransform(qreal m11, qreal m12, qreal m13, qreal m21, qreal m22, qreal m23, qreal m31, qreal m32, qreal m33)
|
---|
250 |
|
---|
251 | Constructs a matrix with the elements, \a m11, \a m12, \a m13,
|
---|
252 | \a m21, \a m22, \a m23, \a m31, \a m32, \a m33.
|
---|
253 |
|
---|
254 | \sa setMatrix()
|
---|
255 | */
|
---|
256 | QTransform::QTransform(qreal h11, qreal h12, qreal h13,
|
---|
257 | qreal h21, qreal h22, qreal h23,
|
---|
258 | qreal h31, qreal h32, qreal h33)
|
---|
259 | : affine(h11, h12, h21, h22, h31, h32),
|
---|
260 | m_13(h13), m_23(h23), m_33(h33)
|
---|
261 | , m_type(TxNone)
|
---|
262 | , m_dirty(TxProject)
|
---|
263 | {
|
---|
264 |
|
---|
265 | }
|
---|
266 |
|
---|
267 | /*!
|
---|
268 | \fn QTransform::QTransform(qreal m11, qreal m12, qreal m21, qreal m22, qreal dx, qreal dy)
|
---|
269 |
|
---|
270 | Constructs a matrix with the elements, \a m11, \a m12, \a m21, \a m22, \a dx and \a dy.
|
---|
271 |
|
---|
272 | \sa setMatrix()
|
---|
273 | */
|
---|
274 | QTransform::QTransform(qreal h11, qreal h12, qreal h21,
|
---|
275 | qreal h22, qreal dx, qreal dy)
|
---|
276 | : affine(h11, h12, h21, h22, dx, dy),
|
---|
277 | m_13(0), m_23(0), m_33(1)
|
---|
278 | , m_type(TxNone)
|
---|
279 | , m_dirty(TxShear)
|
---|
280 | {
|
---|
281 |
|
---|
282 | }
|
---|
283 |
|
---|
284 | /*!
|
---|
285 | \fn QTransform::QTransform(const QMatrix &matrix)
|
---|
286 |
|
---|
287 | Constructs a matrix that is a copy of the given \a matrix.
|
---|
288 | Note that the \c m13, \c m23, and \c m33 elements are set to 0, 0,
|
---|
289 | and 1 respectively.
|
---|
290 | */
|
---|
291 | QTransform::QTransform(const QMatrix &mtx)
|
---|
292 | : affine(mtx),
|
---|
293 | m_13(0), m_23(0), m_33(1)
|
---|
294 | , m_type(TxNone)
|
---|
295 | , m_dirty(TxShear)
|
---|
296 | {
|
---|
297 |
|
---|
298 | }
|
---|
299 |
|
---|
300 | /*!
|
---|
301 | Returns the adjoint of this matrix.
|
---|
302 | */
|
---|
303 | QTransform QTransform::adjoint() const
|
---|
304 | {
|
---|
305 | qreal h11, h12, h13,
|
---|
306 | h21, h22, h23,
|
---|
307 | h31, h32, h33;
|
---|
308 | h11 = affine._m22*m_33 - m_23*affine._dy;
|
---|
309 | h21 = m_23*affine._dx - affine._m21*m_33;
|
---|
310 | h31 = affine._m21*affine._dy - affine._m22*affine._dx;
|
---|
311 | h12 = m_13*affine._dy - affine._m12*m_33;
|
---|
312 | h22 = affine._m11*m_33 - m_13*affine._dx;
|
---|
313 | h32 = affine._m12*affine._dx - affine._m11*affine._dy;
|
---|
314 | h13 = affine._m12*m_23 - m_13*affine._m22;
|
---|
315 | h23 = m_13*affine._m21 - affine._m11*m_23;
|
---|
316 | h33 = affine._m11*affine._m22 - affine._m12*affine._m21;
|
---|
317 |
|
---|
318 | return QTransform(h11, h12, h13,
|
---|
319 | h21, h22, h23,
|
---|
320 | h31, h32, h33);
|
---|
321 | }
|
---|
322 |
|
---|
323 | /*!
|
---|
324 | Returns the transpose of this matrix.
|
---|
325 | */
|
---|
326 | QTransform QTransform::transposed() const
|
---|
327 | {
|
---|
328 | QTransform t(affine._m11, affine._m21, affine._dx,
|
---|
329 | affine._m12, affine._m22, affine._dy,
|
---|
330 | m_13, m_23, m_33);
|
---|
331 | t.m_type = m_type;
|
---|
332 | t.m_dirty = m_dirty;
|
---|
333 | return t;
|
---|
334 | }
|
---|
335 |
|
---|
336 | /*!
|
---|
337 | Returns an inverted copy of this matrix.
|
---|
338 |
|
---|
339 | If the matrix is singular (not invertible), the returned matrix is
|
---|
340 | the identity matrix. If \a invertible is valid (i.e. not 0), its
|
---|
341 | value is set to true if the matrix is invertible, otherwise it is
|
---|
342 | set to false.
|
---|
343 |
|
---|
344 | \sa isInvertible()
|
---|
345 | */
|
---|
346 | QTransform QTransform::inverted(bool *invertible) const
|
---|
347 | {
|
---|
348 | QTransform invert;
|
---|
349 | bool inv = true;
|
---|
350 | qreal det;
|
---|
351 |
|
---|
352 | switch(type()) {
|
---|
353 | case TxNone:
|
---|
354 | break;
|
---|
355 | case TxTranslate:
|
---|
356 | invert.affine._dx = -affine._dx;
|
---|
357 | invert.affine._dy = -affine._dy;
|
---|
358 | break;
|
---|
359 | case TxScale:
|
---|
360 | inv = !qFuzzyCompare(affine._m11 + 1, 1);
|
---|
361 | inv &= !qFuzzyCompare(affine._m22 + 1, 1);
|
---|
362 | if (inv) {
|
---|
363 | invert.affine._m11 = 1 / affine._m11;
|
---|
364 | invert.affine._m22 = 1 / affine._m22;
|
---|
365 | invert.affine._dx = -affine._dx * invert.affine._m11;
|
---|
366 | invert.affine._dy = -affine._dy * invert.affine._m22;
|
---|
367 | }
|
---|
368 | break;
|
---|
369 | case TxRotate:
|
---|
370 | case TxShear:
|
---|
371 | invert.affine = affine.inverted(&inv);
|
---|
372 | break;
|
---|
373 | default:
|
---|
374 | // general case
|
---|
375 | det = determinant();
|
---|
376 | inv = !qFuzzyCompare(det + 1, 1);
|
---|
377 | if (inv)
|
---|
378 | invert = adjoint() / det;
|
---|
379 | break;
|
---|
380 | }
|
---|
381 |
|
---|
382 | if (invertible)
|
---|
383 | *invertible = inv;
|
---|
384 |
|
---|
385 | if (inv) {
|
---|
386 | // inverting doesn't change the type
|
---|
387 | invert.m_type = m_type;
|
---|
388 | invert.m_dirty = m_dirty;
|
---|
389 | }
|
---|
390 |
|
---|
391 | return invert;
|
---|
392 | }
|
---|
393 |
|
---|
394 | /*!
|
---|
395 | Moves the coordinate system \a dx along the x axis and \a dy along
|
---|
396 | the y axis, and returns a reference to the matrix.
|
---|
397 |
|
---|
398 | \sa setMatrix()
|
---|
399 | */
|
---|
400 | QTransform & QTransform::translate(qreal dx, qreal dy)
|
---|
401 | {
|
---|
402 | if (dx == 0 && dy == 0)
|
---|
403 | return *this;
|
---|
404 |
|
---|
405 | switch(type()) {
|
---|
406 | case TxNone:
|
---|
407 | affine._dx = dx;
|
---|
408 | affine._dy = dy;
|
---|
409 | break;
|
---|
410 | case TxTranslate:
|
---|
411 | affine._dx += dx;
|
---|
412 | affine._dy += dy;
|
---|
413 | break;
|
---|
414 | case TxScale:
|
---|
415 | affine._dx += dx*affine._m11;
|
---|
416 | affine._dy += dy*affine._m22;
|
---|
417 | break;
|
---|
418 | case TxProject:
|
---|
419 | m_33 += dx*m_13 + dy*m_23;
|
---|
420 | // Fall through
|
---|
421 | case TxShear:
|
---|
422 | case TxRotate:
|
---|
423 | affine._dx += dx*affine._m11 + dy*affine._m21;
|
---|
424 | affine._dy += dy*affine._m22 + dx*affine._m12;
|
---|
425 | break;
|
---|
426 | }
|
---|
427 | m_dirty |= TxTranslate;
|
---|
428 | return *this;
|
---|
429 | }
|
---|
430 |
|
---|
431 | /*!
|
---|
432 | Creates a matrix which corresponds to a translation of \a dx along
|
---|
433 | the x axis and \a dy along the y axis. This is the same as
|
---|
434 | QTransform().translate(dx, dy) but slightly faster.
|
---|
435 |
|
---|
436 | \since 4.5
|
---|
437 | */
|
---|
438 | QTransform QTransform::fromTranslate(qreal dx, qreal dy)
|
---|
439 | {
|
---|
440 | QTransform transform(1, 0, 0, 1, dx, dy);
|
---|
441 | if (dx == 0 && dy == 0)
|
---|
442 | transform.m_dirty = TxNone;
|
---|
443 | else
|
---|
444 | transform.m_dirty = TxTranslate;
|
---|
445 | return transform;
|
---|
446 | }
|
---|
447 |
|
---|
448 | /*!
|
---|
449 | Scales the coordinate system by \a sx horizontally and \a sy
|
---|
450 | vertically, and returns a reference to the matrix.
|
---|
451 |
|
---|
452 | \sa setMatrix()
|
---|
453 | */
|
---|
454 | QTransform & QTransform::scale(qreal sx, qreal sy)
|
---|
455 | {
|
---|
456 | if (sx == 1 && sy == 1)
|
---|
457 | return *this;
|
---|
458 |
|
---|
459 | switch(type()) {
|
---|
460 | case TxNone:
|
---|
461 | case TxTranslate:
|
---|
462 | affine._m11 = sx;
|
---|
463 | affine._m22 = sy;
|
---|
464 | break;
|
---|
465 | case TxProject:
|
---|
466 | m_13 *= sx;
|
---|
467 | m_23 *= sy;
|
---|
468 | // fall through
|
---|
469 | case TxRotate:
|
---|
470 | case TxShear:
|
---|
471 | affine._m12 *= sx;
|
---|
472 | affine._m21 *= sy;
|
---|
473 | // fall through
|
---|
474 | case TxScale:
|
---|
475 | affine._m11 *= sx;
|
---|
476 | affine._m22 *= sy;
|
---|
477 | break;
|
---|
478 | }
|
---|
479 | m_dirty |= TxScale;
|
---|
480 | return *this;
|
---|
481 | }
|
---|
482 |
|
---|
483 | /*!
|
---|
484 | Creates a matrix which corresponds to a scaling of
|
---|
485 | \a sx horizontally and \a sy vertically.
|
---|
486 | This is the same as QTransform().scale(sx, sy) but slightly faster.
|
---|
487 |
|
---|
488 | \since 4.5
|
---|
489 | */
|
---|
490 | QTransform QTransform::fromScale(qreal sx, qreal sy)
|
---|
491 | {
|
---|
492 | QTransform transform(sx, 0, 0, sy, 0, 0);
|
---|
493 | if (sx == 1 && sy == 1)
|
---|
494 | transform.m_dirty = TxNone;
|
---|
495 | else
|
---|
496 | transform.m_dirty = TxScale;
|
---|
497 | return transform;
|
---|
498 | }
|
---|
499 |
|
---|
500 | /*!
|
---|
501 | Shears the coordinate system by \a sh horizontally and \a sv
|
---|
502 | vertically, and returns a reference to the matrix.
|
---|
503 |
|
---|
504 | \sa setMatrix()
|
---|
505 | */
|
---|
506 | QTransform & QTransform::shear(qreal sh, qreal sv)
|
---|
507 | {
|
---|
508 | switch(type()) {
|
---|
509 | case TxNone:
|
---|
510 | case TxTranslate:
|
---|
511 | affine._m12 = sv;
|
---|
512 | affine._m21 = sh;
|
---|
513 | break;
|
---|
514 | case TxScale:
|
---|
515 | affine._m12 = sv*affine._m22;
|
---|
516 | affine._m21 = sh*affine._m11;
|
---|
517 | break;
|
---|
518 | case TxProject: {
|
---|
519 | qreal tm13 = sv*m_23;
|
---|
520 | qreal tm23 = sh*m_13;
|
---|
521 | m_13 += tm13;
|
---|
522 | m_23 += tm23;
|
---|
523 | }
|
---|
524 | // fall through
|
---|
525 | case TxRotate:
|
---|
526 | case TxShear: {
|
---|
527 | qreal tm11 = sv*affine._m21;
|
---|
528 | qreal tm22 = sh*affine._m12;
|
---|
529 | qreal tm12 = sv*affine._m22;
|
---|
530 | qreal tm21 = sh*affine._m11;
|
---|
531 | affine._m11 += tm11; affine._m12 += tm12;
|
---|
532 | affine._m21 += tm21; affine._m22 += tm22;
|
---|
533 | break;
|
---|
534 | }
|
---|
535 | }
|
---|
536 | m_dirty |= TxShear;
|
---|
537 | return *this;
|
---|
538 | }
|
---|
539 |
|
---|
540 | const qreal deg2rad = qreal(0.017453292519943295769); // pi/180
|
---|
541 | const qreal inv_dist_to_plane = 1. / 1024.;
|
---|
542 |
|
---|
543 | /*!
|
---|
544 | \fn QTransform &QTransform::rotate(qreal angle, Qt::Axis axis)
|
---|
545 |
|
---|
546 | Rotates the coordinate system counterclockwise by the given \a angle
|
---|
547 | about the specified \a axis and returns a reference to the matrix.
|
---|
548 |
|
---|
549 | Note that if you apply a QTransform to a point defined in widget
|
---|
550 | coordinates, the direction of the rotation will be clockwise
|
---|
551 | because the y-axis points downwards.
|
---|
552 |
|
---|
553 | The angle is specified in degrees.
|
---|
554 |
|
---|
555 | \sa setMatrix()
|
---|
556 | */
|
---|
557 | QTransform & QTransform::rotate(qreal a, Qt::Axis axis)
|
---|
558 | {
|
---|
559 | if (a == 0)
|
---|
560 | return *this;
|
---|
561 |
|
---|
562 | qreal sina = 0;
|
---|
563 | qreal cosa = 0;
|
---|
564 | if (a == 90. || a == -270.)
|
---|
565 | sina = 1.;
|
---|
566 | else if (a == 270. || a == -90.)
|
---|
567 | sina = -1.;
|
---|
568 | else if (a == 180.)
|
---|
569 | cosa = -1.;
|
---|
570 | else{
|
---|
571 | qreal b = deg2rad*a; // convert to radians
|
---|
572 | sina = qSin(b); // fast and convenient
|
---|
573 | cosa = qCos(b);
|
---|
574 | }
|
---|
575 |
|
---|
576 | if (axis == Qt::ZAxis) {
|
---|
577 | switch(type()) {
|
---|
578 | case TxNone:
|
---|
579 | case TxTranslate:
|
---|
580 | affine._m11 = cosa;
|
---|
581 | affine._m12 = sina;
|
---|
582 | affine._m21 = -sina;
|
---|
583 | affine._m22 = cosa;
|
---|
584 | break;
|
---|
585 | case TxScale: {
|
---|
586 | qreal tm11 = cosa*affine._m11;
|
---|
587 | qreal tm12 = sina*affine._m22;
|
---|
588 | qreal tm21 = -sina*affine._m11;
|
---|
589 | qreal tm22 = cosa*affine._m22;
|
---|
590 | affine._m11 = tm11; affine._m12 = tm12;
|
---|
591 | affine._m21 = tm21; affine._m22 = tm22;
|
---|
592 | break;
|
---|
593 | }
|
---|
594 | case TxProject: {
|
---|
595 | qreal tm13 = cosa*m_13 + sina*m_23;
|
---|
596 | qreal tm23 = -sina*m_13 + cosa*m_23;
|
---|
597 | m_13 = tm13;
|
---|
598 | m_23 = tm23;
|
---|
599 | // fall through
|
---|
600 | }
|
---|
601 | case TxRotate:
|
---|
602 | case TxShear: {
|
---|
603 | qreal tm11 = cosa*affine._m11 + sina*affine._m21;
|
---|
604 | qreal tm12 = cosa*affine._m12 + sina*affine._m22;
|
---|
605 | qreal tm21 = -sina*affine._m11 + cosa*affine._m21;
|
---|
606 | qreal tm22 = -sina*affine._m12 + cosa*affine._m22;
|
---|
607 | affine._m11 = tm11; affine._m12 = tm12;
|
---|
608 | affine._m21 = tm21; affine._m22 = tm22;
|
---|
609 | break;
|
---|
610 | }
|
---|
611 | }
|
---|
612 | m_dirty |= TxRotate;
|
---|
613 | } else {
|
---|
614 | QTransform result;
|
---|
615 | if (axis == Qt::YAxis) {
|
---|
616 | result.affine._m11 = cosa;
|
---|
617 | result.m_13 = -sina * inv_dist_to_plane;
|
---|
618 | } else {
|
---|
619 | result.affine._m22 = cosa;
|
---|
620 | result.m_23 = -sina * inv_dist_to_plane;
|
---|
621 | }
|
---|
622 | result.m_type = TxProject;
|
---|
623 | *this = result * *this;
|
---|
624 | }
|
---|
625 |
|
---|
626 | return *this;
|
---|
627 | }
|
---|
628 |
|
---|
629 | /*!
|
---|
630 | \fn QTransform & QTransform::rotateRadians(qreal angle, Qt::Axis axis)
|
---|
631 |
|
---|
632 | Rotates the coordinate system counterclockwise by the given \a angle
|
---|
633 | about the specified \a axis and returns a reference to the matrix.
|
---|
634 |
|
---|
635 | Note that if you apply a QTransform to a point defined in widget
|
---|
636 | coordinates, the direction of the rotation will be clockwise
|
---|
637 | because the y-axis points downwards.
|
---|
638 |
|
---|
639 | The angle is specified in radians.
|
---|
640 |
|
---|
641 | \sa setMatrix()
|
---|
642 | */
|
---|
643 | QTransform & QTransform::rotateRadians(qreal a, Qt::Axis axis)
|
---|
644 | {
|
---|
645 | qreal sina = qSin(a);
|
---|
646 | qreal cosa = qCos(a);
|
---|
647 |
|
---|
648 | if (axis == Qt::ZAxis) {
|
---|
649 | switch(type()) {
|
---|
650 | case TxNone:
|
---|
651 | case TxTranslate:
|
---|
652 | affine._m11 = cosa;
|
---|
653 | affine._m12 = sina;
|
---|
654 | affine._m21 = -sina;
|
---|
655 | affine._m22 = cosa;
|
---|
656 | break;
|
---|
657 | case TxScale: {
|
---|
658 | qreal tm11 = cosa*affine._m11;
|
---|
659 | qreal tm12 = sina*affine._m22;
|
---|
660 | qreal tm21 = -sina*affine._m11;
|
---|
661 | qreal tm22 = cosa*affine._m22;
|
---|
662 | affine._m11 = tm11; affine._m12 = tm12;
|
---|
663 | affine._m21 = tm21; affine._m22 = tm22;
|
---|
664 | break;
|
---|
665 | }
|
---|
666 | case TxProject: {
|
---|
667 | qreal tm13 = cosa*m_13 + sina*m_23;
|
---|
668 | qreal tm23 = -sina*m_13 + cosa*m_23;
|
---|
669 | m_13 = tm13;
|
---|
670 | m_23 = tm23;
|
---|
671 | // fall through
|
---|
672 | }
|
---|
673 | case TxRotate:
|
---|
674 | case TxShear: {
|
---|
675 | qreal tm11 = cosa*affine._m11 + sina*affine._m21;
|
---|
676 | qreal tm12 = cosa*affine._m12 + sina*affine._m22;
|
---|
677 | qreal tm21 = -sina*affine._m11 + cosa*affine._m21;
|
---|
678 | qreal tm22 = -sina*affine._m12 + cosa*affine._m22;
|
---|
679 | affine._m11 = tm11; affine._m12 = tm12;
|
---|
680 | affine._m21 = tm21; affine._m22 = tm22;
|
---|
681 | break;
|
---|
682 | }
|
---|
683 | }
|
---|
684 | m_dirty |= TxRotate;
|
---|
685 | } else {
|
---|
686 | QTransform result;
|
---|
687 | if (axis == Qt::YAxis) {
|
---|
688 | result.affine._m11 = cosa;
|
---|
689 | result.m_13 = -sina * inv_dist_to_plane;
|
---|
690 | } else {
|
---|
691 | result.affine._m22 = cosa;
|
---|
692 | result.m_23 = -sina * inv_dist_to_plane;
|
---|
693 | }
|
---|
694 | result.m_type = TxProject;
|
---|
695 | *this = result * *this;
|
---|
696 | }
|
---|
697 | return *this;
|
---|
698 | }
|
---|
699 |
|
---|
700 | /*!
|
---|
701 | \fn bool QTransform::operator==(const QTransform &matrix) const
|
---|
702 | Returns true if this matrix is equal to the given \a matrix,
|
---|
703 | otherwise returns false.
|
---|
704 | */
|
---|
705 | bool QTransform::operator==(const QTransform &o) const
|
---|
706 | {
|
---|
707 | #define qFZ qFuzzyCompare
|
---|
708 | return qFZ(affine._m11, o.affine._m11) && qFZ(affine._m12, o.affine._m12) && qFZ(m_13, o.m_13)
|
---|
709 | && qFZ(affine._m21, o.affine._m21) && qFZ(affine._m22, o.affine._m22) && qFZ(m_23, o.m_23)
|
---|
710 | && qFZ(affine._dx, o.affine._dx) && qFZ(affine._dy, o.affine._dy) && qFZ(m_33, o.m_33);
|
---|
711 | #undef qFZ
|
---|
712 | }
|
---|
713 |
|
---|
714 | /*!
|
---|
715 | \fn bool QTransform::operator!=(const QTransform &matrix) const
|
---|
716 | Returns true if this matrix is not equal to the given \a matrix,
|
---|
717 | otherwise returns false.
|
---|
718 | */
|
---|
719 | bool QTransform::operator!=(const QTransform &o) const
|
---|
720 | {
|
---|
721 | return !operator==(o);
|
---|
722 | }
|
---|
723 |
|
---|
724 | /*!
|
---|
725 | \fn QTransform & QTransform::operator*=(const QTransform &matrix)
|
---|
726 | \overload
|
---|
727 |
|
---|
728 | Returns the result of multiplying this matrix by the given \a
|
---|
729 | matrix.
|
---|
730 | */
|
---|
731 | QTransform & QTransform::operator*=(const QTransform &o)
|
---|
732 | {
|
---|
733 | const TransformationType otherType = o.type();
|
---|
734 | if (otherType == TxNone)
|
---|
735 | return *this;
|
---|
736 |
|
---|
737 | const TransformationType thisType = type();
|
---|
738 | if (thisType == TxNone)
|
---|
739 | return operator=(o);
|
---|
740 |
|
---|
741 | TransformationType t = qMax(thisType, otherType);
|
---|
742 | switch(t) {
|
---|
743 | case TxNone:
|
---|
744 | break;
|
---|
745 | case TxTranslate:
|
---|
746 | affine._dx += o.affine._dx;
|
---|
747 | affine._dy += o.affine._dy;
|
---|
748 | break;
|
---|
749 | case TxScale:
|
---|
750 | {
|
---|
751 | qreal m11 = affine._m11*o.affine._m11;
|
---|
752 | qreal m22 = affine._m22*o.affine._m22;
|
---|
753 |
|
---|
754 | qreal m31 = affine._dx*o.affine._m11 + o.affine._dx;
|
---|
755 | qreal m32 = affine._dy*o.affine._m22 + o.affine._dy;
|
---|
756 |
|
---|
757 | affine._m11 = m11;
|
---|
758 | affine._m22 = m22;
|
---|
759 | affine._dx = m31; affine._dy = m32;
|
---|
760 | break;
|
---|
761 | }
|
---|
762 | case TxRotate:
|
---|
763 | case TxShear:
|
---|
764 | {
|
---|
765 | qreal m11 = affine._m11*o.affine._m11 + affine._m12*o.affine._m21;
|
---|
766 | qreal m12 = affine._m11*o.affine._m12 + affine._m12*o.affine._m22;
|
---|
767 |
|
---|
768 | qreal m21 = affine._m21*o.affine._m11 + affine._m22*o.affine._m21;
|
---|
769 | qreal m22 = affine._m21*o.affine._m12 + affine._m22*o.affine._m22;
|
---|
770 |
|
---|
771 | qreal m31 = affine._dx*o.affine._m11 + affine._dy*o.affine._m21 + o.affine._dx;
|
---|
772 | qreal m32 = affine._dx*o.affine._m12 + affine._dy*o.affine._m22 + o.affine._dy;
|
---|
773 |
|
---|
774 | affine._m11 = m11; affine._m12 = m12;
|
---|
775 | affine._m21 = m21; affine._m22 = m22;
|
---|
776 | affine._dx = m31; affine._dy = m32;
|
---|
777 | break;
|
---|
778 | }
|
---|
779 | case TxProject:
|
---|
780 | {
|
---|
781 | qreal m11 = affine._m11*o.affine._m11 + affine._m12*o.affine._m21 + m_13*o.affine._dx;
|
---|
782 | qreal m12 = affine._m11*o.affine._m12 + affine._m12*o.affine._m22 + m_13*o.affine._dy;
|
---|
783 | qreal m13 = affine._m11*o.m_13 + affine._m12*o.m_23 + m_13*o.m_33;
|
---|
784 |
|
---|
785 | qreal m21 = affine._m21*o.affine._m11 + affine._m22*o.affine._m21 + m_23*o.affine._dx;
|
---|
786 | qreal m22 = affine._m21*o.affine._m12 + affine._m22*o.affine._m22 + m_23*o.affine._dy;
|
---|
787 | qreal m23 = affine._m21*o.m_13 + affine._m22*o.m_23 + m_23*o.m_33;
|
---|
788 |
|
---|
789 | qreal m31 = affine._dx*o.affine._m11 + affine._dy*o.affine._m21 + m_33*o.affine._dx;
|
---|
790 | qreal m32 = affine._dx*o.affine._m12 + affine._dy*o.affine._m22 + m_33*o.affine._dy;
|
---|
791 | qreal m33 = affine._dx*o.m_13 + affine._dy*o.m_23 + m_33*o.m_33;
|
---|
792 |
|
---|
793 | affine._m11 = m11; affine._m12 = m12; m_13 = m13;
|
---|
794 | affine._m21 = m21; affine._m22 = m22; m_23 = m23;
|
---|
795 | affine._dx = m31; affine._dy = m32; m_33 = m33;
|
---|
796 | }
|
---|
797 | }
|
---|
798 |
|
---|
799 | m_dirty = t;
|
---|
800 | m_type = t;
|
---|
801 |
|
---|
802 | return *this;
|
---|
803 | }
|
---|
804 |
|
---|
805 | /*!
|
---|
806 | \fn QTransform QTransform::operator*(const QTransform &matrix) const
|
---|
807 | Returns the result of multiplying this matrix by the given \a
|
---|
808 | matrix.
|
---|
809 |
|
---|
810 | Note that matrix multiplication is not commutative, i.e. a*b !=
|
---|
811 | b*a.
|
---|
812 | */
|
---|
813 | QTransform QTransform::operator*(const QTransform &m) const
|
---|
814 | {
|
---|
815 | QTransform result = *this;
|
---|
816 | result *= m;
|
---|
817 | return result;
|
---|
818 | }
|
---|
819 |
|
---|
820 | /*!
|
---|
821 | \fn QTransform & QTransform::operator*=(qreal scalar)
|
---|
822 | \overload
|
---|
823 |
|
---|
824 | Returns the result of performing an element-wise multiplication of this
|
---|
825 | matrix with the given \a scalar.
|
---|
826 | */
|
---|
827 |
|
---|
828 | /*!
|
---|
829 | \fn QTransform & QTransform::operator/=(qreal scalar)
|
---|
830 | \overload
|
---|
831 |
|
---|
832 | Returns the result of performing an element-wise division of this
|
---|
833 | matrix by the given \a scalar.
|
---|
834 | */
|
---|
835 |
|
---|
836 | /*!
|
---|
837 | \fn QTransform & QTransform::operator+=(qreal scalar)
|
---|
838 | \overload
|
---|
839 |
|
---|
840 | Returns the matrix obtained by adding the given \a scalar to each
|
---|
841 | element of this matrix.
|
---|
842 | */
|
---|
843 |
|
---|
844 | /*!
|
---|
845 | \fn QTransform & QTransform::operator-=(qreal scalar)
|
---|
846 | \overload
|
---|
847 |
|
---|
848 | Returns the matrix obtained by subtracting the given \a scalar from each
|
---|
849 | element of this matrix.
|
---|
850 | */
|
---|
851 |
|
---|
852 | /*!
|
---|
853 | Assigns the given \a matrix's values to this matrix.
|
---|
854 | */
|
---|
855 | QTransform & QTransform::operator=(const QTransform &matrix)
|
---|
856 | {
|
---|
857 | affine._m11 = matrix.affine._m11;
|
---|
858 | affine._m12 = matrix.affine._m12;
|
---|
859 | affine._m21 = matrix.affine._m21;
|
---|
860 | affine._m22 = matrix.affine._m22;
|
---|
861 | affine._dx = matrix.affine._dx;
|
---|
862 | affine._dy = matrix.affine._dy;
|
---|
863 | m_13 = matrix.m_13;
|
---|
864 | m_23 = matrix.m_23;
|
---|
865 | m_33 = matrix.m_33;
|
---|
866 | m_type = matrix.m_type;
|
---|
867 | m_dirty = matrix.m_dirty;
|
---|
868 |
|
---|
869 | return *this;
|
---|
870 | }
|
---|
871 |
|
---|
872 | /*!
|
---|
873 | Resets the matrix to an identity matrix, i.e. all elements are set
|
---|
874 | to zero, except \c m11 and \c m22 (specifying the scale) which are
|
---|
875 | set to 1.
|
---|
876 |
|
---|
877 | \sa QTransform(), isIdentity(), {QTransform#Basic Matrix
|
---|
878 | Operations}{Basic Matrix Operations}
|
---|
879 | */
|
---|
880 | void QTransform::reset()
|
---|
881 | {
|
---|
882 | affine._m11 = affine._m22 = m_33 = 1.0;
|
---|
883 | affine._m12 = m_13 = affine._m21 = m_23 = affine._dx = affine._dy = 0;
|
---|
884 | m_type = TxNone;
|
---|
885 | m_dirty = TxNone;
|
---|
886 | }
|
---|
887 |
|
---|
888 | #ifndef QT_NO_DATASTREAM
|
---|
889 | /*!
|
---|
890 | \fn QDataStream &operator<<(QDataStream &stream, const QTransform &matrix)
|
---|
891 | \since 4.3
|
---|
892 | \relates QTransform
|
---|
893 |
|
---|
894 | Writes the given \a matrix to the given \a stream and returns a
|
---|
895 | reference to the stream.
|
---|
896 |
|
---|
897 | \sa {Format of the QDataStream Operators}
|
---|
898 | */
|
---|
899 | QDataStream & operator<<(QDataStream &s, const QTransform &m)
|
---|
900 | {
|
---|
901 | s << double(m.m11())
|
---|
902 | << double(m.m12())
|
---|
903 | << double(m.m13())
|
---|
904 | << double(m.m21())
|
---|
905 | << double(m.m22())
|
---|
906 | << double(m.m23())
|
---|
907 | << double(m.m31())
|
---|
908 | << double(m.m32())
|
---|
909 | << double(m.m33());
|
---|
910 | return s;
|
---|
911 | }
|
---|
912 |
|
---|
913 | /*!
|
---|
914 | \fn QDataStream &operator>>(QDataStream &stream, QTransform &matrix)
|
---|
915 | \since 4.3
|
---|
916 | \relates QTransform
|
---|
917 |
|
---|
918 | Reads the given \a matrix from the given \a stream and returns a
|
---|
919 | reference to the stream.
|
---|
920 |
|
---|
921 | \sa {Format of the QDataStream Operators}
|
---|
922 | */
|
---|
923 | QDataStream & operator>>(QDataStream &s, QTransform &t)
|
---|
924 | {
|
---|
925 | double m11, m12, m13,
|
---|
926 | m21, m22, m23,
|
---|
927 | m31, m32, m33;
|
---|
928 |
|
---|
929 | s >> m11;
|
---|
930 | s >> m12;
|
---|
931 | s >> m13;
|
---|
932 | s >> m21;
|
---|
933 | s >> m22;
|
---|
934 | s >> m23;
|
---|
935 | s >> m31;
|
---|
936 | s >> m32;
|
---|
937 | s >> m33;
|
---|
938 | t.setMatrix(m11, m12, m13,
|
---|
939 | m21, m22, m23,
|
---|
940 | m31, m32, m33);
|
---|
941 | return s;
|
---|
942 | }
|
---|
943 |
|
---|
944 | #endif // QT_NO_DATASTREAM
|
---|
945 |
|
---|
946 | #ifndef QT_NO_DEBUG_STREAM
|
---|
947 | QDebug operator<<(QDebug dbg, const QTransform &m)
|
---|
948 | {
|
---|
949 | dbg.nospace() << "QTransform("
|
---|
950 | << "11=" << m.m11()
|
---|
951 | << " 12=" << m.m12()
|
---|
952 | << " 13=" << m.m13()
|
---|
953 | << " 21=" << m.m21()
|
---|
954 | << " 22=" << m.m22()
|
---|
955 | << " 23=" << m.m23()
|
---|
956 | << " 31=" << m.m31()
|
---|
957 | << " 32=" << m.m32()
|
---|
958 | << " 33=" << m.m33()
|
---|
959 | << ")";
|
---|
960 | return dbg.space();
|
---|
961 | }
|
---|
962 | #endif
|
---|
963 |
|
---|
964 | /*!
|
---|
965 | \fn QPoint operator*(const QPoint &point, const QTransform &matrix)
|
---|
966 | \relates QTransform
|
---|
967 |
|
---|
968 | This is the same as \a{matrix}.map(\a{point}).
|
---|
969 |
|
---|
970 | \sa QTransform::map()
|
---|
971 | */
|
---|
972 | QPoint QTransform::map(const QPoint &p) const
|
---|
973 | {
|
---|
974 | qreal fx = p.x();
|
---|
975 | qreal fy = p.y();
|
---|
976 |
|
---|
977 | qreal x = 0, y = 0;
|
---|
978 |
|
---|
979 | TransformationType t = type();
|
---|
980 | switch(t) {
|
---|
981 | case TxNone:
|
---|
982 | x = fx;
|
---|
983 | y = fy;
|
---|
984 | break;
|
---|
985 | case TxTranslate:
|
---|
986 | x = fx + affine._dx;
|
---|
987 | y = fy + affine._dy;
|
---|
988 | break;
|
---|
989 | case TxScale:
|
---|
990 | x = affine._m11 * fx + affine._dx;
|
---|
991 | y = affine._m22 * fy + affine._dy;
|
---|
992 | break;
|
---|
993 | case TxRotate:
|
---|
994 | case TxShear:
|
---|
995 | case TxProject:
|
---|
996 | x = affine._m11 * fx + affine._m21 * fy + affine._dx;
|
---|
997 | y = affine._m12 * fx + affine._m22 * fy + affine._dy;
|
---|
998 | if (t == TxProject) {
|
---|
999 | qreal w = 1./(m_13 * fx + m_23 * fy + m_33);
|
---|
1000 | x *= w;
|
---|
1001 | y *= w;
|
---|
1002 | }
|
---|
1003 | }
|
---|
1004 | return QPoint(qRound(x), qRound(y));
|
---|
1005 | }
|
---|
1006 |
|
---|
1007 |
|
---|
1008 | /*!
|
---|
1009 | \fn QPointF operator*(const QPointF &point, const QTransform &matrix)
|
---|
1010 | \relates QTransform
|
---|
1011 |
|
---|
1012 | Same as \a{matrix}.map(\a{point}).
|
---|
1013 |
|
---|
1014 | \sa QTransform::map()
|
---|
1015 | */
|
---|
1016 |
|
---|
1017 | /*!
|
---|
1018 | \overload
|
---|
1019 |
|
---|
1020 | Creates and returns a QPointF object that is a copy of the given point,
|
---|
1021 | \a p, mapped into the coordinate system defined by this matrix.
|
---|
1022 | */
|
---|
1023 | QPointF QTransform::map(const QPointF &p) const
|
---|
1024 | {
|
---|
1025 | qreal fx = p.x();
|
---|
1026 | qreal fy = p.y();
|
---|
1027 |
|
---|
1028 | qreal x = 0, y = 0;
|
---|
1029 |
|
---|
1030 | TransformationType t = type();
|
---|
1031 | switch(t) {
|
---|
1032 | case TxNone:
|
---|
1033 | x = fx;
|
---|
1034 | y = fy;
|
---|
1035 | break;
|
---|
1036 | case TxTranslate:
|
---|
1037 | x = fx + affine._dx;
|
---|
1038 | y = fy + affine._dy;
|
---|
1039 | break;
|
---|
1040 | case TxScale:
|
---|
1041 | x = affine._m11 * fx + affine._dx;
|
---|
1042 | y = affine._m22 * fy + affine._dy;
|
---|
1043 | break;
|
---|
1044 | case TxRotate:
|
---|
1045 | case TxShear:
|
---|
1046 | case TxProject:
|
---|
1047 | x = affine._m11 * fx + affine._m21 * fy + affine._dx;
|
---|
1048 | y = affine._m12 * fx + affine._m22 * fy + affine._dy;
|
---|
1049 | if (t == TxProject) {
|
---|
1050 | qreal w = 1./(m_13 * fx + m_23 * fy + m_33);
|
---|
1051 | x *= w;
|
---|
1052 | y *= w;
|
---|
1053 | }
|
---|
1054 | }
|
---|
1055 | return QPointF(x, y);
|
---|
1056 | }
|
---|
1057 |
|
---|
1058 | /*!
|
---|
1059 | \fn QPoint QTransform::map(const QPoint &point) const
|
---|
1060 | \overload
|
---|
1061 |
|
---|
1062 | Creates and returns a QPoint object that is a copy of the given \a
|
---|
1063 | point, mapped into the coordinate system defined by this
|
---|
1064 | matrix. Note that the transformed coordinates are rounded to the
|
---|
1065 | nearest integer.
|
---|
1066 | */
|
---|
1067 |
|
---|
1068 | /*!
|
---|
1069 | \fn QLineF operator*(const QLineF &line, const QTransform &matrix)
|
---|
1070 | \relates QTransform
|
---|
1071 |
|
---|
1072 | This is the same as \a{matrix}.map(\a{line}).
|
---|
1073 |
|
---|
1074 | \sa QTransform::map()
|
---|
1075 | */
|
---|
1076 |
|
---|
1077 | /*!
|
---|
1078 | \fn QLine operator*(const QLine &line, const QTransform &matrix)
|
---|
1079 | \relates QTransform
|
---|
1080 |
|
---|
1081 | This is the same as \a{matrix}.map(\a{line}).
|
---|
1082 |
|
---|
1083 | \sa QTransform::map()
|
---|
1084 | */
|
---|
1085 |
|
---|
1086 | /*!
|
---|
1087 | \overload
|
---|
1088 |
|
---|
1089 | Creates and returns a QLineF object that is a copy of the given line,
|
---|
1090 | \a l, mapped into the coordinate system defined by this matrix.
|
---|
1091 | */
|
---|
1092 | QLine QTransform::map(const QLine &l) const
|
---|
1093 | {
|
---|
1094 | qreal fx1 = l.x1();
|
---|
1095 | qreal fy1 = l.y1();
|
---|
1096 | qreal fx2 = l.x2();
|
---|
1097 | qreal fy2 = l.y2();
|
---|
1098 |
|
---|
1099 | qreal x1 = 0, y1 = 0, x2 = 0, y2 = 0;
|
---|
1100 |
|
---|
1101 | TransformationType t = type();
|
---|
1102 | switch(t) {
|
---|
1103 | case TxNone:
|
---|
1104 | x1 = fx1;
|
---|
1105 | y1 = fy1;
|
---|
1106 | x2 = fx2;
|
---|
1107 | y2 = fy2;
|
---|
1108 | break;
|
---|
1109 | case TxTranslate:
|
---|
1110 | x1 = fx1 + affine._dx;
|
---|
1111 | y1 = fy1 + affine._dy;
|
---|
1112 | x2 = fx2 + affine._dx;
|
---|
1113 | y2 = fy2 + affine._dy;
|
---|
1114 | break;
|
---|
1115 | case TxScale:
|
---|
1116 | x1 = affine._m11 * fx1 + affine._dx;
|
---|
1117 | y1 = affine._m22 * fy1 + affine._dy;
|
---|
1118 | x2 = affine._m11 * fx2 + affine._dx;
|
---|
1119 | y2 = affine._m22 * fy2 + affine._dy;
|
---|
1120 | break;
|
---|
1121 | case TxRotate:
|
---|
1122 | case TxShear:
|
---|
1123 | case TxProject:
|
---|
1124 | x1 = affine._m11 * fx1 + affine._m21 * fy1 + affine._dx;
|
---|
1125 | y1 = affine._m12 * fx1 + affine._m22 * fy1 + affine._dy;
|
---|
1126 | x2 = affine._m11 * fx2 + affine._m21 * fy2 + affine._dx;
|
---|
1127 | y2 = affine._m12 * fx2 + affine._m22 * fy2 + affine._dy;
|
---|
1128 | if (t == TxProject) {
|
---|
1129 | qreal w = 1./(m_13 * fx1 + m_23 * fy1 + m_33);
|
---|
1130 | x1 *= w;
|
---|
1131 | y1 *= w;
|
---|
1132 | w = 1./(m_13 * fx2 + m_23 * fy2 + m_33);
|
---|
1133 | x2 *= w;
|
---|
1134 | y2 *= w;
|
---|
1135 | }
|
---|
1136 | }
|
---|
1137 | return QLine(qRound(x1), qRound(y1), qRound(x2), qRound(y2));
|
---|
1138 | }
|
---|
1139 |
|
---|
1140 | /*!
|
---|
1141 | \overload
|
---|
1142 |
|
---|
1143 | \fn QLineF QTransform::map(const QLineF &line) const
|
---|
1144 |
|
---|
1145 | Creates and returns a QLine object that is a copy of the given \a
|
---|
1146 | line, mapped into the coordinate system defined by this matrix.
|
---|
1147 | Note that the transformed coordinates are rounded to the nearest
|
---|
1148 | integer.
|
---|
1149 | */
|
---|
1150 |
|
---|
1151 | QLineF QTransform::map(const QLineF &l) const
|
---|
1152 | {
|
---|
1153 | qreal fx1 = l.x1();
|
---|
1154 | qreal fy1 = l.y1();
|
---|
1155 | qreal fx2 = l.x2();
|
---|
1156 | qreal fy2 = l.y2();
|
---|
1157 |
|
---|
1158 | qreal x1 = 0, y1 = 0, x2 = 0, y2 = 0;
|
---|
1159 |
|
---|
1160 | TransformationType t = type();
|
---|
1161 | switch(t) {
|
---|
1162 | case TxNone:
|
---|
1163 | x1 = fx1;
|
---|
1164 | y1 = fy1;
|
---|
1165 | x2 = fx2;
|
---|
1166 | y2 = fy2;
|
---|
1167 | break;
|
---|
1168 | case TxTranslate:
|
---|
1169 | x1 = fx1 + affine._dx;
|
---|
1170 | y1 = fy1 + affine._dy;
|
---|
1171 | x2 = fx2 + affine._dx;
|
---|
1172 | y2 = fy2 + affine._dy;
|
---|
1173 | break;
|
---|
1174 | case TxScale:
|
---|
1175 | x1 = affine._m11 * fx1 + affine._dx;
|
---|
1176 | y1 = affine._m22 * fy1 + affine._dy;
|
---|
1177 | x2 = affine._m11 * fx2 + affine._dx;
|
---|
1178 | y2 = affine._m22 * fy2 + affine._dy;
|
---|
1179 | break;
|
---|
1180 | case TxRotate:
|
---|
1181 | case TxShear:
|
---|
1182 | case TxProject:
|
---|
1183 | x1 = affine._m11 * fx1 + affine._m21 * fy1 + affine._dx;
|
---|
1184 | y1 = affine._m12 * fx1 + affine._m22 * fy1 + affine._dy;
|
---|
1185 | x2 = affine._m11 * fx2 + affine._m21 * fy2 + affine._dx;
|
---|
1186 | y2 = affine._m12 * fx2 + affine._m22 * fy2 + affine._dy;
|
---|
1187 | if (t == TxProject) {
|
---|
1188 | qreal w = 1./(m_13 * fx1 + m_23 * fy1 + m_33);
|
---|
1189 | x1 *= w;
|
---|
1190 | y1 *= w;
|
---|
1191 | w = 1./(m_13 * fx2 + m_23 * fy2 + m_33);
|
---|
1192 | x2 *= w;
|
---|
1193 | y2 *= w;
|
---|
1194 | }
|
---|
1195 | }
|
---|
1196 | return QLineF(x1, y1, x2, y2);
|
---|
1197 | }
|
---|
1198 |
|
---|
1199 | static QPolygonF mapProjective(const QTransform &transform, const QPolygonF &poly)
|
---|
1200 | {
|
---|
1201 | if (poly.size() == 0)
|
---|
1202 | return poly;
|
---|
1203 |
|
---|
1204 | if (poly.size() == 1)
|
---|
1205 | return QPolygonF() << transform.map(poly.at(0));
|
---|
1206 |
|
---|
1207 | QPainterPath path;
|
---|
1208 | path.addPolygon(poly);
|
---|
1209 |
|
---|
1210 | path = transform.map(path);
|
---|
1211 |
|
---|
1212 | QPolygonF result;
|
---|
1213 | for (int i = 0; i < path.elementCount(); ++i)
|
---|
1214 | result << path.elementAt(i);
|
---|
1215 | return result;
|
---|
1216 | }
|
---|
1217 |
|
---|
1218 |
|
---|
1219 | /*!
|
---|
1220 | \fn QPolygonF operator *(const QPolygonF &polygon, const QTransform &matrix)
|
---|
1221 | \since 4.3
|
---|
1222 | \relates QTransform
|
---|
1223 |
|
---|
1224 | This is the same as \a{matrix}.map(\a{polygon}).
|
---|
1225 |
|
---|
1226 | \sa QTransform::map()
|
---|
1227 | */
|
---|
1228 |
|
---|
1229 | /*!
|
---|
1230 | \fn QPolygon operator*(const QPolygon &polygon, const QTransform &matrix)
|
---|
1231 | \relates QTransform
|
---|
1232 |
|
---|
1233 | This is the same as \a{matrix}.map(\a{polygon}).
|
---|
1234 |
|
---|
1235 | \sa QTransform::map()
|
---|
1236 | */
|
---|
1237 |
|
---|
1238 | /*!
|
---|
1239 | \fn QPolygonF QTransform::map(const QPolygonF &polygon) const
|
---|
1240 | \overload
|
---|
1241 |
|
---|
1242 | Creates and returns a QPolygonF object that is a copy of the given
|
---|
1243 | \a polygon, mapped into the coordinate system defined by this
|
---|
1244 | matrix.
|
---|
1245 | */
|
---|
1246 | QPolygonF QTransform::map(const QPolygonF &a) const
|
---|
1247 | {
|
---|
1248 | TransformationType t = type();
|
---|
1249 | if (t >= QTransform::TxProject)
|
---|
1250 | return mapProjective(*this, a);
|
---|
1251 |
|
---|
1252 | int size = a.size();
|
---|
1253 | int i;
|
---|
1254 | QPolygonF p(size);
|
---|
1255 | const QPointF *da = a.constData();
|
---|
1256 | QPointF *dp = p.data();
|
---|
1257 |
|
---|
1258 | for(i = 0; i < size; ++i) {
|
---|
1259 | MAP(da[i].xp, da[i].yp, dp[i].xp, dp[i].yp);
|
---|
1260 | }
|
---|
1261 | return p;
|
---|
1262 | }
|
---|
1263 |
|
---|
1264 | /*!
|
---|
1265 | \fn QPolygon QTransform::map(const QPolygon &polygon) const
|
---|
1266 | \overload
|
---|
1267 |
|
---|
1268 | Creates and returns a QPolygon object that is a copy of the given
|
---|
1269 | \a polygon, mapped into the coordinate system defined by this
|
---|
1270 | matrix. Note that the transformed coordinates are rounded to the
|
---|
1271 | nearest integer.
|
---|
1272 | */
|
---|
1273 | QPolygon QTransform::map(const QPolygon &a) const
|
---|
1274 | {
|
---|
1275 | TransformationType t = type();
|
---|
1276 | if (t >= QTransform::TxProject)
|
---|
1277 | return mapProjective(*this, QPolygonF(a)).toPolygon();
|
---|
1278 |
|
---|
1279 | int size = a.size();
|
---|
1280 | int i;
|
---|
1281 | QPolygon p(size);
|
---|
1282 | const QPoint *da = a.constData();
|
---|
1283 | QPoint *dp = p.data();
|
---|
1284 |
|
---|
1285 | for(i = 0; i < size; ++i) {
|
---|
1286 | qreal nx = 0, ny = 0;
|
---|
1287 | MAP(da[i].xp, da[i].yp, nx, ny);
|
---|
1288 | dp[i].xp = qRound(nx);
|
---|
1289 | dp[i].yp = qRound(ny);
|
---|
1290 | }
|
---|
1291 | return p;
|
---|
1292 | }
|
---|
1293 |
|
---|
1294 | /*!
|
---|
1295 | \fn QRegion operator*(const QRegion ®ion, const QTransform &matrix)
|
---|
1296 | \relates QTransform
|
---|
1297 |
|
---|
1298 | This is the same as \a{matrix}.map(\a{region}).
|
---|
1299 |
|
---|
1300 | \sa QTransform::map()
|
---|
1301 | */
|
---|
1302 |
|
---|
1303 | extern QPainterPath qt_regionToPath(const QRegion ®ion);
|
---|
1304 |
|
---|
1305 | /*!
|
---|
1306 | \fn QRegion QTransform::map(const QRegion ®ion) const
|
---|
1307 | \overload
|
---|
1308 |
|
---|
1309 | Creates and returns a QRegion object that is a copy of the given
|
---|
1310 | \a region, mapped into the coordinate system defined by this matrix.
|
---|
1311 |
|
---|
1312 | Calling this method can be rather expensive if rotations or
|
---|
1313 | shearing are used.
|
---|
1314 | */
|
---|
1315 | QRegion QTransform::map(const QRegion &r) const
|
---|
1316 | {
|
---|
1317 | TransformationType t = type();
|
---|
1318 | if (t == TxNone)
|
---|
1319 | return r;
|
---|
1320 | if (t == TxTranslate) {
|
---|
1321 | QRegion copy(r);
|
---|
1322 | copy.translate(qRound(affine._dx), qRound(affine._dy));
|
---|
1323 | return copy;
|
---|
1324 | }
|
---|
1325 |
|
---|
1326 | QPainterPath p = map(qt_regionToPath(r));
|
---|
1327 | return p.toFillPolygon(QTransform()).toPolygon();
|
---|
1328 | }
|
---|
1329 |
|
---|
1330 | struct QHomogeneousCoordinate
|
---|
1331 | {
|
---|
1332 | qreal x;
|
---|
1333 | qreal y;
|
---|
1334 | qreal w;
|
---|
1335 |
|
---|
1336 | QHomogeneousCoordinate() {}
|
---|
1337 | QHomogeneousCoordinate(qreal x_, qreal y_, qreal w_) : x(x_), y(y_), w(w_) {}
|
---|
1338 |
|
---|
1339 | const QPointF toPoint() const {
|
---|
1340 | qreal iw = 1 / w;
|
---|
1341 | return QPointF(x * iw, y * iw);
|
---|
1342 | }
|
---|
1343 | };
|
---|
1344 |
|
---|
1345 | static inline QHomogeneousCoordinate mapHomogeneous(const QTransform &transform, const QPointF &p)
|
---|
1346 | {
|
---|
1347 | QHomogeneousCoordinate c;
|
---|
1348 | c.x = transform.m11() * p.x() + transform.m21() * p.y() + transform.m31();
|
---|
1349 | c.y = transform.m12() * p.x() + transform.m22() * p.y() + transform.m32();
|
---|
1350 | c.w = transform.m13() * p.x() + transform.m23() * p.y() + transform.m33();
|
---|
1351 | return c;
|
---|
1352 | }
|
---|
1353 |
|
---|
1354 | static inline bool lineTo_clipped(QPainterPath &path, const QTransform &transform, const QPointF &a, const QPointF &b, bool needsMoveTo)
|
---|
1355 | {
|
---|
1356 | QHomogeneousCoordinate ha = mapHomogeneous(transform, a);
|
---|
1357 | QHomogeneousCoordinate hb = mapHomogeneous(transform, b);
|
---|
1358 |
|
---|
1359 | if (ha.w < Q_NEAR_CLIP && hb.w < Q_NEAR_CLIP)
|
---|
1360 | return false;
|
---|
1361 |
|
---|
1362 | if (hb.w < Q_NEAR_CLIP) {
|
---|
1363 | const qreal t = (Q_NEAR_CLIP - hb.w) / (ha.w - hb.w);
|
---|
1364 |
|
---|
1365 | hb.x += (ha.x - hb.x) * t;
|
---|
1366 | hb.y += (ha.y - hb.y) * t;
|
---|
1367 | hb.w = qreal(Q_NEAR_CLIP);
|
---|
1368 | } else if (ha.w < Q_NEAR_CLIP) {
|
---|
1369 | const qreal t = (Q_NEAR_CLIP - ha.w) / (hb.w - ha.w);
|
---|
1370 |
|
---|
1371 | ha.x += (hb.x - ha.x) * t;
|
---|
1372 | ha.y += (hb.y - ha.y) * t;
|
---|
1373 | ha.w = qreal(Q_NEAR_CLIP);
|
---|
1374 |
|
---|
1375 | const QPointF p = ha.toPoint();
|
---|
1376 | if (needsMoveTo) {
|
---|
1377 | path.moveTo(p);
|
---|
1378 | needsMoveTo = false;
|
---|
1379 | } else {
|
---|
1380 | path.lineTo(p);
|
---|
1381 | }
|
---|
1382 | }
|
---|
1383 |
|
---|
1384 | if (needsMoveTo)
|
---|
1385 | path.moveTo(ha.toPoint());
|
---|
1386 |
|
---|
1387 | path.lineTo(hb.toPoint());
|
---|
1388 |
|
---|
1389 | return true;
|
---|
1390 | }
|
---|
1391 |
|
---|
1392 | static inline bool cubicTo_clipped(QPainterPath &path, const QTransform &transform, const QPointF &a, const QPointF &b, const QPointF &c, const QPointF &d, bool needsMoveTo)
|
---|
1393 | {
|
---|
1394 | const QHomogeneousCoordinate ha = mapHomogeneous(transform, a);
|
---|
1395 | const QHomogeneousCoordinate hb = mapHomogeneous(transform, b);
|
---|
1396 | const QHomogeneousCoordinate hc = mapHomogeneous(transform, c);
|
---|
1397 | const QHomogeneousCoordinate hd = mapHomogeneous(transform, d);
|
---|
1398 |
|
---|
1399 | if (ha.w < Q_NEAR_CLIP && hb.w < Q_NEAR_CLIP && hc.w < Q_NEAR_CLIP && hd.w < Q_NEAR_CLIP)
|
---|
1400 | return false;
|
---|
1401 |
|
---|
1402 | if (ha.w >= Q_NEAR_CLIP && hb.w >= Q_NEAR_CLIP && hc.w >= Q_NEAR_CLIP && hd.w >= Q_NEAR_CLIP) {
|
---|
1403 | if (needsMoveTo)
|
---|
1404 | path.moveTo(ha.toPoint());
|
---|
1405 |
|
---|
1406 | path.cubicTo(hb.toPoint(), hc.toPoint(), hd.toPoint());
|
---|
1407 | return true;
|
---|
1408 | }
|
---|
1409 |
|
---|
1410 | if (lineTo_clipped(path, transform, a, b, needsMoveTo))
|
---|
1411 | needsMoveTo = false;
|
---|
1412 | if (lineTo_clipped(path, transform, b, c, needsMoveTo))
|
---|
1413 | needsMoveTo = false;
|
---|
1414 | if (lineTo_clipped(path, transform, c, d, needsMoveTo))
|
---|
1415 | needsMoveTo = false;
|
---|
1416 |
|
---|
1417 | return !needsMoveTo;
|
---|
1418 | }
|
---|
1419 |
|
---|
1420 | static QPainterPath mapProjective(const QTransform &transform, const QPainterPath &path)
|
---|
1421 | {
|
---|
1422 | QPainterPath result;
|
---|
1423 |
|
---|
1424 | QPointF last;
|
---|
1425 | QPointF lastMoveTo;
|
---|
1426 | bool needsMoveTo = true;
|
---|
1427 | for (int i = 0; i < path.elementCount(); ++i) {
|
---|
1428 | switch (path.elementAt(i).type) {
|
---|
1429 | case QPainterPath::MoveToElement:
|
---|
1430 | if (i > 0 && lastMoveTo != last)
|
---|
1431 | lineTo_clipped(result, transform, last, lastMoveTo, needsMoveTo);
|
---|
1432 |
|
---|
1433 | lastMoveTo = path.elementAt(i);
|
---|
1434 | last = path.elementAt(i);
|
---|
1435 | needsMoveTo = true;
|
---|
1436 | break;
|
---|
1437 | case QPainterPath::LineToElement:
|
---|
1438 | if (lineTo_clipped(result, transform, last, path.elementAt(i), needsMoveTo))
|
---|
1439 | needsMoveTo = false;
|
---|
1440 | last = path.elementAt(i);
|
---|
1441 | break;
|
---|
1442 | case QPainterPath::CurveToElement:
|
---|
1443 | if (cubicTo_clipped(result, transform, last, path.elementAt(i), path.elementAt(i+1), path.elementAt(i+2), needsMoveTo))
|
---|
1444 | needsMoveTo = false;
|
---|
1445 | i += 2;
|
---|
1446 | last = path.elementAt(i);
|
---|
1447 | break;
|
---|
1448 | default:
|
---|
1449 | Q_ASSERT(false);
|
---|
1450 | }
|
---|
1451 | }
|
---|
1452 |
|
---|
1453 | if (path.elementCount() > 0 && lastMoveTo != last)
|
---|
1454 | lineTo_clipped(result, transform, last, lastMoveTo, needsMoveTo);
|
---|
1455 |
|
---|
1456 | return result;
|
---|
1457 | }
|
---|
1458 |
|
---|
1459 | /*!
|
---|
1460 | \fn QPainterPath operator *(const QPainterPath &path, const QTransform &matrix)
|
---|
1461 | \since 4.3
|
---|
1462 | \relates QTransform
|
---|
1463 |
|
---|
1464 | This is the same as \a{matrix}.map(\a{path}).
|
---|
1465 |
|
---|
1466 | \sa QTransform::map()
|
---|
1467 | */
|
---|
1468 |
|
---|
1469 | /*!
|
---|
1470 | \overload
|
---|
1471 |
|
---|
1472 | Creates and returns a QPainterPath object that is a copy of the
|
---|
1473 | given \a path, mapped into the coordinate system defined by this
|
---|
1474 | matrix.
|
---|
1475 | */
|
---|
1476 | QPainterPath QTransform::map(const QPainterPath &path) const
|
---|
1477 | {
|
---|
1478 | TransformationType t = type();
|
---|
1479 | if (t == TxNone || path.isEmpty())
|
---|
1480 | return path;
|
---|
1481 |
|
---|
1482 | if (t >= TxProject)
|
---|
1483 | return mapProjective(*this, path);
|
---|
1484 |
|
---|
1485 | QPainterPath copy = path;
|
---|
1486 | copy.detach();
|
---|
1487 |
|
---|
1488 | if (t == TxTranslate) {
|
---|
1489 | for (int i=0; i<path.elementCount(); ++i) {
|
---|
1490 | QPainterPath::Element &e = copy.d_ptr->elements[i];
|
---|
1491 | e.x += affine._dx;
|
---|
1492 | e.y += affine._dy;
|
---|
1493 | }
|
---|
1494 | } else {
|
---|
1495 | // Full xform
|
---|
1496 | for (int i=0; i<path.elementCount(); ++i) {
|
---|
1497 | QPainterPath::Element &e = copy.d_ptr->elements[i];
|
---|
1498 | MAP(e.x, e.y, e.x, e.y);
|
---|
1499 | }
|
---|
1500 | }
|
---|
1501 |
|
---|
1502 | return copy;
|
---|
1503 | }
|
---|
1504 |
|
---|
1505 | /*!
|
---|
1506 | \fn QPolygon QTransform::mapToPolygon(const QRect &rectangle) const
|
---|
1507 |
|
---|
1508 | Creates and returns a QPolygon representation of the given \a
|
---|
1509 | rectangle, mapped into the coordinate system defined by this
|
---|
1510 | matrix.
|
---|
1511 |
|
---|
1512 | The rectangle's coordinates are transformed using the following
|
---|
1513 | formulas:
|
---|
1514 |
|
---|
1515 | \snippet doc/src/snippets/code/src_gui_painting_qtransform.cpp 1
|
---|
1516 |
|
---|
1517 | Polygons and rectangles behave slightly differently when
|
---|
1518 | transformed (due to integer rounding), so
|
---|
1519 | \c{matrix.map(QPolygon(rectangle))} is not always the same as
|
---|
1520 | \c{matrix.mapToPolygon(rectangle)}.
|
---|
1521 |
|
---|
1522 | \sa mapRect(), {QTransform#Basic Matrix Operations}{Basic Matrix
|
---|
1523 | Operations}
|
---|
1524 | */
|
---|
1525 | QPolygon QTransform::mapToPolygon(const QRect &rect) const
|
---|
1526 | {
|
---|
1527 | TransformationType t = type();
|
---|
1528 |
|
---|
1529 | QPolygon a(4);
|
---|
1530 | qreal x[4] = { 0, 0, 0, 0 }, y[4] = { 0, 0, 0, 0 };
|
---|
1531 | if (t <= TxScale) {
|
---|
1532 | x[0] = affine._m11*rect.x() + affine._dx;
|
---|
1533 | y[0] = affine._m22*rect.y() + affine._dy;
|
---|
1534 | qreal w = affine._m11*rect.width();
|
---|
1535 | qreal h = affine._m22*rect.height();
|
---|
1536 | if (w < 0) {
|
---|
1537 | w = -w;
|
---|
1538 | x[0] -= w;
|
---|
1539 | }
|
---|
1540 | if (h < 0) {
|
---|
1541 | h = -h;
|
---|
1542 | y[0] -= h;
|
---|
1543 | }
|
---|
1544 | x[1] = x[0]+w;
|
---|
1545 | x[2] = x[1];
|
---|
1546 | x[3] = x[0];
|
---|
1547 | y[1] = y[0];
|
---|
1548 | y[2] = y[0]+h;
|
---|
1549 | y[3] = y[2];
|
---|
1550 | } else {
|
---|
1551 | qreal right = rect.x() + rect.width();
|
---|
1552 | qreal bottom = rect.y() + rect.height();
|
---|
1553 | MAP(rect.x(), rect.y(), x[0], y[0]);
|
---|
1554 | MAP(right, rect.y(), x[1], y[1]);
|
---|
1555 | MAP(right, bottom, x[2], y[2]);
|
---|
1556 | MAP(rect.x(), bottom, x[3], y[3]);
|
---|
1557 | }
|
---|
1558 |
|
---|
1559 | // all coordinates are correctly, tranform to a pointarray
|
---|
1560 | // (rounding to the next integer)
|
---|
1561 | a.setPoints(4, qRound(x[0]), qRound(y[0]),
|
---|
1562 | qRound(x[1]), qRound(y[1]),
|
---|
1563 | qRound(x[2]), qRound(y[2]),
|
---|
1564 | qRound(x[3]), qRound(y[3]));
|
---|
1565 | return a;
|
---|
1566 | }
|
---|
1567 |
|
---|
1568 | /*!
|
---|
1569 | Creates a transformation matrix, \a trans, that maps a unit square
|
---|
1570 | to a four-sided polygon, \a quad. Returns true if the transformation
|
---|
1571 | is constructed or false if such a transformation does not exist.
|
---|
1572 |
|
---|
1573 | \sa quadToSquare(), quadToQuad()
|
---|
1574 | */
|
---|
1575 | bool QTransform::squareToQuad(const QPolygonF &quad, QTransform &trans)
|
---|
1576 | {
|
---|
1577 | if (quad.count() != 4)
|
---|
1578 | return false;
|
---|
1579 |
|
---|
1580 | qreal dx0 = quad[0].x();
|
---|
1581 | qreal dx1 = quad[1].x();
|
---|
1582 | qreal dx2 = quad[2].x();
|
---|
1583 | qreal dx3 = quad[3].x();
|
---|
1584 |
|
---|
1585 | qreal dy0 = quad[0].y();
|
---|
1586 | qreal dy1 = quad[1].y();
|
---|
1587 | qreal dy2 = quad[2].y();
|
---|
1588 | qreal dy3 = quad[3].y();
|
---|
1589 |
|
---|
1590 | double ax = dx0 - dx1 + dx2 - dx3;
|
---|
1591 | double ay = dy0 - dy1 + dy2 - dy3;
|
---|
1592 |
|
---|
1593 | if (!ax && !ay) { //afine transform
|
---|
1594 | trans.setMatrix(dx1 - dx0, dy1 - dy0, 0,
|
---|
1595 | dx2 - dx1, dy2 - dy1, 0,
|
---|
1596 | dx0, dy0, 1);
|
---|
1597 | } else {
|
---|
1598 | double ax1 = dx1 - dx2;
|
---|
1599 | double ax2 = dx3 - dx2;
|
---|
1600 | double ay1 = dy1 - dy2;
|
---|
1601 | double ay2 = dy3 - dy2;
|
---|
1602 |
|
---|
1603 | /*determinants */
|
---|
1604 | double gtop = ax * ay2 - ax2 * ay;
|
---|
1605 | double htop = ax1 * ay - ax * ay1;
|
---|
1606 | double bottom = ax1 * ay2 - ax2 * ay1;
|
---|
1607 |
|
---|
1608 | double a, b, c, d, e, f, g, h; /*i is always 1*/
|
---|
1609 |
|
---|
1610 | if (!bottom)
|
---|
1611 | return false;
|
---|
1612 |
|
---|
1613 | g = gtop/bottom;
|
---|
1614 | h = htop/bottom;
|
---|
1615 |
|
---|
1616 | a = dx1 - dx0 + g * dx1;
|
---|
1617 | b = dx3 - dx0 + h * dx3;
|
---|
1618 | c = dx0;
|
---|
1619 | d = dy1 - dy0 + g * dy1;
|
---|
1620 | e = dy3 - dy0 + h * dy3;
|
---|
1621 | f = dy0;
|
---|
1622 |
|
---|
1623 | trans.setMatrix(a, d, g,
|
---|
1624 | b, e, h,
|
---|
1625 | c, f, 1.0);
|
---|
1626 | }
|
---|
1627 |
|
---|
1628 | return true;
|
---|
1629 | }
|
---|
1630 |
|
---|
1631 | /*!
|
---|
1632 | \fn bool QTransform::quadToSquare(const QPolygonF &quad, QTransform &trans)
|
---|
1633 |
|
---|
1634 | Creates a transformation matrix, \a trans, that maps a four-sided polygon,
|
---|
1635 | \a quad, to a unit square. Returns true if the transformation is constructed
|
---|
1636 | or false if such a transformation does not exist.
|
---|
1637 |
|
---|
1638 | \sa squareToQuad(), quadToQuad()
|
---|
1639 | */
|
---|
1640 | bool QTransform::quadToSquare(const QPolygonF &quad, QTransform &trans)
|
---|
1641 | {
|
---|
1642 | if (!squareToQuad(quad, trans))
|
---|
1643 | return false;
|
---|
1644 |
|
---|
1645 | bool invertible = false;
|
---|
1646 | trans = trans.inverted(&invertible);
|
---|
1647 |
|
---|
1648 | return invertible;
|
---|
1649 | }
|
---|
1650 |
|
---|
1651 | /*!
|
---|
1652 | Creates a transformation matrix, \a trans, that maps a four-sided
|
---|
1653 | polygon, \a one, to another four-sided polygon, \a two.
|
---|
1654 | Returns true if the transformation is possible; otherwise returns
|
---|
1655 | false.
|
---|
1656 |
|
---|
1657 | This is a convenience method combining quadToSquare() and
|
---|
1658 | squareToQuad() methods. It allows the input quad to be
|
---|
1659 | transformed into any other quad.
|
---|
1660 |
|
---|
1661 | \sa squareToQuad(), quadToSquare()
|
---|
1662 | */
|
---|
1663 | bool QTransform::quadToQuad(const QPolygonF &one,
|
---|
1664 | const QPolygonF &two,
|
---|
1665 | QTransform &trans)
|
---|
1666 | {
|
---|
1667 | QTransform stq;
|
---|
1668 | if (!quadToSquare(one, trans))
|
---|
1669 | return false;
|
---|
1670 | if (!squareToQuad(two, stq))
|
---|
1671 | return false;
|
---|
1672 | trans *= stq;
|
---|
1673 | //qDebug()<<"Final = "<<trans;
|
---|
1674 | return true;
|
---|
1675 | }
|
---|
1676 |
|
---|
1677 | /*!
|
---|
1678 | Sets the matrix elements to the specified values, \a m11,
|
---|
1679 | \a m12, \a m13 \a m21, \a m22, \a m23 \a m31, \a m32 and
|
---|
1680 | \a m33. Note that this function replaces the previous values.
|
---|
1681 | QMatrix provides the translate(), rotate(), scale() and shear()
|
---|
1682 | convenience functions to manipulate the various matrix elements
|
---|
1683 | based on the currently defined coordinate system.
|
---|
1684 |
|
---|
1685 | \sa QTransform()
|
---|
1686 | */
|
---|
1687 |
|
---|
1688 | void QTransform::setMatrix(qreal m11, qreal m12, qreal m13,
|
---|
1689 | qreal m21, qreal m22, qreal m23,
|
---|
1690 | qreal m31, qreal m32, qreal m33)
|
---|
1691 | {
|
---|
1692 | affine._m11 = m11; affine._m12 = m12; m_13 = m13;
|
---|
1693 | affine._m21 = m21; affine._m22 = m22; m_23 = m23;
|
---|
1694 | affine._dx = m31; affine._dy = m32; m_33 = m33;
|
---|
1695 | m_type = TxNone;
|
---|
1696 | m_dirty = TxProject;
|
---|
1697 | }
|
---|
1698 |
|
---|
1699 | QRect QTransform::mapRect(const QRect &rect) const
|
---|
1700 | {
|
---|
1701 | TransformationType t = type();
|
---|
1702 | if (t <= TxScale) {
|
---|
1703 | int x = qRound(affine._m11*rect.x() + affine._dx);
|
---|
1704 | int y = qRound(affine._m22*rect.y() + affine._dy);
|
---|
1705 | int w = qRound(affine._m11*rect.width());
|
---|
1706 | int h = qRound(affine._m22*rect.height());
|
---|
1707 | if (w < 0) {
|
---|
1708 | w = -w;
|
---|
1709 | x -= w;
|
---|
1710 | }
|
---|
1711 | if (h < 0) {
|
---|
1712 | h = -h;
|
---|
1713 | y -= h;
|
---|
1714 | }
|
---|
1715 | return QRect(x, y, w, h);
|
---|
1716 | } else if (t < TxProject) {
|
---|
1717 | // see mapToPolygon for explanations of the algorithm.
|
---|
1718 | qreal x0 = 0, y0 = 0;
|
---|
1719 | qreal x, y;
|
---|
1720 | MAP(rect.left(), rect.top(), x0, y0);
|
---|
1721 | qreal xmin = x0;
|
---|
1722 | qreal ymin = y0;
|
---|
1723 | qreal xmax = x0;
|
---|
1724 | qreal ymax = y0;
|
---|
1725 | MAP(rect.right() + 1, rect.top(), x, y);
|
---|
1726 | xmin = qMin(xmin, x);
|
---|
1727 | ymin = qMin(ymin, y);
|
---|
1728 | xmax = qMax(xmax, x);
|
---|
1729 | ymax = qMax(ymax, y);
|
---|
1730 | MAP(rect.right() + 1, rect.bottom() + 1, x, y);
|
---|
1731 | xmin = qMin(xmin, x);
|
---|
1732 | ymin = qMin(ymin, y);
|
---|
1733 | xmax = qMax(xmax, x);
|
---|
1734 | ymax = qMax(ymax, y);
|
---|
1735 | MAP(rect.left(), rect.bottom() + 1, x, y);
|
---|
1736 | xmin = qMin(xmin, x);
|
---|
1737 | ymin = qMin(ymin, y);
|
---|
1738 | xmax = qMax(xmax, x);
|
---|
1739 | ymax = qMax(ymax, y);
|
---|
1740 | return QRect(qRound(xmin), qRound(ymin), qRound(xmax)-qRound(xmin), qRound(ymax)-qRound(ymin));
|
---|
1741 | } else {
|
---|
1742 | QPainterPath path;
|
---|
1743 | path.addRect(rect);
|
---|
1744 | return map(path).boundingRect().toRect();
|
---|
1745 | }
|
---|
1746 | }
|
---|
1747 |
|
---|
1748 | /*!
|
---|
1749 | \fn QRectF QTransform::mapRect(const QRectF &rectangle) const
|
---|
1750 |
|
---|
1751 | Creates and returns a QRectF object that is a copy of the given \a
|
---|
1752 | rectangle, mapped into the coordinate system defined by this
|
---|
1753 | matrix.
|
---|
1754 |
|
---|
1755 | The rectangle's coordinates are transformed using the following
|
---|
1756 | formulas:
|
---|
1757 |
|
---|
1758 | \snippet doc/src/snippets/code/src_gui_painting_qtransform.cpp 2
|
---|
1759 |
|
---|
1760 | If rotation or shearing has been specified, this function returns
|
---|
1761 | the \e bounding rectangle. To retrieve the exact region the given
|
---|
1762 | \a rectangle maps to, use the mapToPolygon() function instead.
|
---|
1763 |
|
---|
1764 | \sa mapToPolygon(), {QTransform#Basic Matrix Operations}{Basic Matrix
|
---|
1765 | Operations}
|
---|
1766 | */
|
---|
1767 | QRectF QTransform::mapRect(const QRectF &rect) const
|
---|
1768 | {
|
---|
1769 | TransformationType t = type();
|
---|
1770 | if (t <= TxScale) {
|
---|
1771 | qreal x = affine._m11*rect.x() + affine._dx;
|
---|
1772 | qreal y = affine._m22*rect.y() + affine._dy;
|
---|
1773 | qreal w = affine._m11*rect.width();
|
---|
1774 | qreal h = affine._m22*rect.height();
|
---|
1775 | if (w < 0) {
|
---|
1776 | w = -w;
|
---|
1777 | x -= w;
|
---|
1778 | }
|
---|
1779 | if (h < 0) {
|
---|
1780 | h = -h;
|
---|
1781 | y -= h;
|
---|
1782 | }
|
---|
1783 | return QRectF(x, y, w, h);
|
---|
1784 | } else if (t < TxProject) {
|
---|
1785 | qreal x0 = 0, y0 = 0;
|
---|
1786 | qreal x, y;
|
---|
1787 | MAP(rect.x(), rect.y(), x0, y0);
|
---|
1788 | qreal xmin = x0;
|
---|
1789 | qreal ymin = y0;
|
---|
1790 | qreal xmax = x0;
|
---|
1791 | qreal ymax = y0;
|
---|
1792 | MAP(rect.x() + rect.width(), rect.y(), x, y);
|
---|
1793 | xmin = qMin(xmin, x);
|
---|
1794 | ymin = qMin(ymin, y);
|
---|
1795 | xmax = qMax(xmax, x);
|
---|
1796 | ymax = qMax(ymax, y);
|
---|
1797 | MAP(rect.x() + rect.width(), rect.y() + rect.height(), x, y);
|
---|
1798 | xmin = qMin(xmin, x);
|
---|
1799 | ymin = qMin(ymin, y);
|
---|
1800 | xmax = qMax(xmax, x);
|
---|
1801 | ymax = qMax(ymax, y);
|
---|
1802 | MAP(rect.x(), rect.y() + rect.height(), x, y);
|
---|
1803 | xmin = qMin(xmin, x);
|
---|
1804 | ymin = qMin(ymin, y);
|
---|
1805 | xmax = qMax(xmax, x);
|
---|
1806 | ymax = qMax(ymax, y);
|
---|
1807 | return QRectF(xmin, ymin, xmax-xmin, ymax - ymin);
|
---|
1808 | } else {
|
---|
1809 | QPainterPath path;
|
---|
1810 | path.addRect(rect);
|
---|
1811 | return map(path).boundingRect();
|
---|
1812 | }
|
---|
1813 | }
|
---|
1814 |
|
---|
1815 | /*!
|
---|
1816 | \fn QRect QTransform::mapRect(const QRect &rectangle) const
|
---|
1817 | \overload
|
---|
1818 |
|
---|
1819 | Creates and returns a QRect object that is a copy of the given \a
|
---|
1820 | rectangle, mapped into the coordinate system defined by this
|
---|
1821 | matrix. Note that the transformed coordinates are rounded to the
|
---|
1822 | nearest integer.
|
---|
1823 | */
|
---|
1824 |
|
---|
1825 | /*!
|
---|
1826 | Maps the given coordinates \a x and \a y into the coordinate
|
---|
1827 | system defined by this matrix. The resulting values are put in *\a
|
---|
1828 | tx and *\a ty, respectively.
|
---|
1829 |
|
---|
1830 | The coordinates are transformed using the following formulas:
|
---|
1831 |
|
---|
1832 | \snippet doc/src/snippets/code/src_gui_painting_qtransform.cpp 3
|
---|
1833 |
|
---|
1834 | The point (x, y) is the original point, and (x', y') is the
|
---|
1835 | transformed point.
|
---|
1836 |
|
---|
1837 | \sa {QTransform#Basic Matrix Operations}{Basic Matrix Operations}
|
---|
1838 | */
|
---|
1839 | void QTransform::map(qreal x, qreal y, qreal *tx, qreal *ty) const
|
---|
1840 | {
|
---|
1841 | TransformationType t = type();
|
---|
1842 | MAP(x, y, *tx, *ty);
|
---|
1843 | }
|
---|
1844 |
|
---|
1845 | /*!
|
---|
1846 | \overload
|
---|
1847 |
|
---|
1848 | Maps the given coordinates \a x and \a y into the coordinate
|
---|
1849 | system defined by this matrix. The resulting values are put in *\a
|
---|
1850 | tx and *\a ty, respectively. Note that the transformed coordinates
|
---|
1851 | are rounded to the nearest integer.
|
---|
1852 | */
|
---|
1853 | void QTransform::map(int x, int y, int *tx, int *ty) const
|
---|
1854 | {
|
---|
1855 | TransformationType t = type();
|
---|
1856 | qreal fx = 0, fy = 0;
|
---|
1857 | MAP(x, y, fx, fy);
|
---|
1858 | *tx = qRound(fx);
|
---|
1859 | *ty = qRound(fy);
|
---|
1860 | }
|
---|
1861 |
|
---|
1862 | /*!
|
---|
1863 | Returns the QTransform cast to a QMatrix.
|
---|
1864 | */
|
---|
1865 | const QMatrix &QTransform::toAffine() const
|
---|
1866 | {
|
---|
1867 | return affine;
|
---|
1868 | }
|
---|
1869 |
|
---|
1870 | /*!
|
---|
1871 | Returns the transformation type of this matrix.
|
---|
1872 |
|
---|
1873 | The transformation type is the highest enumeration value
|
---|
1874 | capturing all of the matrix's transformations. For example,
|
---|
1875 | if the matrix both scales and shears, the type would be \c TxShear,
|
---|
1876 | because \c TxShear has a higher enumeration value than \c TxScale.
|
---|
1877 |
|
---|
1878 | Knowing the transformation type of a matrix is useful for optimization:
|
---|
1879 | you can often handle specific types more optimally than handling
|
---|
1880 | the generic case.
|
---|
1881 | */
|
---|
1882 | QTransform::TransformationType QTransform::type() const
|
---|
1883 | {
|
---|
1884 | if (m_dirty >= m_type) {
|
---|
1885 | if (m_dirty > TxShear && (!qFuzzyCompare(m_13 + 1, 1) || !qFuzzyCompare(m_23 + 1, 1)))
|
---|
1886 | m_type = TxProject;
|
---|
1887 | else if (m_dirty > TxScale && (!qFuzzyCompare(affine._m12 + 1, 1) || !qFuzzyCompare(affine._m21 + 1, 1))) {
|
---|
1888 | const qreal dot = affine._m11 * affine._m12 + affine._m21 * affine._m22;
|
---|
1889 | if (qFuzzyCompare(dot + 1, 1))
|
---|
1890 | m_type = TxRotate;
|
---|
1891 | else
|
---|
1892 | m_type = TxShear;
|
---|
1893 | } else if (m_dirty > TxTranslate && (!qFuzzyCompare(affine._m11, 1) || !qFuzzyCompare(affine._m22, 1) || !qFuzzyCompare(m_33, 1)))
|
---|
1894 | m_type = TxScale;
|
---|
1895 | else if (m_dirty > TxNone && (!qFuzzyCompare(affine._dx + 1, 1) || !qFuzzyCompare(affine._dy + 1, 1)))
|
---|
1896 | m_type = TxTranslate;
|
---|
1897 | else
|
---|
1898 | m_type = TxNone;
|
---|
1899 |
|
---|
1900 | m_dirty = TxNone;
|
---|
1901 | }
|
---|
1902 |
|
---|
1903 | return static_cast<TransformationType>(m_type);
|
---|
1904 | }
|
---|
1905 |
|
---|
1906 | /*!
|
---|
1907 |
|
---|
1908 | Returns the transform as a QVariant.
|
---|
1909 | */
|
---|
1910 | QTransform::operator QVariant() const
|
---|
1911 | {
|
---|
1912 | return QVariant(QVariant::Transform, this);
|
---|
1913 | }
|
---|
1914 |
|
---|
1915 |
|
---|
1916 | /*!
|
---|
1917 | \fn bool QTransform::isInvertible() const
|
---|
1918 |
|
---|
1919 | Returns true if the matrix is invertible, otherwise returns false.
|
---|
1920 |
|
---|
1921 | \sa inverted()
|
---|
1922 | */
|
---|
1923 |
|
---|
1924 | /*!
|
---|
1925 | \fn qreal QTransform::det() const
|
---|
1926 |
|
---|
1927 | Returns the matrix's determinant.
|
---|
1928 | */
|
---|
1929 |
|
---|
1930 |
|
---|
1931 | /*!
|
---|
1932 | \fn qreal QTransform::m11() const
|
---|
1933 |
|
---|
1934 | Returns the horizontal scaling factor.
|
---|
1935 |
|
---|
1936 | \sa scale(), {QTransform#Basic Matrix Operations}{Basic Matrix
|
---|
1937 | Operations}
|
---|
1938 | */
|
---|
1939 |
|
---|
1940 | /*!
|
---|
1941 | \fn qreal QTransform::m12() const
|
---|
1942 |
|
---|
1943 | Returns the vertical shearing factor.
|
---|
1944 |
|
---|
1945 | \sa shear(), {QTransform#Basic Matrix Operations}{Basic Matrix
|
---|
1946 | Operations}
|
---|
1947 | */
|
---|
1948 |
|
---|
1949 | /*!
|
---|
1950 | \fn qreal QTransform::m21() const
|
---|
1951 |
|
---|
1952 | Returns the horizontal shearing factor.
|
---|
1953 |
|
---|
1954 | \sa shear(), {QTransform#Basic Matrix Operations}{Basic Matrix
|
---|
1955 | Operations}
|
---|
1956 | */
|
---|
1957 |
|
---|
1958 | /*!
|
---|
1959 | \fn qreal QTransform::m22() const
|
---|
1960 |
|
---|
1961 | Returns the vertical scaling factor.
|
---|
1962 |
|
---|
1963 | \sa scale(), {QTransform#Basic Matrix Operations}{Basic Matrix
|
---|
1964 | Operations}
|
---|
1965 | */
|
---|
1966 |
|
---|
1967 | /*!
|
---|
1968 | \fn qreal QTransform::dx() const
|
---|
1969 |
|
---|
1970 | Returns the horizontal translation factor.
|
---|
1971 |
|
---|
1972 | \sa m31(), translate(), {QTransform#Basic Matrix Operations}{Basic Matrix
|
---|
1973 | Operations}
|
---|
1974 | */
|
---|
1975 |
|
---|
1976 | /*!
|
---|
1977 | \fn qreal QTransform::dy() const
|
---|
1978 |
|
---|
1979 | Returns the vertical translation factor.
|
---|
1980 |
|
---|
1981 | \sa translate(), {QTransform#Basic Matrix Operations}{Basic Matrix
|
---|
1982 | Operations}
|
---|
1983 | */
|
---|
1984 |
|
---|
1985 |
|
---|
1986 | /*!
|
---|
1987 | \fn qreal QTransform::m13() const
|
---|
1988 |
|
---|
1989 | Returns the horizontal projection factor.
|
---|
1990 |
|
---|
1991 | \sa translate(), {QTransform#Basic Matrix Operations}{Basic Matrix
|
---|
1992 | Operations}
|
---|
1993 | */
|
---|
1994 |
|
---|
1995 |
|
---|
1996 | /*!
|
---|
1997 | \fn qreal QTransform::m23() const
|
---|
1998 |
|
---|
1999 | Returns the vertical projection factor.
|
---|
2000 |
|
---|
2001 | \sa translate(), {QTransform#Basic Matrix Operations}{Basic Matrix
|
---|
2002 | Operations}
|
---|
2003 | */
|
---|
2004 |
|
---|
2005 | /*!
|
---|
2006 | \fn qreal QTransform::m31() const
|
---|
2007 |
|
---|
2008 | Returns the horizontal translation factor.
|
---|
2009 |
|
---|
2010 | \sa dx(), translate(), {QTransform#Basic Matrix Operations}{Basic Matrix
|
---|
2011 | Operations}
|
---|
2012 | */
|
---|
2013 |
|
---|
2014 | /*!
|
---|
2015 | \fn qreal QTransform::m32() const
|
---|
2016 |
|
---|
2017 | Returns the vertical translation factor.
|
---|
2018 |
|
---|
2019 | \sa dy(), translate(), {QTransform#Basic Matrix Operations}{Basic Matrix
|
---|
2020 | Operations}
|
---|
2021 | */
|
---|
2022 |
|
---|
2023 | /*!
|
---|
2024 | \fn qreal QTransform::m33() const
|
---|
2025 |
|
---|
2026 | Returns the division factor.
|
---|
2027 |
|
---|
2028 | \sa translate(), {QTransform#Basic Matrix Operations}{Basic Matrix
|
---|
2029 | Operations}
|
---|
2030 | */
|
---|
2031 |
|
---|
2032 | /*!
|
---|
2033 | \fn qreal QTransform::determinant() const
|
---|
2034 |
|
---|
2035 | Returns the matrix's determinant.
|
---|
2036 | */
|
---|
2037 |
|
---|
2038 | /*!
|
---|
2039 | \fn bool QTransform::isIdentity() const
|
---|
2040 |
|
---|
2041 | Returns true if the matrix is the identity matrix, otherwise
|
---|
2042 | returns false.
|
---|
2043 |
|
---|
2044 | \sa reset()
|
---|
2045 | */
|
---|
2046 |
|
---|
2047 | /*!
|
---|
2048 | \fn bool QTransform::isAffine() const
|
---|
2049 |
|
---|
2050 | Returns true if the matrix represent an affine transformation,
|
---|
2051 | otherwise returns false.
|
---|
2052 | */
|
---|
2053 |
|
---|
2054 | /*!
|
---|
2055 | \fn bool QTransform::isScaling() const
|
---|
2056 |
|
---|
2057 | Returns true if the matrix represents a scaling
|
---|
2058 | transformation, otherwise returns false.
|
---|
2059 |
|
---|
2060 | \sa reset()
|
---|
2061 | */
|
---|
2062 |
|
---|
2063 | /*!
|
---|
2064 | \fn bool QTransform::isRotating() const
|
---|
2065 |
|
---|
2066 | Returns true if the matrix represents some kind of a
|
---|
2067 | rotating transformation, otherwise returns false.
|
---|
2068 |
|
---|
2069 | \sa reset()
|
---|
2070 | */
|
---|
2071 |
|
---|
2072 | /*!
|
---|
2073 | \fn bool QTransform::isTranslating() const
|
---|
2074 |
|
---|
2075 | Returns true if the matrix represents a translating
|
---|
2076 | transformation, otherwise returns false.
|
---|
2077 |
|
---|
2078 | \sa reset()
|
---|
2079 | */
|
---|
2080 |
|
---|
2081 | // returns true if the transform is uniformly scaling
|
---|
2082 | // (same scale in x and y direction)
|
---|
2083 | // scale is set to the max of x and y scaling factors
|
---|
2084 | Q_GUI_EXPORT
|
---|
2085 | bool qt_scaleForTransform(const QTransform &transform, qreal *scale)
|
---|
2086 | {
|
---|
2087 | const QTransform::TransformationType type = transform.type();
|
---|
2088 | if (type <= QTransform::TxTranslate) {
|
---|
2089 | *scale = 1;
|
---|
2090 | return true;
|
---|
2091 | } else if (type == QTransform::TxScale) {
|
---|
2092 | const qreal xScale = qAbs(transform.m11());
|
---|
2093 | const qreal yScale = qAbs(transform.m22());
|
---|
2094 | *scale = qMax(xScale, yScale);
|
---|
2095 | return qFuzzyCompare(xScale, yScale);
|
---|
2096 | }
|
---|
2097 |
|
---|
2098 | const qreal xScale = transform.m11() * transform.m11()
|
---|
2099 | + transform.m21() * transform.m21();
|
---|
2100 | const qreal yScale = transform.m12() * transform.m12()
|
---|
2101 | + transform.m22() * transform.m22();
|
---|
2102 | *scale = qSqrt(qMax(xScale, yScale));
|
---|
2103 | return type == QTransform::TxRotate && qFuzzyCompare(xScale, yScale);
|
---|
2104 | }
|
---|
2105 |
|
---|
2106 | QT_END_NAMESPACE
|
---|