1 | /****************************************************************************
|
---|
2 | **
|
---|
3 | ** Copyright (C) 2009 Nokia Corporation and/or its subsidiary(-ies).
|
---|
4 | ** Contact: Qt Software Information ([email protected])
|
---|
5 | **
|
---|
6 | ** This file is part of the QtGui module of the Qt Toolkit.
|
---|
7 | **
|
---|
8 | ** $QT_BEGIN_LICENSE:LGPL$
|
---|
9 | ** Commercial Usage
|
---|
10 | ** Licensees holding valid Qt Commercial licenses may use this file in
|
---|
11 | ** accordance with the Qt Commercial License Agreement provided with the
|
---|
12 | ** Software or, alternatively, in accordance with the terms contained in
|
---|
13 | ** a written agreement between you and Nokia.
|
---|
14 | **
|
---|
15 | ** GNU Lesser General Public License Usage
|
---|
16 | ** Alternatively, this file may be used under the terms of the GNU Lesser
|
---|
17 | ** General Public License version 2.1 as published by the Free Software
|
---|
18 | ** Foundation and appearing in the file LICENSE.LGPL included in the
|
---|
19 | ** packaging of this file. Please review the following information to
|
---|
20 | ** ensure the GNU Lesser General Public License version 2.1 requirements
|
---|
21 | ** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
|
---|
22 | **
|
---|
23 | ** In addition, as a special exception, Nokia gives you certain
|
---|
24 | ** additional rights. These rights are described in the Nokia Qt LGPL
|
---|
25 | ** Exception version 1.0, included in the file LGPL_EXCEPTION.txt in this
|
---|
26 | ** package.
|
---|
27 | **
|
---|
28 | ** GNU General Public License Usage
|
---|
29 | ** Alternatively, this file may be used under the terms of the GNU
|
---|
30 | ** General Public License version 3.0 as published by the Free Software
|
---|
31 | ** Foundation and appearing in the file LICENSE.GPL included in the
|
---|
32 | ** packaging of this file. Please review the following information to
|
---|
33 | ** ensure the GNU General Public License version 3.0 requirements will be
|
---|
34 | ** met: http://www.gnu.org/copyleft/gpl.html.
|
---|
35 | **
|
---|
36 | ** If you are unsure which license is appropriate for your use, please
|
---|
37 | ** contact the sales department at [email protected].
|
---|
38 | ** $QT_END_LICENSE$
|
---|
39 | **
|
---|
40 | ****************************************************************************/
|
---|
41 |
|
---|
42 | #include "qdatastream.h"
|
---|
43 | #include "qdebug.h"
|
---|
44 | #include "qmatrix.h"
|
---|
45 | #include "qregion.h"
|
---|
46 | #include "qpainterpath.h"
|
---|
47 | #include "qvariant.h"
|
---|
48 | #include <qmath.h>
|
---|
49 |
|
---|
50 | #include <limits.h>
|
---|
51 |
|
---|
52 | QT_BEGIN_NAMESPACE
|
---|
53 |
|
---|
54 | /*!
|
---|
55 | \class QMatrix
|
---|
56 | \brief The QMatrix class specifies 2D transformations of a
|
---|
57 | coordinate system.
|
---|
58 |
|
---|
59 | \ingroup multimedia
|
---|
60 |
|
---|
61 | A matrix specifies how to translate, scale, shear or rotate the
|
---|
62 | coordinate system, and is typically used when rendering graphics.
|
---|
63 |
|
---|
64 | A QMatrix object can be built using the setMatrix(), scale(),
|
---|
65 | rotate(), translate() and shear() functions. Alternatively, it
|
---|
66 | can be built by applying \l {QMatrix#Basic Matrix
|
---|
67 | Operations}{basic matrix operations}. The matrix can also be
|
---|
68 | defined when constructed, and it can be reset to the identity
|
---|
69 | matrix (the default) using the reset() function.
|
---|
70 |
|
---|
71 | The QMatrix class supports mapping of graphic primitives: A given
|
---|
72 | point, line, polygon, region, or painter path can be mapped to the
|
---|
73 | coordinate system defined by \e this matrix using the map()
|
---|
74 | function. In case of a rectangle, its coordinates can be
|
---|
75 | transformed using the mapRect() function. A rectangle can also be
|
---|
76 | transformed into a \e polygon (mapped to the coordinate system
|
---|
77 | defined by \e this matrix), using the mapToPolygon() function.
|
---|
78 |
|
---|
79 | QMatrix provides the isIdentity() function which returns true if
|
---|
80 | the matrix is the identity matrix, and the isInvertible() function
|
---|
81 | which returns true if the matrix is non-singular (i.e. AB = BA =
|
---|
82 | I). The inverted() function returns an inverted copy of \e this
|
---|
83 | matrix if it is invertible (otherwise it returns the identity
|
---|
84 | matrix). In addition, QMatrix provides the det() function
|
---|
85 | returning the matrix's determinant.
|
---|
86 |
|
---|
87 | Finally, the QMatrix class supports matrix multiplication, and
|
---|
88 | objects of the class can be streamed as well as compared.
|
---|
89 |
|
---|
90 | \tableofcontents
|
---|
91 |
|
---|
92 | \section1 Rendering Graphics
|
---|
93 |
|
---|
94 | When rendering graphics, the matrix defines the transformations
|
---|
95 | but the actual transformation is performed by the drawing routines
|
---|
96 | in QPainter.
|
---|
97 |
|
---|
98 | By default, QPainter operates on the associated device's own
|
---|
99 | coordinate system. The standard coordinate system of a
|
---|
100 | QPaintDevice has its origin located at the top-left position. The
|
---|
101 | \e x values increase to the right; \e y values increase
|
---|
102 | downward. For a complete description, see the \l {The Coordinate
|
---|
103 | System}{coordinate system} documentation.
|
---|
104 |
|
---|
105 | QPainter has functions to translate, scale, shear and rotate the
|
---|
106 | coordinate system without using a QMatrix. For example:
|
---|
107 |
|
---|
108 | \table 100%
|
---|
109 | \row
|
---|
110 | \o \inlineimage qmatrix-simpletransformation.png
|
---|
111 | \o
|
---|
112 | \snippet doc/src/snippets/matrix/matrix.cpp 0
|
---|
113 | \endtable
|
---|
114 |
|
---|
115 | Although these functions are very convenient, it can be more
|
---|
116 | efficient to build a QMatrix and call QPainter::setMatrix() if you
|
---|
117 | want to perform more than a single transform operation. For
|
---|
118 | example:
|
---|
119 |
|
---|
120 | \table 100%
|
---|
121 | \row
|
---|
122 | \o \inlineimage qmatrix-combinedtransformation.png
|
---|
123 | \o
|
---|
124 | \snippet doc/src/snippets/matrix/matrix.cpp 1
|
---|
125 | \endtable
|
---|
126 |
|
---|
127 | \section1 Basic Matrix Operations
|
---|
128 |
|
---|
129 | \image qmatrix-representation.png
|
---|
130 |
|
---|
131 | A QMatrix object contains a 3 x 3 matrix. The \c dx and \c dy
|
---|
132 | elements specify horizontal and vertical translation. The \c m11
|
---|
133 | and \c m22 elements specify horizontal and vertical scaling. And
|
---|
134 | finally, the \c m21 and \c m12 elements specify horizontal and
|
---|
135 | vertical \e shearing.
|
---|
136 |
|
---|
137 | QMatrix transforms a point in the plane to another point using the
|
---|
138 | following formulas:
|
---|
139 |
|
---|
140 | \snippet doc/src/snippets/code/src_gui_painting_qmatrix.cpp 0
|
---|
141 |
|
---|
142 | The point \e (x, y) is the original point, and \e (x', y') is the
|
---|
143 | transformed point. \e (x', y') can be transformed back to \e (x,
|
---|
144 | y) by performing the same operation on the inverted() matrix.
|
---|
145 |
|
---|
146 | The various matrix elements can be set when constructing the
|
---|
147 | matrix, or by using the setMatrix() function later on. They can also
|
---|
148 | be manipulated using the translate(), rotate(), scale() and
|
---|
149 | shear() convenience functions, The currently set values can be
|
---|
150 | retrieved using the m11(), m12(), m21(), m22(), dx() and dy()
|
---|
151 | functions.
|
---|
152 |
|
---|
153 | Translation is the simplest transformation. Setting \c dx and \c
|
---|
154 | dy will move the coordinate system \c dx units along the X axis
|
---|
155 | and \c dy units along the Y axis. Scaling can be done by setting
|
---|
156 | \c m11 and \c m22. For example, setting \c m11 to 2 and \c m22 to
|
---|
157 | 1.5 will double the height and increase the width by 50%. The
|
---|
158 | identity matrix has \c m11 and \c m22 set to 1 (all others are set
|
---|
159 | to 0) mapping a point to itself. Shearing is controlled by \c m12
|
---|
160 | and \c m21. Setting these elements to values different from zero
|
---|
161 | will twist the coordinate system. Rotation is achieved by
|
---|
162 | carefully setting both the shearing factors and the scaling
|
---|
163 | factors.
|
---|
164 |
|
---|
165 | Here's the combined transformations example using basic matrix
|
---|
166 | operations:
|
---|
167 |
|
---|
168 | \table 100%
|
---|
169 | \row
|
---|
170 | \o \inlineimage qmatrix-combinedtransformation.png
|
---|
171 | \o
|
---|
172 | \snippet doc/src/snippets/matrix/matrix.cpp 2
|
---|
173 | \endtable
|
---|
174 |
|
---|
175 | \sa QPainter, {The Coordinate System}, {demos/affine}{Affine
|
---|
176 | Transformations Demo}, {Transformations Example}
|
---|
177 | */
|
---|
178 |
|
---|
179 |
|
---|
180 | // some defines to inline some code
|
---|
181 | #define MAPDOUBLE(x, y, nx, ny) \
|
---|
182 | { \
|
---|
183 | qreal fx = x; \
|
---|
184 | qreal fy = y; \
|
---|
185 | nx = _m11*fx + _m21*fy + _dx; \
|
---|
186 | ny = _m12*fx + _m22*fy + _dy; \
|
---|
187 | }
|
---|
188 |
|
---|
189 | #define MAPINT(x, y, nx, ny) \
|
---|
190 | { \
|
---|
191 | qreal fx = x; \
|
---|
192 | qreal fy = y; \
|
---|
193 | nx = qRound(_m11*fx + _m21*fy + _dx); \
|
---|
194 | ny = qRound(_m12*fx + _m22*fy + _dy); \
|
---|
195 | }
|
---|
196 |
|
---|
197 | /*****************************************************************************
|
---|
198 | QMatrix member functions
|
---|
199 | *****************************************************************************/
|
---|
200 |
|
---|
201 | /*!
|
---|
202 | Constructs an identity matrix.
|
---|
203 |
|
---|
204 | All elements are set to zero except \c m11 and \c m22 (specifying
|
---|
205 | the scale), which are set to 1.
|
---|
206 |
|
---|
207 | \sa reset()
|
---|
208 | */
|
---|
209 |
|
---|
210 | QMatrix::QMatrix()
|
---|
211 | {
|
---|
212 | _m11 = _m22 = 1.0;
|
---|
213 | _m12 = _m21 = _dx = _dy = 0.0;
|
---|
214 | }
|
---|
215 |
|
---|
216 | /*!
|
---|
217 | Constructs a matrix with the elements, \a m11, \a m12, \a m21, \a
|
---|
218 | m22, \a dx and \a dy.
|
---|
219 |
|
---|
220 | \sa setMatrix()
|
---|
221 | */
|
---|
222 |
|
---|
223 | QMatrix::QMatrix(qreal m11, qreal m12, qreal m21, qreal m22,
|
---|
224 | qreal dx, qreal dy)
|
---|
225 | {
|
---|
226 | _m11 = m11; _m12 = m12;
|
---|
227 | _m21 = m21; _m22 = m22;
|
---|
228 | _dx = dx; _dy = dy;
|
---|
229 | }
|
---|
230 |
|
---|
231 |
|
---|
232 | /*!
|
---|
233 | Constructs a matrix that is a copy of the given \a matrix.
|
---|
234 | */
|
---|
235 | QMatrix::QMatrix(const QMatrix &matrix)
|
---|
236 | {
|
---|
237 | *this = matrix;
|
---|
238 | }
|
---|
239 |
|
---|
240 | /*!
|
---|
241 | Sets the matrix elements to the specified values, \a m11, \a m12,
|
---|
242 | \a m21, \a m22, \a dx and \a dy.
|
---|
243 |
|
---|
244 | Note that this function replaces the previous values. QMatrix
|
---|
245 | provide the translate(), rotate(), scale() and shear() convenience
|
---|
246 | functions to manipulate the various matrix elements based on the
|
---|
247 | currently defined coordinate system.
|
---|
248 |
|
---|
249 | \sa QMatrix()
|
---|
250 | */
|
---|
251 |
|
---|
252 | void QMatrix::setMatrix(qreal m11, qreal m12, qreal m21, qreal m22,
|
---|
253 | qreal dx, qreal dy)
|
---|
254 | {
|
---|
255 | _m11 = m11; _m12 = m12;
|
---|
256 | _m21 = m21; _m22 = m22;
|
---|
257 | _dx = dx; _dy = dy;
|
---|
258 | }
|
---|
259 |
|
---|
260 |
|
---|
261 | /*!
|
---|
262 | \fn qreal QMatrix::m11() const
|
---|
263 |
|
---|
264 | Returns the horizontal scaling factor.
|
---|
265 |
|
---|
266 | \sa scale(), {QMatrix#Basic Matrix Operations}{Basic Matrix
|
---|
267 | Operations}
|
---|
268 | */
|
---|
269 |
|
---|
270 | /*!
|
---|
271 | \fn qreal QMatrix::m12() const
|
---|
272 |
|
---|
273 | Returns the vertical shearing factor.
|
---|
274 |
|
---|
275 | \sa shear(), {QMatrix#Basic Matrix Operations}{Basic Matrix
|
---|
276 | Operations}
|
---|
277 | */
|
---|
278 |
|
---|
279 | /*!
|
---|
280 | \fn qreal QMatrix::m21() const
|
---|
281 |
|
---|
282 | Returns the horizontal shearing factor.
|
---|
283 |
|
---|
284 | \sa shear(), {QMatrix#Basic Matrix Operations}{Basic Matrix
|
---|
285 | Operations}
|
---|
286 | */
|
---|
287 |
|
---|
288 | /*!
|
---|
289 | \fn qreal QMatrix::m22() const
|
---|
290 |
|
---|
291 | Returns the vertical scaling factor.
|
---|
292 |
|
---|
293 | \sa scale(), {QMatrix#Basic Matrix Operations}{Basic Matrix
|
---|
294 | Operations}
|
---|
295 | */
|
---|
296 |
|
---|
297 | /*!
|
---|
298 | \fn qreal QMatrix::dx() const
|
---|
299 |
|
---|
300 | Returns the horizontal translation factor.
|
---|
301 |
|
---|
302 | \sa translate(), {QMatrix#Basic Matrix Operations}{Basic Matrix
|
---|
303 | Operations}
|
---|
304 | */
|
---|
305 |
|
---|
306 | /*!
|
---|
307 | \fn qreal QMatrix::dy() const
|
---|
308 |
|
---|
309 | Returns the vertical translation factor.
|
---|
310 |
|
---|
311 | \sa translate(), {QMatrix#Basic Matrix Operations}{Basic Matrix
|
---|
312 | Operations}
|
---|
313 | */
|
---|
314 |
|
---|
315 |
|
---|
316 | /*!
|
---|
317 | Maps the given coordinates \a x and \a y into the coordinate
|
---|
318 | system defined by this matrix. The resulting values are put in *\a
|
---|
319 | tx and *\a ty, respectively.
|
---|
320 |
|
---|
321 | The coordinates are transformed using the following formulas:
|
---|
322 |
|
---|
323 | \snippet doc/src/snippets/code/src_gui_painting_qmatrix.cpp 1
|
---|
324 |
|
---|
325 | The point (x, y) is the original point, and (x', y') is the
|
---|
326 | transformed point.
|
---|
327 |
|
---|
328 | \sa {QMatrix#Basic Matrix Operations}{Basic Matrix Operations}
|
---|
329 | */
|
---|
330 |
|
---|
331 | void QMatrix::map(qreal x, qreal y, qreal *tx, qreal *ty) const
|
---|
332 | {
|
---|
333 | MAPDOUBLE(x, y, *tx, *ty);
|
---|
334 | }
|
---|
335 |
|
---|
336 |
|
---|
337 |
|
---|
338 | /*!
|
---|
339 | \overload
|
---|
340 |
|
---|
341 | Maps the given coordinates \a x and \a y into the coordinate
|
---|
342 | system defined by this matrix. The resulting values are put in *\a
|
---|
343 | tx and *\a ty, respectively. Note that the transformed coordinates
|
---|
344 | are rounded to the nearest integer.
|
---|
345 | */
|
---|
346 |
|
---|
347 | void QMatrix::map(int x, int y, int *tx, int *ty) const
|
---|
348 | {
|
---|
349 | MAPINT(x, y, *tx, *ty);
|
---|
350 | }
|
---|
351 |
|
---|
352 | QRect QMatrix::mapRect(const QRect &rect) const
|
---|
353 | {
|
---|
354 | QRect result;
|
---|
355 | if (_m12 == 0.0F && _m21 == 0.0F) {
|
---|
356 | int x = qRound(_m11*rect.x() + _dx);
|
---|
357 | int y = qRound(_m22*rect.y() + _dy);
|
---|
358 | int w = qRound(_m11*rect.width());
|
---|
359 | int h = qRound(_m22*rect.height());
|
---|
360 | if (w < 0) {
|
---|
361 | w = -w;
|
---|
362 | x -= w;
|
---|
363 | }
|
---|
364 | if (h < 0) {
|
---|
365 | h = -h;
|
---|
366 | y -= h;
|
---|
367 | }
|
---|
368 | result = QRect(x, y, w, h);
|
---|
369 | } else {
|
---|
370 | // see mapToPolygon for explanations of the algorithm.
|
---|
371 | qreal x0, y0;
|
---|
372 | qreal x, y;
|
---|
373 | MAPDOUBLE(rect.left(), rect.top(), x0, y0);
|
---|
374 | qreal xmin = x0;
|
---|
375 | qreal ymin = y0;
|
---|
376 | qreal xmax = x0;
|
---|
377 | qreal ymax = y0;
|
---|
378 | MAPDOUBLE(rect.right() + 1, rect.top(), x, y);
|
---|
379 | xmin = qMin(xmin, x);
|
---|
380 | ymin = qMin(ymin, y);
|
---|
381 | xmax = qMax(xmax, x);
|
---|
382 | ymax = qMax(ymax, y);
|
---|
383 | MAPDOUBLE(rect.right() + 1, rect.bottom() + 1, x, y);
|
---|
384 | xmin = qMin(xmin, x);
|
---|
385 | ymin = qMin(ymin, y);
|
---|
386 | xmax = qMax(xmax, x);
|
---|
387 | ymax = qMax(ymax, y);
|
---|
388 | MAPDOUBLE(rect.left(), rect.bottom() + 1, x, y);
|
---|
389 | xmin = qMin(xmin, x);
|
---|
390 | ymin = qMin(ymin, y);
|
---|
391 | xmax = qMax(xmax, x);
|
---|
392 | ymax = qMax(ymax, y);
|
---|
393 | result = QRect(qRound(xmin), qRound(ymin), qRound(xmax)-qRound(xmin), qRound(ymax)-qRound(ymin));
|
---|
394 | }
|
---|
395 | return result;
|
---|
396 | }
|
---|
397 |
|
---|
398 | /*!
|
---|
399 | \fn QRectF QMatrix::mapRect(const QRectF &rectangle) const
|
---|
400 |
|
---|
401 | Creates and returns a QRectF object that is a copy of the given \a
|
---|
402 | rectangle, mapped into the coordinate system defined by this
|
---|
403 | matrix.
|
---|
404 |
|
---|
405 | The rectangle's coordinates are transformed using the following
|
---|
406 | formulas:
|
---|
407 |
|
---|
408 | \snippet doc/src/snippets/code/src_gui_painting_qmatrix.cpp 2
|
---|
409 |
|
---|
410 | If rotation or shearing has been specified, this function returns
|
---|
411 | the \e bounding rectangle. To retrieve the exact region the given
|
---|
412 | \a rectangle maps to, use the mapToPolygon() function instead.
|
---|
413 |
|
---|
414 | \sa mapToPolygon(), {QMatrix#Basic Matrix Operations}{Basic Matrix
|
---|
415 | Operations}
|
---|
416 | */
|
---|
417 | QRectF QMatrix::mapRect(const QRectF &rect) const
|
---|
418 | {
|
---|
419 | QRectF result;
|
---|
420 | if (_m12 == 0.0F && _m21 == 0.0F) {
|
---|
421 | qreal x = _m11*rect.x() + _dx;
|
---|
422 | qreal y = _m22*rect.y() + _dy;
|
---|
423 | qreal w = _m11*rect.width();
|
---|
424 | qreal h = _m22*rect.height();
|
---|
425 | if (w < 0) {
|
---|
426 | w = -w;
|
---|
427 | x -= w;
|
---|
428 | }
|
---|
429 | if (h < 0) {
|
---|
430 | h = -h;
|
---|
431 | y -= h;
|
---|
432 | }
|
---|
433 | result = QRectF(x, y, w, h);
|
---|
434 | } else {
|
---|
435 | qreal x0, y0;
|
---|
436 | qreal x, y;
|
---|
437 | MAPDOUBLE(rect.x(), rect.y(), x0, y0);
|
---|
438 | qreal xmin = x0;
|
---|
439 | qreal ymin = y0;
|
---|
440 | qreal xmax = x0;
|
---|
441 | qreal ymax = y0;
|
---|
442 | MAPDOUBLE(rect.x() + rect.width(), rect.y(), x, y);
|
---|
443 | xmin = qMin(xmin, x);
|
---|
444 | ymin = qMin(ymin, y);
|
---|
445 | xmax = qMax(xmax, x);
|
---|
446 | ymax = qMax(ymax, y);
|
---|
447 | MAPDOUBLE(rect.x() + rect.width(), rect.y() + rect.height(), x, y);
|
---|
448 | xmin = qMin(xmin, x);
|
---|
449 | ymin = qMin(ymin, y);
|
---|
450 | xmax = qMax(xmax, x);
|
---|
451 | ymax = qMax(ymax, y);
|
---|
452 | MAPDOUBLE(rect.x(), rect.y() + rect.height(), x, y);
|
---|
453 | xmin = qMin(xmin, x);
|
---|
454 | ymin = qMin(ymin, y);
|
---|
455 | xmax = qMax(xmax, x);
|
---|
456 | ymax = qMax(ymax, y);
|
---|
457 | result = QRectF(xmin, ymin, xmax-xmin, ymax - ymin);
|
---|
458 | }
|
---|
459 | return result;
|
---|
460 | }
|
---|
461 |
|
---|
462 | /*!
|
---|
463 | \fn QRect QMatrix::mapRect(const QRect &rectangle) const
|
---|
464 | \overload
|
---|
465 |
|
---|
466 | Creates and returns a QRect object that is a copy of the given \a
|
---|
467 | rectangle, mapped into the coordinate system defined by this
|
---|
468 | matrix. Note that the transformed coordinates are rounded to the
|
---|
469 | nearest integer.
|
---|
470 | */
|
---|
471 |
|
---|
472 |
|
---|
473 | /*!
|
---|
474 | \fn QPoint operator*(const QPoint &point, const QMatrix &matrix)
|
---|
475 | \relates QMatrix
|
---|
476 |
|
---|
477 | This is the same as \a{matrix}.map(\a{point}).
|
---|
478 |
|
---|
479 | \sa QMatrix::map()
|
---|
480 | */
|
---|
481 |
|
---|
482 | QPoint QMatrix::map(const QPoint &p) const
|
---|
483 | {
|
---|
484 | qreal fx = p.x();
|
---|
485 | qreal fy = p.y();
|
---|
486 | return QPoint(qRound(_m11*fx + _m21*fy + _dx),
|
---|
487 | qRound(_m12*fx + _m22*fy + _dy));
|
---|
488 | }
|
---|
489 |
|
---|
490 | /*!
|
---|
491 | \fn QPointF operator*(const QPointF &point, const QMatrix &matrix)
|
---|
492 | \relates QMatrix
|
---|
493 |
|
---|
494 | Same as \a{matrix}.map(\a{point}).
|
---|
495 |
|
---|
496 | \sa QMatrix::map()
|
---|
497 | */
|
---|
498 |
|
---|
499 | /*!
|
---|
500 | \overload
|
---|
501 |
|
---|
502 | Creates and returns a QPointF object that is a copy of the given
|
---|
503 | \a point, mapped into the coordinate system defined by this
|
---|
504 | matrix.
|
---|
505 | */
|
---|
506 | QPointF QMatrix::map(const QPointF &point) const
|
---|
507 | {
|
---|
508 | qreal fx = point.x();
|
---|
509 | qreal fy = point.y();
|
---|
510 | return QPointF(_m11*fx + _m21*fy + _dx, _m12*fx + _m22*fy + _dy);
|
---|
511 | }
|
---|
512 |
|
---|
513 | /*!
|
---|
514 | \fn QPoint QMatrix::map(const QPoint &point) const
|
---|
515 | \overload
|
---|
516 |
|
---|
517 | Creates and returns a QPoint object that is a copy of the given \a
|
---|
518 | point, mapped into the coordinate system defined by this
|
---|
519 | matrix. Note that the transformed coordinates are rounded to the
|
---|
520 | nearest integer.
|
---|
521 | */
|
---|
522 |
|
---|
523 | /*!
|
---|
524 | \fn QLineF operator*(const QLineF &line, const QMatrix &matrix)
|
---|
525 | \relates QMatrix
|
---|
526 |
|
---|
527 | This is the same as \a{matrix}.map(\a{line}).
|
---|
528 |
|
---|
529 | \sa QMatrix::map()
|
---|
530 | */
|
---|
531 |
|
---|
532 | /*!
|
---|
533 | \fn QLine operator*(const QLine &line, const QMatrix &matrix)
|
---|
534 | \relates QMatrix
|
---|
535 |
|
---|
536 | This is the same as \a{matrix}.map(\a{line}).
|
---|
537 |
|
---|
538 | \sa QMatrix::map()
|
---|
539 | */
|
---|
540 |
|
---|
541 | /*!
|
---|
542 | \overload
|
---|
543 |
|
---|
544 | Creates and returns a QLineF object that is a copy of the given \a
|
---|
545 | line, mapped into the coordinate system defined by this matrix.
|
---|
546 | */
|
---|
547 | QLineF QMatrix::map(const QLineF &line) const
|
---|
548 | {
|
---|
549 | return QLineF(map(line.p1()), map(line.p2()));
|
---|
550 | }
|
---|
551 |
|
---|
552 | /*!
|
---|
553 | \overload
|
---|
554 |
|
---|
555 | Creates and returns a QLine object that is a copy of the given \a
|
---|
556 | line, mapped into the coordinate system defined by this matrix.
|
---|
557 | Note that the transformed coordinates are rounded to the nearest
|
---|
558 | integer.
|
---|
559 | */
|
---|
560 | QLine QMatrix::map(const QLine &line) const
|
---|
561 | {
|
---|
562 | return QLine(map(line.p1()), map(line.p2()));
|
---|
563 | }
|
---|
564 |
|
---|
565 | /*!
|
---|
566 | \fn QPolygonF operator *(const QPolygonF &polygon, const QMatrix &matrix)
|
---|
567 | \relates QMatrix
|
---|
568 |
|
---|
569 | This is the same as \a{matrix}.map(\a{polygon}).
|
---|
570 |
|
---|
571 | \sa QMatrix::map()
|
---|
572 | */
|
---|
573 |
|
---|
574 | /*!
|
---|
575 | \fn QPolygon operator*(const QPolygon &polygon, const QMatrix &matrix)
|
---|
576 | \relates QMatrix
|
---|
577 |
|
---|
578 | This is the same as \a{matrix}.map(\a{polygon}).
|
---|
579 |
|
---|
580 | \sa QMatrix::map()
|
---|
581 | */
|
---|
582 |
|
---|
583 | QPolygon QMatrix::map(const QPolygon &a) const
|
---|
584 | {
|
---|
585 | int size = a.size();
|
---|
586 | int i;
|
---|
587 | QPolygon p(size);
|
---|
588 | const QPoint *da = a.constData();
|
---|
589 | QPoint *dp = p.data();
|
---|
590 | for(i = 0; i < size; i++) {
|
---|
591 | MAPINT(da[i].x(), da[i].y(), dp[i].rx(), dp[i].ry());
|
---|
592 | }
|
---|
593 | return p;
|
---|
594 | }
|
---|
595 |
|
---|
596 | /*!
|
---|
597 | \fn QPolygonF QMatrix::map(const QPolygonF &polygon) const
|
---|
598 | \overload
|
---|
599 |
|
---|
600 | Creates and returns a QPolygonF object that is a copy of the given
|
---|
601 | \a polygon, mapped into the coordinate system defined by this
|
---|
602 | matrix.
|
---|
603 | */
|
---|
604 | QPolygonF QMatrix::map(const QPolygonF &a) const
|
---|
605 | {
|
---|
606 | int size = a.size();
|
---|
607 | int i;
|
---|
608 | QPolygonF p(size);
|
---|
609 | const QPointF *da = a.constData();
|
---|
610 | QPointF *dp = p.data();
|
---|
611 | for(i = 0; i < size; i++) {
|
---|
612 | MAPDOUBLE(da[i].xp, da[i].yp, dp[i].xp, dp[i].yp);
|
---|
613 | }
|
---|
614 | return p;
|
---|
615 | }
|
---|
616 |
|
---|
617 | /*!
|
---|
618 | \fn QPolygon QMatrix::map(const QPolygon &polygon) const
|
---|
619 | \overload
|
---|
620 |
|
---|
621 | Creates and returns a QPolygon object that is a copy of the given
|
---|
622 | \a polygon, mapped into the coordinate system defined by this
|
---|
623 | matrix. Note that the transformed coordinates are rounded to the
|
---|
624 | nearest integer.
|
---|
625 | */
|
---|
626 |
|
---|
627 | /*!
|
---|
628 | \fn QRegion operator*(const QRegion ®ion, const QMatrix &matrix)
|
---|
629 | \relates QMatrix
|
---|
630 |
|
---|
631 | This is the same as \a{matrix}.map(\a{region}).
|
---|
632 |
|
---|
633 | \sa QMatrix::map()
|
---|
634 | */
|
---|
635 |
|
---|
636 | extern QPainterPath qt_regionToPath(const QRegion ®ion);
|
---|
637 |
|
---|
638 | /*!
|
---|
639 | \fn QRegion QMatrix::map(const QRegion ®ion) const
|
---|
640 | \overload
|
---|
641 |
|
---|
642 | Creates and returns a QRegion object that is a copy of the given
|
---|
643 | \a region, mapped into the coordinate system defined by this matrix.
|
---|
644 |
|
---|
645 | Calling this method can be rather expensive if rotations or
|
---|
646 | shearing are used.
|
---|
647 | */
|
---|
648 | QRegion QMatrix::map(const QRegion &r) const
|
---|
649 | {
|
---|
650 | if (_m11 == 1.0 && _m22 == 1.0 && _m12 == 0.0 && _m21 == 0.0) { // translate or identity
|
---|
651 | if (_dx == 0.0 && _dy == 0.0) // Identity
|
---|
652 | return r;
|
---|
653 | QRegion copy(r);
|
---|
654 | copy.translate(qRound(_dx), qRound(_dy));
|
---|
655 | return copy;
|
---|
656 | }
|
---|
657 |
|
---|
658 | QPainterPath p = map(qt_regionToPath(r));
|
---|
659 | return p.toFillPolygon().toPolygon();
|
---|
660 | }
|
---|
661 |
|
---|
662 | /*!
|
---|
663 | \fn QPainterPath operator *(const QPainterPath &path, const QMatrix &matrix)
|
---|
664 | \relates QMatrix
|
---|
665 |
|
---|
666 | This is the same as \a{matrix}.map(\a{path}).
|
---|
667 |
|
---|
668 | \sa QMatrix::map()
|
---|
669 | */
|
---|
670 |
|
---|
671 | /*!
|
---|
672 | \overload
|
---|
673 |
|
---|
674 | Creates and returns a QPainterPath object that is a copy of the
|
---|
675 | given \a path, mapped into the coordinate system defined by this
|
---|
676 | matrix.
|
---|
677 | */
|
---|
678 | QPainterPath QMatrix::map(const QPainterPath &path) const
|
---|
679 | {
|
---|
680 | if (path.isEmpty())
|
---|
681 | return QPainterPath();
|
---|
682 |
|
---|
683 | QPainterPath copy = path;
|
---|
684 |
|
---|
685 | // Translate or identity
|
---|
686 | if (_m11 == 1.0 && _m22 == 1.0 && _m12 == 0.0 && _m21 == 0.0) {
|
---|
687 |
|
---|
688 | // Translate
|
---|
689 | if (_dx != 0.0 || _dy != 0.0) {
|
---|
690 | copy.detach();
|
---|
691 | for (int i=0; i<path.elementCount(); ++i) {
|
---|
692 | QPainterPath::Element &e = copy.d_ptr->elements[i];
|
---|
693 | e.x += _dx;
|
---|
694 | e.y += _dy;
|
---|
695 | }
|
---|
696 | }
|
---|
697 |
|
---|
698 | // Full xform
|
---|
699 | } else {
|
---|
700 | copy.detach();
|
---|
701 | for (int i=0; i<path.elementCount(); ++i) {
|
---|
702 | QPainterPath::Element &e = copy.d_ptr->elements[i];
|
---|
703 | qreal fx = e.x, fy = e.y;
|
---|
704 | e.x = _m11*fx + _m21*fy + _dx;
|
---|
705 | e.y = _m12*fx + _m22*fy + _dy;
|
---|
706 | }
|
---|
707 | }
|
---|
708 |
|
---|
709 | return copy;
|
---|
710 | }
|
---|
711 |
|
---|
712 | /*!
|
---|
713 | \fn QRegion QMatrix::mapToRegion(const QRect &rectangle) const
|
---|
714 |
|
---|
715 | Returns the transformed rectangle \a rectangle as a QRegion
|
---|
716 | object. A rectangle which has been rotated or sheared may result
|
---|
717 | in a non-rectangular region being returned.
|
---|
718 |
|
---|
719 | Use the mapToPolygon() or map() function instead.
|
---|
720 | */
|
---|
721 | #ifdef QT3_SUPPORT
|
---|
722 | QRegion QMatrix::mapToRegion(const QRect &rect) const
|
---|
723 | {
|
---|
724 | QRegion result;
|
---|
725 | if (isIdentity()) {
|
---|
726 | result = rect;
|
---|
727 | } else if (m12() == 0.0F && m21() == 0.0F) {
|
---|
728 | int x = qRound(m11()*rect.x() + dx());
|
---|
729 | int y = qRound(m22()*rect.y() + dy());
|
---|
730 | int w = qRound(m11()*rect.width());
|
---|
731 | int h = qRound(m22()*rect.height());
|
---|
732 | if (w < 0) {
|
---|
733 | w = -w;
|
---|
734 | x -= w - 1;
|
---|
735 | }
|
---|
736 | if (h < 0) {
|
---|
737 | h = -h;
|
---|
738 | y -= h - 1;
|
---|
739 | }
|
---|
740 | result = QRect(x, y, w, h);
|
---|
741 | } else {
|
---|
742 | result = QRegion(mapToPolygon(rect));
|
---|
743 | }
|
---|
744 | return result;
|
---|
745 |
|
---|
746 | }
|
---|
747 | #endif
|
---|
748 | /*!
|
---|
749 | \fn QPolygon QMatrix::mapToPolygon(const QRect &rectangle) const
|
---|
750 |
|
---|
751 | Creates and returns a QPolygon representation of the given \a
|
---|
752 | rectangle, mapped into the coordinate system defined by this
|
---|
753 | matrix.
|
---|
754 |
|
---|
755 | The rectangle's coordinates are transformed using the following
|
---|
756 | formulas:
|
---|
757 |
|
---|
758 | \snippet doc/src/snippets/code/src_gui_painting_qmatrix.cpp 3
|
---|
759 |
|
---|
760 | Polygons and rectangles behave slightly differently when
|
---|
761 | transformed (due to integer rounding), so
|
---|
762 | \c{matrix.map(QPolygon(rectangle))} is not always the same as
|
---|
763 | \c{matrix.mapToPolygon(rectangle)}.
|
---|
764 |
|
---|
765 | \sa mapRect(), {QMatrix#Basic Matrix Operations}{Basic Matrix
|
---|
766 | Operations}
|
---|
767 | */
|
---|
768 | QPolygon QMatrix::mapToPolygon(const QRect &rect) const
|
---|
769 | {
|
---|
770 | QPolygon a(4);
|
---|
771 | qreal x[4], y[4];
|
---|
772 | if (_m12 == 0.0F && _m21 == 0.0F) {
|
---|
773 | x[0] = _m11*rect.x() + _dx;
|
---|
774 | y[0] = _m22*rect.y() + _dy;
|
---|
775 | qreal w = _m11*rect.width();
|
---|
776 | qreal h = _m22*rect.height();
|
---|
777 | if (w < 0) {
|
---|
778 | w = -w;
|
---|
779 | x[0] -= w;
|
---|
780 | }
|
---|
781 | if (h < 0) {
|
---|
782 | h = -h;
|
---|
783 | y[0] -= h;
|
---|
784 | }
|
---|
785 | x[1] = x[0]+w;
|
---|
786 | x[2] = x[1];
|
---|
787 | x[3] = x[0];
|
---|
788 | y[1] = y[0];
|
---|
789 | y[2] = y[0]+h;
|
---|
790 | y[3] = y[2];
|
---|
791 | } else {
|
---|
792 | qreal right = rect.x() + rect.width();
|
---|
793 | qreal bottom = rect.y() + rect.height();
|
---|
794 | MAPDOUBLE(rect.x(), rect.y(), x[0], y[0]);
|
---|
795 | MAPDOUBLE(right, rect.y(), x[1], y[1]);
|
---|
796 | MAPDOUBLE(right, bottom, x[2], y[2]);
|
---|
797 | MAPDOUBLE(rect.x(), bottom, x[3], y[3]);
|
---|
798 | }
|
---|
799 | #if 0
|
---|
800 | int i;
|
---|
801 | for(i = 0; i< 4; i++)
|
---|
802 | qDebug("coords(%d) = (%f/%f) (%d/%d)", i, x[i], y[i], qRound(x[i]), qRound(y[i]));
|
---|
803 | qDebug("width=%f, height=%f", qSqrt((x[1]-x[0])*(x[1]-x[0]) + (y[1]-y[0])*(y[1]-y[0])),
|
---|
804 | qSqrt((x[0]-x[3])*(x[0]-x[3]) + (y[0]-y[3])*(y[0]-y[3])));
|
---|
805 | #endif
|
---|
806 | // all coordinates are correctly, tranform to a pointarray
|
---|
807 | // (rounding to the next integer)
|
---|
808 | a.setPoints(4, qRound(x[0]), qRound(y[0]),
|
---|
809 | qRound(x[1]), qRound(y[1]),
|
---|
810 | qRound(x[2]), qRound(y[2]),
|
---|
811 | qRound(x[3]), qRound(y[3]));
|
---|
812 | return a;
|
---|
813 | }
|
---|
814 |
|
---|
815 | /*!
|
---|
816 | Resets the matrix to an identity matrix, i.e. all elements are set
|
---|
817 | to zero, except \c m11 and \c m22 (specifying the scale) which are
|
---|
818 | set to 1.
|
---|
819 |
|
---|
820 | \sa QMatrix(), isIdentity(), {QMatrix#Basic Matrix
|
---|
821 | Operations}{Basic Matrix Operations}
|
---|
822 | */
|
---|
823 |
|
---|
824 | void QMatrix::reset()
|
---|
825 | {
|
---|
826 | _m11 = _m22 = 1.0;
|
---|
827 | _m12 = _m21 = _dx = _dy = 0.0;
|
---|
828 | }
|
---|
829 |
|
---|
830 | /*!
|
---|
831 | \fn bool QMatrix::isIdentity() const
|
---|
832 |
|
---|
833 | Returns true if the matrix is the identity matrix, otherwise
|
---|
834 | returns false.
|
---|
835 |
|
---|
836 | \sa reset()
|
---|
837 | */
|
---|
838 |
|
---|
839 | /*!
|
---|
840 | Moves the coordinate system \a dx along the x axis and \a dy along
|
---|
841 | the y axis, and returns a reference to the matrix.
|
---|
842 |
|
---|
843 | \sa setMatrix()
|
---|
844 | */
|
---|
845 |
|
---|
846 | QMatrix &QMatrix::translate(qreal dx, qreal dy)
|
---|
847 | {
|
---|
848 | _dx += dx*_m11 + dy*_m21;
|
---|
849 | _dy += dy*_m22 + dx*_m12;
|
---|
850 | return *this;
|
---|
851 | }
|
---|
852 |
|
---|
853 | /*!
|
---|
854 | \fn QMatrix &QMatrix::scale(qreal sx, qreal sy)
|
---|
855 |
|
---|
856 | Scales the coordinate system by \a sx horizontally and \a sy
|
---|
857 | vertically, and returns a reference to the matrix.
|
---|
858 |
|
---|
859 | \sa setMatrix()
|
---|
860 | */
|
---|
861 |
|
---|
862 | QMatrix &QMatrix::scale(qreal sx, qreal sy)
|
---|
863 | {
|
---|
864 | _m11 *= sx;
|
---|
865 | _m12 *= sx;
|
---|
866 | _m21 *= sy;
|
---|
867 | _m22 *= sy;
|
---|
868 | return *this;
|
---|
869 | }
|
---|
870 |
|
---|
871 | /*!
|
---|
872 | Shears the coordinate system by \a sh horizontally and \a sv
|
---|
873 | vertically, and returns a reference to the matrix.
|
---|
874 |
|
---|
875 | \sa setMatrix()
|
---|
876 | */
|
---|
877 |
|
---|
878 | QMatrix &QMatrix::shear(qreal sh, qreal sv)
|
---|
879 | {
|
---|
880 | qreal tm11 = sv*_m21;
|
---|
881 | qreal tm12 = sv*_m22;
|
---|
882 | qreal tm21 = sh*_m11;
|
---|
883 | qreal tm22 = sh*_m12;
|
---|
884 | _m11 += tm11;
|
---|
885 | _m12 += tm12;
|
---|
886 | _m21 += tm21;
|
---|
887 | _m22 += tm22;
|
---|
888 | return *this;
|
---|
889 | }
|
---|
890 |
|
---|
891 | const qreal deg2rad = qreal(0.017453292519943295769); // pi/180
|
---|
892 |
|
---|
893 | /*!
|
---|
894 | \fn QMatrix &QMatrix::rotate(qreal degrees)
|
---|
895 |
|
---|
896 | Rotates the coordinate system the given \a degrees
|
---|
897 | counterclockwise.
|
---|
898 |
|
---|
899 | Note that if you apply a QMatrix to a point defined in widget
|
---|
900 | coordinates, the direction of the rotation will be clockwise
|
---|
901 | because the y-axis points downwards.
|
---|
902 |
|
---|
903 | Returns a reference to the matrix.
|
---|
904 |
|
---|
905 | \sa setMatrix()
|
---|
906 | */
|
---|
907 |
|
---|
908 | QMatrix &QMatrix::rotate(qreal a)
|
---|
909 | {
|
---|
910 | qreal sina = 0;
|
---|
911 | qreal cosa = 0;
|
---|
912 | if (a == 90. || a == -270.)
|
---|
913 | sina = 1.;
|
---|
914 | else if (a == 270. || a == -90.)
|
---|
915 | sina = -1.;
|
---|
916 | else if (a == 180.)
|
---|
917 | cosa = -1.;
|
---|
918 | else{
|
---|
919 | qreal b = deg2rad*a; // convert to radians
|
---|
920 | sina = qSin(b); // fast and convenient
|
---|
921 | cosa = qCos(b);
|
---|
922 | }
|
---|
923 | qreal tm11 = cosa*_m11 + sina*_m21;
|
---|
924 | qreal tm12 = cosa*_m12 + sina*_m22;
|
---|
925 | qreal tm21 = -sina*_m11 + cosa*_m21;
|
---|
926 | qreal tm22 = -sina*_m12 + cosa*_m22;
|
---|
927 | _m11 = tm11; _m12 = tm12;
|
---|
928 | _m21 = tm21; _m22 = tm22;
|
---|
929 | return *this;
|
---|
930 | }
|
---|
931 |
|
---|
932 | /*!
|
---|
933 | \fn bool QMatrix::isInvertible() const
|
---|
934 |
|
---|
935 | Returns true if the matrix is invertible, otherwise returns false.
|
---|
936 |
|
---|
937 | \sa inverted()
|
---|
938 | */
|
---|
939 |
|
---|
940 | /*!
|
---|
941 | \fn qreal QMatrix::det() const
|
---|
942 |
|
---|
943 | Returns the matrix's determinant.
|
---|
944 | */
|
---|
945 |
|
---|
946 | /*!
|
---|
947 | \fn QMatrix QMatrix::invert(bool *invertible) const
|
---|
948 |
|
---|
949 | Returns an inverted copy of this matrix.
|
---|
950 |
|
---|
951 | Use the inverted() function instead.
|
---|
952 | */
|
---|
953 |
|
---|
954 | /*!
|
---|
955 | Returns an inverted copy of this matrix.
|
---|
956 |
|
---|
957 | If the matrix is singular (not invertible), the returned matrix is
|
---|
958 | the identity matrix. If \a invertible is valid (i.e. not 0), its
|
---|
959 | value is set to true if the matrix is invertible, otherwise it is
|
---|
960 | set to false.
|
---|
961 |
|
---|
962 | \sa isInvertible()
|
---|
963 | */
|
---|
964 |
|
---|
965 | QMatrix QMatrix::inverted(bool *invertible) const
|
---|
966 | {
|
---|
967 | qreal determinant = det();
|
---|
968 | if (determinant == 0.0) {
|
---|
969 | if (invertible)
|
---|
970 | *invertible = false; // singular matrix
|
---|
971 | QMatrix defaultMatrix;
|
---|
972 | return defaultMatrix;
|
---|
973 | }
|
---|
974 | else { // invertible matrix
|
---|
975 | if (invertible)
|
---|
976 | *invertible = true;
|
---|
977 | qreal dinv = 1.0/determinant;
|
---|
978 | QMatrix imatrix((_m22*dinv), (-_m12*dinv),
|
---|
979 | (-_m21*dinv), (_m11*dinv),
|
---|
980 | ((_m21*_dy - _m22*_dx)*dinv),
|
---|
981 | ((_m12*_dx - _m11*_dy)*dinv));
|
---|
982 | return imatrix;
|
---|
983 | }
|
---|
984 | }
|
---|
985 |
|
---|
986 |
|
---|
987 | /*!
|
---|
988 | \fn bool QMatrix::operator==(const QMatrix &matrix) const
|
---|
989 |
|
---|
990 | Returns true if this matrix is equal to the given \a matrix,
|
---|
991 | otherwise returns false.
|
---|
992 | */
|
---|
993 |
|
---|
994 | bool QMatrix::operator==(const QMatrix &m) const
|
---|
995 | {
|
---|
996 | return _m11 == m._m11 &&
|
---|
997 | _m12 == m._m12 &&
|
---|
998 | _m21 == m._m21 &&
|
---|
999 | _m22 == m._m22 &&
|
---|
1000 | _dx == m._dx &&
|
---|
1001 | _dy == m._dy;
|
---|
1002 | }
|
---|
1003 |
|
---|
1004 | /*!
|
---|
1005 | \fn bool QMatrix::operator!=(const QMatrix &matrix) const
|
---|
1006 |
|
---|
1007 | Returns true if this matrix is not equal to the given \a matrix,
|
---|
1008 | otherwise returns false.
|
---|
1009 | */
|
---|
1010 |
|
---|
1011 | bool QMatrix::operator!=(const QMatrix &m) const
|
---|
1012 | {
|
---|
1013 | return _m11 != m._m11 ||
|
---|
1014 | _m12 != m._m12 ||
|
---|
1015 | _m21 != m._m21 ||
|
---|
1016 | _m22 != m._m22 ||
|
---|
1017 | _dx != m._dx ||
|
---|
1018 | _dy != m._dy;
|
---|
1019 | }
|
---|
1020 |
|
---|
1021 | /*!
|
---|
1022 | \fn QMatrix &QMatrix::operator *=(const QMatrix &matrix)
|
---|
1023 | \overload
|
---|
1024 |
|
---|
1025 | Returns the result of multiplying this matrix by the given \a
|
---|
1026 | matrix.
|
---|
1027 | */
|
---|
1028 |
|
---|
1029 | QMatrix &QMatrix::operator *=(const QMatrix &m)
|
---|
1030 | {
|
---|
1031 | qreal tm11 = _m11*m._m11 + _m12*m._m21;
|
---|
1032 | qreal tm12 = _m11*m._m12 + _m12*m._m22;
|
---|
1033 | qreal tm21 = _m21*m._m11 + _m22*m._m21;
|
---|
1034 | qreal tm22 = _m21*m._m12 + _m22*m._m22;
|
---|
1035 |
|
---|
1036 | qreal tdx = _dx*m._m11 + _dy*m._m21 + m._dx;
|
---|
1037 | qreal tdy = _dx*m._m12 + _dy*m._m22 + m._dy;
|
---|
1038 |
|
---|
1039 | _m11 = tm11; _m12 = tm12;
|
---|
1040 | _m21 = tm21; _m22 = tm22;
|
---|
1041 | _dx = tdx; _dy = tdy;
|
---|
1042 | return *this;
|
---|
1043 | }
|
---|
1044 |
|
---|
1045 | /*!
|
---|
1046 | \fn QMatrix QMatrix::operator *(const QMatrix &matrix) const
|
---|
1047 |
|
---|
1048 | Returns the result of multiplying this matrix by the given \a
|
---|
1049 | matrix.
|
---|
1050 |
|
---|
1051 | Note that matrix multiplication is not commutative, i.e. a*b !=
|
---|
1052 | b*a.
|
---|
1053 | */
|
---|
1054 |
|
---|
1055 | QMatrix QMatrix::operator *(const QMatrix &m) const
|
---|
1056 | {
|
---|
1057 | QMatrix result = *this;
|
---|
1058 | result *= m;
|
---|
1059 | return result;
|
---|
1060 | }
|
---|
1061 |
|
---|
1062 | /*!
|
---|
1063 | Assigns the given \a matrix's values to this matrix.
|
---|
1064 | */
|
---|
1065 | QMatrix &QMatrix::operator=(const QMatrix &matrix)
|
---|
1066 | {
|
---|
1067 | _m11 = matrix._m11;
|
---|
1068 | _m12 = matrix._m12;
|
---|
1069 | _m21 = matrix._m21;
|
---|
1070 | _m22 = matrix._m22;
|
---|
1071 | _dx = matrix._dx;
|
---|
1072 | _dy = matrix._dy;
|
---|
1073 | return *this;
|
---|
1074 | }
|
---|
1075 |
|
---|
1076 | /*!
|
---|
1077 | \since 4.2
|
---|
1078 |
|
---|
1079 | Returns the matrix as a QVariant.
|
---|
1080 | */
|
---|
1081 | QMatrix::operator QVariant() const
|
---|
1082 | {
|
---|
1083 | return QVariant(QVariant::Matrix, this);
|
---|
1084 | }
|
---|
1085 |
|
---|
1086 | Q_GUI_EXPORT QPainterPath operator *(const QPainterPath &p, const QMatrix &m)
|
---|
1087 | {
|
---|
1088 | return m.map(p);
|
---|
1089 | }
|
---|
1090 |
|
---|
1091 |
|
---|
1092 | /*****************************************************************************
|
---|
1093 | QMatrix stream functions
|
---|
1094 | *****************************************************************************/
|
---|
1095 | #ifndef QT_NO_DATASTREAM
|
---|
1096 | /*!
|
---|
1097 | \fn QDataStream &operator<<(QDataStream &stream, const QMatrix &matrix)
|
---|
1098 | \relates QMatrix
|
---|
1099 |
|
---|
1100 | Writes the given \a matrix to the given \a stream and returns a
|
---|
1101 | reference to the stream.
|
---|
1102 |
|
---|
1103 | \sa {Format of the QDataStream Operators}
|
---|
1104 | */
|
---|
1105 |
|
---|
1106 | QDataStream &operator<<(QDataStream &s, const QMatrix &m)
|
---|
1107 | {
|
---|
1108 | if (s.version() == 1) {
|
---|
1109 | s << (float)m.m11() << (float)m.m12() << (float)m.m21()
|
---|
1110 | << (float)m.m22() << (float)m.dx() << (float)m.dy();
|
---|
1111 | } else {
|
---|
1112 | s << double(m.m11())
|
---|
1113 | << double(m.m12())
|
---|
1114 | << double(m.m21())
|
---|
1115 | << double(m.m22())
|
---|
1116 | << double(m.dx())
|
---|
1117 | << double(m.dy());
|
---|
1118 | }
|
---|
1119 | return s;
|
---|
1120 | }
|
---|
1121 |
|
---|
1122 | /*!
|
---|
1123 | \fn QDataStream &operator>>(QDataStream &stream, QMatrix &matrix)
|
---|
1124 | \relates QMatrix
|
---|
1125 |
|
---|
1126 | Reads the given \a matrix from the given \a stream and returns a
|
---|
1127 | reference to the stream.
|
---|
1128 |
|
---|
1129 | \sa {Format of the QDataStream Operators}
|
---|
1130 | */
|
---|
1131 |
|
---|
1132 | QDataStream &operator>>(QDataStream &s, QMatrix &m)
|
---|
1133 | {
|
---|
1134 | if (s.version() == 1) {
|
---|
1135 | float m11, m12, m21, m22, dx, dy;
|
---|
1136 | s >> m11; s >> m12; s >> m21; s >> m22;
|
---|
1137 | s >> dx; s >> dy;
|
---|
1138 | m.setMatrix(m11, m12, m21, m22, dx, dy);
|
---|
1139 | }
|
---|
1140 | else {
|
---|
1141 | double m11, m12, m21, m22, dx, dy;
|
---|
1142 | s >> m11;
|
---|
1143 | s >> m12;
|
---|
1144 | s >> m21;
|
---|
1145 | s >> m22;
|
---|
1146 | s >> dx;
|
---|
1147 | s >> dy;
|
---|
1148 | m.setMatrix(m11, m12, m21, m22, dx, dy);
|
---|
1149 | }
|
---|
1150 | return s;
|
---|
1151 | }
|
---|
1152 | #endif // QT_NO_DATASTREAM
|
---|
1153 |
|
---|
1154 | #ifndef QT_NO_DEBUG_STREAM
|
---|
1155 | QDebug operator<<(QDebug dbg, const QMatrix &m)
|
---|
1156 | {
|
---|
1157 | dbg.nospace() << "QMatrix("
|
---|
1158 | << "11=" << m.m11()
|
---|
1159 | << " 12=" << m.m12()
|
---|
1160 | << " 21=" << m.m21()
|
---|
1161 | << " 22=" << m.m22()
|
---|
1162 | << " dx=" << m.dx()
|
---|
1163 | << " dy=" << m.dy()
|
---|
1164 | << ")";
|
---|
1165 | return dbg.space();
|
---|
1166 | }
|
---|
1167 | #endif
|
---|
1168 |
|
---|
1169 | /*!
|
---|
1170 | \fn QRect QMatrix::map(const QRect &rect) const
|
---|
1171 | \compat
|
---|
1172 |
|
---|
1173 | Creates and returns a QRect object that is a copy of the given
|
---|
1174 | rectangle, mapped into the coordinate system defined by this
|
---|
1175 | matrix.
|
---|
1176 |
|
---|
1177 | Use the mapRect() function instead.
|
---|
1178 | */
|
---|
1179 |
|
---|
1180 | QT_END_NAMESPACE
|
---|